The Arithmetic-Geometric Mean and Fast Computation of Elementary Functions

  • J. M. Borwein
  • P. B. Borwein


We produce a self contained account of the relationship between the Gaussian arithmetic-geometric mean iteration and the fast computation of elementary functions. A particularly pleasant algorithm for x is one of the by-products.


Elementary Function Elliptic Function Root Extraction Elliptic Integral Exponential Convergence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. H. Abel, Oeuvres complètes, Grondahl and Son, Christiana, 1881.Google Scholar
  2. [2]
    P. Beckman, A History of Pi, Golem Press, Ed. 4, 1977.Google Scholar
  3. [3]
    F. Bowman, Introduction to Elliptic Functions, English Univ. Press, London, 1953.Google Scholar
  4. [4]
    R. P. Brent, Multiple-precision zero-finding and the complexity of elementary function evaluation, in Analytic Computational Complexity, J. F. Traub, ed., Academic Press, New York, 1975, pp. 151–176.Google Scholar
  5. [5]
    R. P. Brent, Fast multiple precision evaluation of elementary functions, J. Assoc. Comput. Mach., 23 (1976), pp. 242–251.MathSciNetCrossRefGoogle Scholar
  6. [6]
    B. C. Carlson, Algorithms involving arithmetic and geometric means, Amer. Math. Monthly, 78 (1971), pp. 496–505.MATHCrossRefGoogle Scholar
  7. [7]
    A. Cayley, An Elementary Treatise on Elliptic Functions, Bell and Sons, 1895, republished by Dover, New York, 1961.Google Scholar
  8. [8]
    A. Eagle, The Elliptic Functions as They Should Be, Galloway and Porter, Cambridge, 1958.MATHGoogle Scholar
  9. [9]
    C. H. Edwards, Jr. The Historical Development of the Calculus, Springer-Verlag, New York, 1979.Google Scholar
  10. [10]
    K. F. GAUSS, Werke, Bd 3, Gottingen, 1866, 361–403.Google Scholar
  11. [11]
    L. V. King, On the direct numerical calculation of elliptic functions and integrals, Cambridge Univ. Press, Cambridge, 1924.Google Scholar
  12. [12]
    D. Knuth, The Art of Computer Programming. Vol. 2: Seminumerical Algorithms, Addison-Wesley, Reading, MA, 1969.Google Scholar
  13. [13]
    H. T. Kung AND J. F. Traub, All algebraic functions can be computed fast, J. Assoc. Comput. Mach., 25 (1978), 245–260.MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    A. M. Legendre, Exercices de calcul integral, Vol. 1, Paris, 1811.Google Scholar
  15. [15]
    D. J. Neuman, Rational approximation versus fast computer methods, in Lectures on Approximation and Value Distribution, Presses de l’Université de Montréal, Montreal, 1982, pp. 149–174.Google Scholar
  16. [16]
    E. Salamin, Computation of x using arithmetic-geometric mean, Math. Comput. 135 (1976), pp. 565–570.Google Scholar
  17. [17]
    D. Shanks AND J. W. Wrench, Jr. Calculation ofz to 100,000 decimals, Math. Comput., 16 (1962), pp. 76–79.MathSciNetMATHGoogle Scholar
  18. [18]
    Y. Tamura AND Y. Kanada, Calculation of x to 4,196,293 decimals based on Gauss-Legendre algorithm,preprint.Google Scholar
  19. [19]
    J. Todd, Basic Numerical Mathematics, Vol. 1, Academic Press, New York, 1979.MATHCrossRefGoogle Scholar
  20. [20]
    G. N. Watson, The marquis and the land agent, Math. Gazette, 17 (1933), pp. 5–17.MATHCrossRefGoogle Scholar
  21. [21]
    J. W. Wrench, Jr. The evolution of extended decimal approximations to x. The Mathematics Teacher, 53 (1960), pp. 644–650.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • J. M. Borwein
    • 1
  • P. B. Borwein
    • 1
  1. 1.Department of MathematicsDalhousie UniversityHalifaxCanada

Personalised recommendations