Skip to main content

Fast Multiple-Precision Evaluation of Elementary Functions

  • Chapter
  • 651 Accesses

Abstract

Let f(x) be one of the usual elementary functions (exp, log, artan, sin, cosh, etc.), and let M(n) be the number of single-precision operations required to multiply n-bit integers. It is shown that f(x) can be evaluated, with relative error O(2n), in O(M(n)log (n)) operations as nx for any floating-point number x (with an n-bit fraction) in a suitable finite interval. From the Schönhage-Strassen bound on M(n), it follows that an n-bit approximation to f(x) may be evaluated in O(n log2(n) log log(n)) operations. Special cases include the evaluation of constants such as π, e, and e π. The algorithms depend on the theory of elliptic integrals, using the arithmetic-geometric mean iteration and ascending Landen transformations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowitz, M., and Stegun, I.A. Handbook of mathematical functions with formulas, graphs, and mathematical tables. National Bureau of Standards, Washington, D.C., 1964; Dover, 1965, Ch. 17.

    Google Scholar 

  2. Beeler, M., Gosper, R.W., and Schroeppel, R. Hakmem. Memo No. 239, M.I.T. Artificial Intelligence Lab., M.I.T., Cambridge, Mass., 1972, pp. 70–71.

    Google Scholar 

  3. Borchardt, C.W. Gesammelte Werke. Berlin, 1888, pp. 455–462.

    Google Scholar 

  4. Brent, R.P. The complexity of multiple-precision arithmetic. Proc. Seminar on Complexity of Computational Problem Solving (held at Australian National U., Dec. 1974), Queensland U. Press, Brisbane, Australia 1975, pp. 126–165.

    Google Scholar 

  5. Brent, R.P. Multiple-precision zero-finding methods and the complexity of elementary function evaluation. Proc. Symp. on Analytic Computational Complexity, J.F. Traub, Ed., Academic Press, New York, 1976, pp. 151–176.

    Google Scholar 

  6. Brent, R.P. Computer Solution of Nonlinear Equations. Academic Press, New York (to appear), Ch. 6.

    Google Scholar 

  7. Brent, R.P. A Fortran multiple-precision arithmetic package. Submitted to a technical journal.

    Google Scholar 

  8. Carlson, B.C. Algorithms involving arithmetic and geometric means. Amer. Math. Monthly 78 (May 1971), 496–505.

    Article  MathSciNet  MATH  Google Scholar 

  9. Carlson, B.C. An algorithm for computing logarithms and arctangents. Math. Comput. 26 (April 1972), 543–549.

    Article  MATH  Google Scholar 

  10. Finkel, R., Guiens, L., and Simony, C. Manuscript in preparation.

    Google Scholar 

  11. Fischer, M.J., and Stockmeyer, L.J. Fast on-line integer multiplication. J. Comput. System Scis. 9 (Dec. 1974), 317–331.

    Article  MathSciNet  MATH  Google Scholar 

  12. Gauss, C.F. Carl Friedrich Gauss Werke, Bd. 3. Gottingen, 1876, pp. 362–403.

    Google Scholar 

  13. Gosper, R.W. Acceleration of series. Memo No. 304, M.I.T. Artificial Intelligence Lab., M.I.T., Cambridge, Mass., 1974.

    Google Scholar 

  14. Guillgud, J., and Bouter, M. 1,000,000 decimals de pi. Unpublished. manuscript..

    Google Scholar 

  15. Knuth, D.E. The Art of Computer Programming, Vol. 2. Addison-Wesley, Reading, Mass., 1969. Errata and addenda: Rep. CS 194, Computer Sci. Dep., Stanford U., Stanford, Calif., 1970.

    Google Scholar 

  16. Lagrange, J.L. Oeuvres de Lagrange, Tome 2. Gauthier-Villars, Paris, 1868, pp. 267–272.

    Google Scholar 

  17. Legendre, A.M. Exercices de Calcul Integral, Vol. 1. Paris, 1811, p. 61.

    Google Scholar 

  18. Salamin, E. Computation of x using arithmetic-geometric mean. To appear in Math. Comput.

    Google Scholar 

  19. Schönhage, A., and Strassen, V. Schnelle Multiplikation grosser Zahlen. Computing 7 (1971), 281–292.

    Article  MATH  Google Scholar 

  20. Sciiroeppel, R. Unpublished manuscript dated May 1975.

    Google Scholar 

  21. Shanks, D., and Wrench, J.W. Calculation of,r to 100,000 decimals. Math. Comput. 16 (1962), 76–99.

    MathSciNet  MATH  Google Scholar 

  22. Sweeney, D.W. On the computation of Euler’s constant. Math. Comput. 17 (1963), 170–178.

    MathSciNet  MATH  Google Scholar 

  23. Thachen, H.C. Iterated square root expansions for the inverse cosine and inverse hyperbolic cosine. Math. Comput. 16 (1961), 399–403.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brent, R.P. (1997). Fast Multiple-Precision Evaluation of Elementary Functions. In: Pi: A Source Book. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2736-4_47

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2736-4_47

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-2738-8

  • Online ISBN: 978-1-4757-2736-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics