Advertisement

Generalized Linear Models

  • W. N. Venables
  • B. D. Ripley
Part of the Statistics and Computing book series (SCO)

Abstract

Generalized linear models (GLMs) extend linear models to accommodate both non-normal response distributions and transformations to linearity. (We will assume that Chapter 6 has been read before this chapter.) The essay by Firth (1991) gives a good introduction to GLMs; the comprehensive reference is McCullagh & Nelder (1989).

Keywords

Generalize Linear Model Linear Predictor Negative Binomial Model Residual Deviance Stimulus Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • W. N. Venables
    • 1
  • B. D. Ripley
    • 2
  1. 1.Department of StatisticsUniversity of AdelaideAdelaideAustralia
  2. 2.University of OxfordOxfordEngland

Personalised recommendations