Advertisement

Biomechanics pp 514-546 | Cite as

Blood Flow in Skeletal Muscle

  • Y. C. Fung
Chapter

Abstract

Continuing the biomechanical analysis of specific organs in accordance with detailed anatomical data, we present in this chapter blood flow in skeletal muscles. A systematic approach should begin with the collection of geometric and materials data, determination of the constitutive equations of the materials, derivation of basic equations according to the laws of physics and chemistry, and formulation of meaningful boundary value problems, and then proceed to solve the equations, predict results, and validate the predictions with animal experiments. Such a program has been carried out by Schmid-Schönbein and his associates for blood flow in skeletal muscle. We present their main results here.

Keywords

Skeletal Muscle Transmural Pressure Gracilis Muscle Capillary Blood Vessel Initial Lymphatic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Braakmann, R. (1988). Pressure-flow relationships in skeletal muscle. Ph.D. Dissertation, University of Amsterdam.Google Scholar
  2. Burton, A.C. (1951). On the physical equilibrium of small blood vessels. Am. J. Physiol. 164: 319–329.PubMedGoogle Scholar
  3. Casley-Smith, J.R. (1977). Lymph and lymphatics in: Microcirculation (G. Kaley and B.M. Altura, eds.), University Park Press. Baltimore, MD, pp. 423–502.Google Scholar
  4. Castenholz, A. (1984). Morphological characteristics of initial lymphatics in the tongue as shown by scanning electron microscopy. Scanning Electron Microsc. III: 1343–1352.Google Scholar
  5. Clough, G., and Smaje, L.H. (1978). Simultaneous measurement of pressure in the interstitium and the terminal lymphatics of the cat mesentery. J. Physiol. Lond. 283: 457–468.PubMedGoogle Scholar
  6. Delashaw, J.B., and Duling, B.R. (1988). A study of the functional elements regulating capillary perfusion in striated muscle. Microvasc. Res. 36: 162–171.PubMedCrossRefGoogle Scholar
  7. Eisenstat, S.C., Gursky, M.C., Schultz, M.H., and Sherman, A.H. (1982). Yale sparse matrix package. I. The symmetric codes. Int. J. Num. Meth. Eng. 18: 1145–1151.CrossRefGoogle Scholar
  8. Engelson, E.T., Schmid-Schönbein, G.W., and Zweifach, B.W. (1985b). The microvasculature in skeletal muscle. III. Venous network anatomy in normotensive and spontaneously hypertensive rats. Int. J. Microcir. Clin. Exp. 4: 229–248.Google Scholar
  9. Engelson, E.T., Schmid-Schönbein, G.W., and Zweifach, B.W. (1986). The microvasculature in skeletal muscle. II. Arteriolar network anatomy in normotensive and hypertensive rats. Microvasc. Res. 31: 356–374.PubMedCrossRefGoogle Scholar
  10. Engelson, E.T., Skalak, T.C., and Schmid-Schönbein, G.W. (1985a). The microvasculature in skeletal muscle. I. Arteriolar network in rat spinotrapezius muscle. Microvasc. Res. 30: 29–44.PubMedCrossRefGoogle Scholar
  11. Fung, Y.C. (1966). Theoretical considerations of the elasticity of red cells and small blood vessels. Fed. Proc. 25: 1761–1772.PubMedGoogle Scholar
  12. Fung, Y.C. (1990). Biomechanics: Motion, Flow, Stress, and Growth. Springer-Verlag, New York.Google Scholar
  13. Fung, Y.C. (1993). Biomechanics: Mechanical Properties of Living Tissues. 2nd ed. Springer-Verlag, New York.Google Scholar
  14. Fung, Y.C., Zweifach, B.W., and Intaglietta, M. (1966). Elastic environment of the capillary bed. Circ. Res. 19: 441–461.PubMedCrossRefGoogle Scholar
  15. Granger, H., Meininger, G.A., Borders, J.L., Morff, R.J., and Goodman, A.H. (1984). Microcirculation of skeletal muscle. Phys. Pharm. Microcirc. 2: 181–265.Google Scholar
  16. Kioller, A., Dawant, B., Liu, A., Popel, A.S., and Johnson, P.C. (1987). Quantitative analysis of arteriole network architecture in cat sartorius muscle. Am. I. Physiol. 253: H154–H164.Google Scholar
  17. Krogh, A. (1919). Number and distribution of capillaries in muscle with calculation of oxygen pressure head necessary for supplying the tissue. Am. J. Physiol. 52: 409–415.Google Scholar
  18. Langille, B.L. (1993). Remodeling of developing and mature arteries: endothelium, smooth muscle, and matrix. J. Cardiovasc. Pharmacol. 21: 511–517.CrossRefGoogle Scholar
  19. Lee, J., and Schmid-Schönbein, G.W. (1995). Biomechanics of skeletal muscle capillaries: hemodynamic resistance, endothelial distensibility, and pseudopod formulation. Ann. Biomed. Eng. 23: 226–246.PubMedCrossRefGoogle Scholar
  20. Lee, I, Salathè, E.P., and Schmid-Schönbein, G.W (1987). Fluid exchange in skeletal muscle with viscoelastic blood vessels. Am. J. Physiol. 253: H1548–H1566.PubMedGoogle Scholar
  21. Lindbom, L., and Arfors, K.E. (1985). Mechanism and site of control for variation in the number of perfused capillaries in skeletal muscle. Int. J. Microcirc. Clin. Exp. 4: 19–38.PubMedGoogle Scholar
  22. Mazzoni, M.C., Skalak, T.C., and Schmid-Schönbein, G.W (1987). Structure of lymphatic valves in the spinotrapezius muscle of the rat. Blood Vessels, 24: 304–312.PubMedGoogle Scholar
  23. Mazzoni, M.C., Skalak, T.C., and Schmid-Schönbein, G.W. (1990). Effects of skeletal muscle fiber deformation on lymphatic volumes. Am. J. Physiol. 259: H1860–H1868.PubMedGoogle Scholar
  24. Pappenheimer, J.R., and Maes, J.P. (1942). A quantitative measure of the vasomotor tone in the hind limb muscle of the dog. Am. J. Physiol. 137: 187–199.Google Scholar
  25. Popel, A.S. (1987). Network Models of Peripheral Circulation. In Handbook of Bioengineering (R. Skalak and S Chien, eds.), McGraw-Hill, New York, pp. 20.1–20.24.Google Scholar
  26. Popel, A.S., Torres-Filho, I.P., Johnson, P.C., and Bouskela, E. (1988). A new scheme for hierarchical classification of anastomosing vessels. Int. J. Microcirc. Clin. Exp. 7: 131–138.PubMedGoogle Scholar
  27. Price, R.J., and Skalak, T.C. (1994). Circumferential wall stress as a mechanism for arteriolar rarefaction and proliferation in a network model. Microvasc. Res. 47: 188–202.PubMedCrossRefGoogle Scholar
  28. Price, R.J., and Skalak, T.C. (1995). A circumferential stress-growth rule predicts arcade arteriole formation in a network model. Microcirculation 2: 41–51.PubMedCrossRefGoogle Scholar
  29. Price, R.J., Owens, G.K., and Skalak, T.C. (1994). Immunohistochemical identification of arteriolar development using markers of smooth muscle differentiation: Evidence that capillary arterialization proceeds from terminal arterioles. Circ. Res. 75: 520–527.PubMedCrossRefGoogle Scholar
  30. Schmid-Schönbein, G.W. (1988). A theory of blood flow in skeletal muscle. J. Biomech. Eng. 110: 20–26.PubMedCrossRefGoogle Scholar
  31. Schmid-Schönbein G.W., and Murakami, H. (1985). Blood flow in contracting arterioles. Int. J. Microcirc. Clin. Exp. 4: 311–328.PubMedGoogle Scholar
  32. Schmid-Schönbein, G.W., and Zweifach, B.W. (1994). Fluid pump mechanisms in initial lymphatics. News Physiol. Sci. 9: 67–71.Google Scholar
  33. Schmid-Schönbein, G.W., Skalak, R., Usami, S., and Chien, S. (1980). Cell distribution in capillary networks. Microvasc. Res. 19: 18–44.PubMedCrossRefGoogle Scholar
  34. Schmid-Schönbein, G.W., Skalak, T.C., Engelson, E.T., and Zweifach, B.W. (1986a). Microvascular Network Anatomy in Rat. In Microvascular Network: Experimental and Theoretical Studies (A.S. Popel and P.C. Johnson, eds.), Karger, Basel, pp. 38–51.Google Scholar
  35. Schmid-Schönbein, G.W, Firestone, G., and Zweifach, B.W. (1986b). Network anatomy of arteries feeding the spinotrapezius muscle in normotensive and hypertensive rats. Blood Vessels 23: 34–49.PubMedGoogle Scholar
  36. Schmid-Schönbein, G.W, Skalak, T.C., and Firestone, G. (1987a). The microvasculature in skeletal muscle. V. The arteriolar and venular arcades in normotensive and hypertensive rats. Microvasc. Res. 34: 385–393.PubMedCrossRefGoogle Scholar
  37. Schmid-Schönbein, G.W., Zweifach, B.W., DeLano, F.A., and Chen, P. (1987b). Microvascular tone in a skeletal muscle of spontaneously hypertensive rats. Hypertension 9: H1548–H1566.CrossRefGoogle Scholar
  38. Schmid-Schönbein, G.W, Skalak, T.C., and Sutton, D.W. (1989a). Bioengineering analysis of blood flow in resting skeletal muscle. In Microvascular Mechanics (J.-S. Lee and T.C. Skalak, eds.), Springer Verlag, New York. pp. 65–99.CrossRefGoogle Scholar
  39. Schmid-Schönbein, G.W., Lee, S.Y., and Sutton, D. (1989b). Dynamic viscous flow in distensible vessels of skeletal muscle microcirculation: Application to pressure and flow transients. Biorheology. 26: 215–227.PubMedGoogle Scholar
  40. Skalak, T.C., Schmid-Schönbein, G.W, and Zweifach, B.W. (1984). New morphological evidence for a mechanism of lymph formation in skeletal muscle. Microvasc. Res. 28: 95–112.PubMedCrossRefGoogle Scholar
  41. Skalak, T.C., and Schmid-Schönbein, G.W (1986a). The microvasculature in skeletal muscle. IV. A model of the capillary network. Microvasc. Res. 32: 333–347.PubMedCrossRefGoogle Scholar
  42. Skalak, T.C., and Schmid-Schönbein, G.W. (1986b). Viscoelastic properties of microvessels in rat spinotrapezius muscle. J. Biomech. Eng. 108: 193–200.PubMedCrossRefGoogle Scholar
  43. Spalteholz, W. (1888). Die Vertheilung der Blutgefässe im Muskel. Abh. Sachs. Ges. Wiss. Math. Phys. 14: 509–528.Google Scholar
  44. Sutton, D.W., and Schmid-Schönbein, G.W. (1989). Hemodynamics at low flow in the resting, vasodilated rat skeletal muscle. Am. J. Physiol. 257: H1419–H1427.PubMedGoogle Scholar
  45. Sutton, D.W., and Schmid-Schönbein, G.W. (1991). The pressure-flow relation of plasma in whole organ skeletal muscle and its experimental verification. J. Biomech. Eng. 113: 452–457.PubMedCrossRefGoogle Scholar
  46. Sutton, D.W., and Schmid-Schönbein, G.W. (1992). Elevation of organ resistance due to leukocyte perfusion. Am. J. Physiol. 262: H1646–H1650.PubMedGoogle Scholar
  47. Sutton, D.W., and Schmid-Schönbein, G.W. (1995). The pressure-flow relation in resting rat skeletal muscle perfused with pure erythrocyte suspensions. Biorheology 32: 29–42.PubMedGoogle Scholar
  48. Sutton, D.W., Mead, E.H., and Schmid-Schönbein, G.W. (1989). A high precision dual feedback pump for unsteady perfusion of small organs. Ann. Biomed. Eng. 17: 269–278.PubMedCrossRefGoogle Scholar
  49. Vlach, J., and Singhai, K. (1983). Computer Methods for Circuit Analysis and Design. Van Nostrand Reinhold, New York.Google Scholar
  50. Zweifach, B.W., Kovalcheck, S., DeLano, F.A., and Chen, P. (1981). Micropressure-flow relationships in a skeletal muscle of spontaneously hypertensive rats. Hypertension 3: 601–614.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Y. C. Fung
    • 1
  1. 1.Department of BioengineeringUniversity of California, San DiegoLa JollaUSA

Personalised recommendations