Advertisement

Biomechanics pp 333-445 | Cite as

Blood Flow in the Lung

  • Y. C. Fung
Chapter

Abstract

We shall now apply the general principles discussed in the preceding chapters to one organ, the lung. The purpose is to illustrate, in one concrete example, the use of physical principles to an organ with a specific anatomy, histology, and mechanical properties to explain and predict the function of that organ in quantitative terms.

Keywords

Pulmonary Artery Transit Time Pulmonary Vein Sheet Thickness Pulmonary Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Tinawi, A., Madden, J.A., Dawson, C.A., Linehan, J.H., Harder, D.R., and Rickaby, D.A. (1991). Distensibility of small arteries of dog lung. J. Appl. Physiol. 71: 1714–1722.PubMedGoogle Scholar
  2. Banister, J., and Torrance, R.W. (1960). The effects of the tracheal pressure upon flow: Pressure relations in the vascular bed of isolated lungs. Q. J. Exp. Physiol. 45: 352–367.Google Scholar
  3. Bergel, D.H., and Milnor, W.R. (1965). Pulmonary vascular impedance in the dog. Circ. Res. 16: 401–415.PubMedCrossRefGoogle Scholar
  4. Bhattacharya, J., Overholser, K., Gropper, M., and Staub, N.C. (1982). Comparison of pressures measured by micropuncture and venous occlusion in Zones III and II of the isolated dog lung. Fed. Proc. 41: 1685 (abstract).Google Scholar
  5. Brody, J.S., Stemmler, E.J., and duBois, A.B. (1968). Longitudinal distribution of vascular resistance in the pulmonary arteries, capillaries, and veins. J. Clin. Invest. 47: 783–784.PubMedCrossRefGoogle Scholar
  6. Cramer, H. (1946). Mathematical Method of Statistics. Princeton University Press, Princeton, NJ.Google Scholar
  7. Crystal, R.G., and West, J.B. (1991). The Lung, Scientific Foundations. Raven Press, New York.Google Scholar
  8. Cumming, G., Henderson, R., Horsfield, K., and Singhal, S.S. (1969). The functional morphology of the pulmonary circulation. In the Pulmonary Circulation and Interstitial Space (Fishman, A.P., and Hecht, H.H., eds.), University of Chicago Press, Chicago, IL, pp. 327–338.Google Scholar
  9. Dale, P.J., Mathews, F.L., and Schroter, R. (1980). Finite element analysis of lung alveolus. J. Biomech. 13: 856–873.CrossRefGoogle Scholar
  10. Daly, I., de B., and Hebb, C. (1966). Pulmonary and Bronchial Vascular Systems. Williams & Wilkins, Baltimore, MD.Google Scholar
  11. Debes, J.C., and Fung, Y.C. (1992). Effect of temperature on the biaxial mechanics of excised lung parenchyma of the dog. J. Appl. Physiol. 73: 1171–1180.PubMedGoogle Scholar
  12. Debes, J.C., and Fung, Y.C. (1995). Biaxial mechanics of excised canine pulmonary arteries. Am. J. Physiol. 269: H433–H442.PubMedGoogle Scholar
  13. Fishman, A.P. (1963). Dynamics of the pulmonary circulation. In Handbook of Physiology, Sec. 2. Circulation, Vol. II (W.H. Hamilton and P. Dow, eds.), American Physiological Society, Washington, D.C., pp. 1667–1743.Google Scholar
  14. Fishman, A.P. (1972). Pulmonary edema: The water exchange function of the lung. Circulation 46: 390–408.PubMedCrossRefGoogle Scholar
  15. Fishman, A.P, and Hecht, H.H. (eds.) (1968). The Pulmonary Circulation and Interstitial Space. University of Chicago Press, Chicago, IL.Google Scholar
  16. Folkow, B., and Neil, E. (1971). Circulation. Oxford University Press, New York.Google Scholar
  17. Fung, Y.C. (1969). Studies on the blood flow in the lung. In Proceedings of the Second Canadian Congress of Applied Mechanics, Waterloo, Canada, pp. 433–453.Google Scholar
  18. Fung, Y.C. (1972). Theoretical pulmonary microvascular impedance. Ann. Biomed. Eng. 1: 221–245.PubMedCrossRefGoogle Scholar
  19. Fung, Y.C. (1974). Fluid in the interstitial space of the pulmonary alveolar sheet. Microvasc. Res. 7: 89–113.PubMedCrossRefGoogle Scholar
  20. Fung, Y.C. (1975a). Does the surface tension make the lung inherently unstable? Circ. Res. 37: 497–502.PubMedCrossRefGoogle Scholar
  21. Fung, Y.C. (1975b). Stress, deformation, and atelectasis of the lung. Circ. Res. 37: 481–496.PubMedCrossRefGoogle Scholar
  22. Fung, Y.C. (1975c). 1975 Eugene Landis Lecture: Microcirculation as seen by a red cell. Microvasc. Res. 10: 246–264.PubMedCrossRefGoogle Scholar
  23. Fung, Y.C. (1988). A model of the lung structure and its validation. J. Appl. Physiol. 64: 2132–2141.PubMedGoogle Scholar
  24. Fung, Y.C. (1989). Connection of micro-and-macromechanics of the lung. In Microvascular Mechanics: Hemodynamics of Systematic and Pulmonary Microcirculation (J.S. Lee and T.C. Skalak, eds.), Springer-Verlag, New York. Chapter 13, pp. 191–217.CrossRefGoogle Scholar
  25. Fung, Y.C. (1990). Biomechanics: Motion, Flow, Stress, and Growth. Springer-Verlag, New York.Google Scholar
  26. Fung, Y.C. (1993). Biomechanics: Mechanical Properties of Living Tissues, 2nd ed. Springer-Verlag, New York.Google Scholar
  27. Fung, Y.C., and Liu, S.Q. (1991). Change in the zero-stress state of rat pulmonary arteries in hypoxic pulmonary hypertension. J. Appl. Physiol. 70: 2455–2470.PubMedCrossRefGoogle Scholar
  28. Fung, Y.C., and Liu, S.Q. (1992). Strain distribution in small blood vessels with zerostress state taken into consideration. Am. J. Physiol. 262: H544–H552.PubMedGoogle Scholar
  29. Fung, Y.C., and Sobin, S.S. (1969). Theory of sheet flow in lung alveoli. J. Appl. Physiol. 26: 472–488.PubMedGoogle Scholar
  30. Fung, Y.C., and Sobin, S.S. (1972a). Elasticity of the pulmonary alveolar sheet. Circ. Res. 30: 451–469.PubMedCrossRefGoogle Scholar
  31. Fung, Y.C., and Sobin, S.S. (1972b). Pulmonary alveolar blood flow. Circ. Res. 30: 470–490.PubMedCrossRefGoogle Scholar
  32. Fung, Y.C., and Sobin S.S. (1977a). Pulmonary alveolar blood flow. In Bioengineering Aspects of Lung Biology (J.B. West, ed.), Marcel Dekker, New York, pp. 267–358.Google Scholar
  33. Fung, Y.C., and Sobin, S.S. (1977b). Mechanics of pulmonary circulation. In Cardiovascular Flow Dynamics and Measurements (N.H.C. Hwang and N.A. Norman, eds.), University Park Press, Baltimore, MD, pp. 665–730.Google Scholar
  34. Fung, Y.C., and Yen, R.T. (1986). A new theory of pulmonary blood flow in zone 2 condition. J. Appl. Physiol. 60: 1638–1650.PubMedGoogle Scholar
  35. Fung, Y.C., and Zhuang, F.Y. (1986). An analysis of the sluicing gate in pulmonary blood flow. J. Biomech. Eng. 108: 175–182.PubMedCrossRefGoogle Scholar
  36. Fung, Y.C., Fronek, K., and Patitucci, P. (1979). Pseudoelasticity of arteries and the choice of its mathematical expression. Am. J. Physiol. 237: H620–H631.PubMedGoogle Scholar
  37. Fung, Y.C., Sobin, S.S., Tremer, H., Yen, M.R.T., and Ho, H.H. (1983). Patency and compliance of pulmonary veins when airway pressure exceeds blood pressure. J. Appl. Physiol. 54: 1538–1549.PubMedGoogle Scholar
  38. Gaar, Jr., K.A., Taylor, A.E., Owens, L.-J., and Guyton, A.C. (1967). Pulmonary capillary pressure and filtration coefficient in the isolated perfused lung. Am. J. Physiol. 213: 910–914.PubMedGoogle Scholar
  39. Gan, R.Z., and Yen, R.T. (1994). Vascular impedance analysis in dog lung with detailed morphometric and elasticity data. J. Appl. Physiol. 77: 706–717.PubMedGoogle Scholar
  40. Gan, R.Z., Tian, Y, Yen, R.T, and Kassab, G.S. (1993). Morphometry of the dog pulmonary venous tree. J. Appl. Physiol. 75: 432–440.PubMedGoogle Scholar
  41. Giuntini, C (ed.) (1970). Central Hemodynamics and Gas Exchange. Minerva Medica, Torino, Italy.Google Scholar
  42. Glazier, J.B., Hughes, J.M.B., Maloney, J.E., and West, J.B. (1969). Measurements of capillary dimensions and blood volume in rapidly frozen lungs. J. Appl. Physiol. 26: 65–76.PubMedGoogle Scholar
  43. Guyton, A.C., and Lindsey, A.W. (1959). Effect of elevated left atrial pressure and decreased plasma protein concentration on the development of pulmonary edema. Circ. Res. 7: 649–657.PubMedCrossRefGoogle Scholar
  44. Hakim, T.S., Michel, R.P., and Chang, H.K. (1982). Partition of pulmonary vascular resistance in dog by arterial and venous occlusion. J. Appl. Physiol. 52: 710–715.PubMedGoogle Scholar
  45. Hakim, T.S., Dean, G.W., and Lisbona, R. (1988a). Quantification of spatial blood flow distribution in isolated canine lung. Invest. Radiol. 23: 498–504.PubMedCrossRefGoogle Scholar
  46. Hakim, T.S., Dean, G.W., and Lisbona, R. (1988b). Effect of body posture on spatial distribution of pulmonary blood flow. J. Appl. Physiol. 64: 1160–1170.PubMedGoogle Scholar
  47. Hakim, T.S., Lisbona, R., and Dean, G.W. (1987). Gravity-independent inequality in pulmonary blood flow in humans. J. Appl. Physiol. 63: 1114–1121.PubMedGoogle Scholar
  48. Hakim, T.S., Lisbona, R., and Dean, G.W. (1989). Effect of cardiac output on gravity-dependent and nondependent inequality in pulmonary blood flow. J. Appl. Physiol. 66: 1570–1578.PubMedGoogle Scholar
  49. Hansen, J.E., and Ampaya, E.P. (1975). Human air space shapes, sizes, areas, and volumes. J. Appl. Physiol. 38: 990–995.PubMedGoogle Scholar
  50. Hansen, J.E., Ampaya, E.P., Bryant, G.H., and Navin, J.J. (1975). The branching pattern of airways and air spaces in a single human terminal bronchiole. J. Appl. Physiol. 38: 983–989.PubMedGoogle Scholar
  51. Haworth, S.T., Linehan, J.H., Bronikowski, T.A., and Dawson, C.A. (1991). A hemodynamic model representation of the dog lung. J. Appl. Physiol. 70: 15–26.PubMedGoogle Scholar
  52. Horsfield, K. (1978). Morphometry of the small pulmonary arteries in man. Circ. Res. 42: 593–597.PubMedCrossRefGoogle Scholar
  53. Huang, W., Yen, R.T., McLaurine, M., and Bledsoe, G. (1996). Morphometry of the human pulmonary vasculature. J. Appl. Physiol..Google Scholar
  54. Jiang, Z.L., Kassab, G.S., and Fung, Y.C. (1994). Diameter-defined Strahler system and connectivity matrix of the pulmonary arterial tree. J. Appl. Physiol. 76: 882–892.PubMedGoogle Scholar
  55. Johnson, Jr., R.L., Spicer, W.S., Bishop, J.M., and Forster, R.E. (1960). Pulmonary capillary blood volume, flow and diffusing capacity during exercise. J. Appl. Physiol. 15: 893–902.PubMedGoogle Scholar
  56. Kassab, G.S., Rider, C.A., Tang, N.A., and Fung, Y.C. (1993). Morphometry of pig coronary arterial trees. Am. J. Physiol. 265: H350–H365.PubMedGoogle Scholar
  57. Krenz, G.S., Lin, J.M., Dawson, C.A., and Linehan, J.H. (1994). Impact of parallel heterogeneity on a continuum model of the pulmonary arterial tree. J. Appl. Physiol. 77: 660–670.PubMedGoogle Scholar
  58. Lai-Fook, S.J. (1979). A continuum mechanics analysis of pulmonary vascular interdependence in isolated dog lobes. J. Appl. Physiol. Respirat. Environ. Exerc. Physiol. 46: 419–429.Google Scholar
  59. Lamm, W.J.E., Kirk, K.R., Hanson, W.L, Wagner, Jr., W.W., and Albert, R.K. (1991). Flow through zone 1 lungs utilizes alveolar corner vessels. J. Appl. Physiol. 70: 1518–1523.PubMedGoogle Scholar
  60. Lee, J.S. (1969). Slow viscous flow in a lung alveoli model. J. Biomech. 2: 187–198.PubMedCrossRefGoogle Scholar
  61. Lee, J.S., and Flicker, E. (1974). Equilibrium of forces acting on subpleural alveoli. J. Appl. Physiol. 36: 366–374.PubMedGoogle Scholar
  62. Lee, J.S., and Fung, Y.C. (1968). Experiments on blood flow in lung alveoli models. Paper No. 68-WA/BHF-2, American Society of Mechanical Engineers, New York pp. 1–8.Google Scholar
  63. Liu, S.Q., and Fung, Y.C. (1989). Relationship between hypertension, hypertrophy, and opening angle of zero-stress state of arteries following aortic construction. J. Biomech. Eng. 111: 325–335.PubMedCrossRefGoogle Scholar
  64. Maloney, J.E., and Castle, B.L. (1969). Pressure-diameter relations of capillaries and small blood vessels in frog lung. Respir. Physiol. 7: 150–162.PubMedCrossRefGoogle Scholar
  65. Maseri, A., Caldini, P., Permutt, S., and Zierler, K.L. (1970). Frequency function of transit times through dog pulmonary circulation. Circ. Res. 26: 527–543.PubMedCrossRefGoogle Scholar
  66. Miller, W.S. (1947). The Lung. Thomas, Springfield, IL.Google Scholar
  67. Milnor, W.R. (1972). Pulmonary hemodynamics. In Cardiovascular Fluid Dynamics, Vol. 2 (D.H. Bergel, ed.), Academic Press, New York, pp. 299–340.Google Scholar
  68. Milnor, W.R., Bergel, D.H., and Bargainer, J.D. (1966). Hydraulic power associated with pulmonary blood flow and its relation to heart rate. Circ. Res. 19: 467–480.PubMedCrossRefGoogle Scholar
  69. Milnor, W.R., Conti, C.R., Lewis, K.B., and O’Rourke, M.F. (1969). Pulmonary arterial pulse wave velocity and impedance in man. Circ. Res. 25: 637–649.PubMedCrossRefGoogle Scholar
  70. Miyamoto, Y., and Moll, W.A. (1971). Measurements of dimensions and pathway of red blood cells in rapidly frozen lungs in situ. Respir. Physiol. 12: 141–156.PubMedCrossRefGoogle Scholar
  71. Nagaishi, C. (1972). Functional Anatomy and Histology of the Lung. University Park Press, Baltimore, MD.Google Scholar
  72. Negrini, D., Gonano, C., and Miserocchi, G. (1992). Microvascular pressure profile in intact in situ lung. J. Appl. Physiol. 72: 332–339.PubMedGoogle Scholar
  73. Oldmixon, E.H., Butler, J.P., and Hoppin, Jr., F.G. (1988). Dihedral angle between alveolar septa. J. Appl. Physiol. 64: 299–307.PubMedGoogle Scholar
  74. Olman, M.A., Gan, R.Z., Yen, R.T., Villespin, I., Maxwell, R., Pedersen, C., Konopka, R., Debes, J., and Moser, K.M. (1994). Effect of chronic thromboembolism on the pulmonary artery pressure-flow relationship in dogs. J. Appl. Physiol. 76: 875–881.PubMedGoogle Scholar
  75. Orsos, F. (1936). Die Grüstsystem der Lunge und deren physiologische und pathologische Bedeutung. Beitr. Klin. Tuberk. Spezif. Tuberk. Forsch. 87: 568–609.CrossRefGoogle Scholar
  76. Patel, D.J., de Freitas, F.M., and Fry, D.L. (1963). Hydraulic input impedance to aorta and pulmonary artery in dogs. J. Appl. Physiol. 18: 134–140.PubMedGoogle Scholar
  77. Permutt, S., and Riley, R.L. (1963). Hemodynamics of collapsible vessels with tone: The vascular waterfall. J. Appl. Physiol. 18: 924–932.PubMedGoogle Scholar
  78. Permutt, S., Bromberger-Barnea, B., and Bane, H.N. (1962). Alveolar pressure, pulmonary venous pressure, and the vascular waterfall. Med. Thorac. 19: 239–260.PubMedGoogle Scholar
  79. Permutt, S., Caldini, P., Maseri, A., Palmer, W.H., Sasamori. T., and Zierler, K. (1969). Recruitment versus distensibility in the pulmonary vascular bed. In The Pulmonary Circulation and Interstitial Space (A.P. Fishman and H.H. Hecht, eds.), University of Chicago Press, Chicago, IL, pp. 375–387.Google Scholar
  80. Pollack, G.H., Reddy, R.V., and Noordergraaf, A. (1968). Input impedance, wave travel, and reflections in the human pulmonary arterial tree: Studies using an electrical analog. IEEE Trans. Biomed. Eng. BME-15: 151–164.CrossRefGoogle Scholar
  81. Purday, H.F.P. (1949). An Introduction to the Mechanics of Viscous Flow. Dover, New York, pp. 16–18.Google Scholar
  82. Raj, J.V., and Chen, P. (1986a). Micropuncture measurements of microvascular pressure in isolated lamb lungs during hypoxia. Circ. Res. 59: 398–404.PubMedCrossRefGoogle Scholar
  83. Raj, J.V., and Chen, P. (1986b). Microvascular pressures measured by micropuncture in isolated perfused lamb lungs. J. Appl. Physiol. 61: 2194–2201.PubMedGoogle Scholar
  84. Roos, A., Thomas, Jr., L.J., Nagel, E.L., and Prommas, D.C. (1961). Pulmonary vascular resistance as determined by lung inflation and vascular pressures. J. Appl. Physiol. 16: 77–84.PubMedGoogle Scholar
  85. Rosenquist, T.H., Bernick, S., Sobin, S.S., and Fung, Y.C. (1973). The structure of the pulmonary interalveolar microvascular sheet. Microvasc. Res. 5: 199–212.PubMedCrossRefGoogle Scholar
  86. Schultz, H. (1959). The Submiscroscopic Anatomy and Pathology of the Lung. Springer-Verlag, Berlin.Google Scholar
  87. Singhal, S., Henderson, R., Horsfield, K., Harding, K., and Cumming, G. (1973). Morphometry of the human pulmonary arterial tree. Circ. Res. 33: 190–197.PubMedCrossRefGoogle Scholar
  88. Skalak, R. (1969). Wave propagation in the pulmonary circulation. In The Pulmonary Circulation and Interstitial Space (A.P. Fishman and H.H. Hecht, eds.), University of Chicago Press, Chicago, IL, pp. 361–373.Google Scholar
  89. Skalak, R., Wiener, F., Morkin, E., and Fishman, A.P. (1966). The energy distribution in the pulmonary circulation. Part I. Theory. Phys. Med. Biol. 11: 287-294; Part II: Experiments. 11: 437–449.Google Scholar
  90. Smith, J.C., and Mitzner, W. (1980). Analysis of pulmonary vascular interdependence in excised dog lobes. J. Appl. Physiol.: Respirat. Envir. Exerc. Physiol. 48: 450–467.Google Scholar
  91. Sobin, S.S., and Tremer, H.M. (1966). Functional geometry of the microcirculation. Fed. Proc. 15: 1744–1752.Google Scholar
  92. Sobin, S.S., Lindal, R.G., and Bernick, S. (1977). The pulmonary arteriole. Microvasc. Res. 14: 227–239.PubMedCrossRefGoogle Scholar
  93. Sobin, S.S., Tremer, H.M., and Fung, Y.C. (1970). The morphometric basis of the sheet-flow concept of the pulmonary alveolar microcirculation in the cat. Circ. Res. 26: 397–414.PubMedCrossRefGoogle Scholar
  94. Sobin, S.S., Fung, Y.C., and Tremer, H.M. (1982). The effect of incomplete fixation of elastin on the appearance of pulmonary alveoli. J. Biomech. Eng. 104: 68–71.PubMedCrossRefGoogle Scholar
  95. Sobin, S.S., Fung, Y.C., Tremer, H.M., and Rosenquist, T.H. (1972). Elasticity of the pulmonary alveolar microvascular sheet in the cat. Circ. Res. 30: 440–450.PubMedCrossRefGoogle Scholar
  96. Sobin, S.S., Lindal, R.G., Fung, Y.C., and Tremer, H.M. (1978). Elasticity of the smallest noncapillary pulmonary blood vessels in the cat. Microvasc. Res. 15: 57–68.PubMedCrossRefGoogle Scholar
  97. Sobin, S.S., Tremer, H.M., Lindal, R.G., and Fung, Y.C. (1979). Distensibility of human pulmonary capillary blood vessels in the interalveolar septa (abstract). Fed. Proc. 38: 990.Google Scholar
  98. Sobin, S.S., Fung, Y.C., Lindal, R.G., Tremer, H.M., and Clark, L. (1980). Topology of pulmonary arterioles, capillaries, and venules in the cat. Microvasc. Res. 19: 217–233.PubMedCrossRefGoogle Scholar
  99. Stamenovic, D., and Wilson, T.A. (1985). A strain energy function for lung parenchyma. J. Biomech. Eng. 107: 81–86.PubMedCrossRefGoogle Scholar
  100. Starling, E.H. (1915). The Linacre lecture on the law of the heart, given at Cambridge, 1915. Longmans, Green & Co., London, 1918. In Starling on The Heart (Chapman, C.B., and Mitchell, J.H., eds.), facs. reprints. Dawson, London, 1965, pp. 119-147.Google Scholar
  101. Staub, N.C. (ed.) (1978). Lung Water and Solute Exchange. Marcel Dekker, New York.Google Scholar
  102. Staub, N.C., and Schultz, E.L. (1968). Pulmonary capillary length in dog, cat, and rabbit. J. Appl. Physiol. 5: 371–378.Google Scholar
  103. Staub, N.C., Nagano, H., and Pearce, M.L. (1967). Pulmonary edema in dogs, especially the sequence of fluid accumulation in lungs. J. Appl. Physiol. 22: 227–240.PubMedGoogle Scholar
  104. Tancredi, R., and Zierler, K.L. (1971). Indicator-dilution, flow-pressure and volume-pressure curves in excised dog lung. Fed. Proc. 30: 380 (abstract).Google Scholar
  105. Underwood, E.E. (1970). Quantitative Stereology. Addison-Wesley Pub. Co.Google Scholar
  106. Vawter, D.L., Fung, Y.C., and West, J.B. (1979). Constitutive equation of lung tissue elasticity. J. Biomech. Eng. 101: 38–45.CrossRefGoogle Scholar
  107. von Hayek, H. (1960). The Human Lung. Hefner, New York.Google Scholar
  108. Wagner, Jr., W.W, and Weir, E.K. (1994). The Pulmonary Circulation and Gas Exchange, Futura Pub., Armonk, NY.Google Scholar
  109. Wagner, Jr., W.W, Latham, L.P, Gillespie, M.N., and Guenther, J.P. (1982). Direct measurement of pulmonary capillary transit times. Science 218: 379–381.PubMedCrossRefGoogle Scholar
  110. Warrell, D.A., Evans, J.W., Clarke, R.O., Kingaby, G.P., and West, J.B. (1972). Pattern of filling in the pulmonary capillary bed. J. Appl. Physiol. 32: 346–356.Google Scholar
  111. Weibel, E.R. (1963). Morphometry of the Human Lung. Academic Press, New York.Google Scholar
  112. Weibel, E.R. (1973). Morphological basis of alveolar-capillary gas exchange. Physiol. Res. 53: 419–495.Google Scholar
  113. Weiner, D.E., Verrier, R.L., Miller, D.T., and Lefer, A.M. (1967). Effect of adrenalectomy on hemodynamics and regional blood flow in the cat. Am. J. Physiol. 213: 473–476.PubMedGoogle Scholar
  114. West, J.B. (1977a). Regional Differences in the Lung. Academic Press, New York.Google Scholar
  115. West, J.B. (ed.) (1977b). Bioengineering Aspects of the Lung, Marcel Dekker, New York.Google Scholar
  116. West, J.B. (1979). Respiratory Physiology—the Essentials. 2nd ed. Williams & Wilkins, Baltimore, MD.Google Scholar
  117. West, J.B. (1982). Pulmonary Pathophysiology—the Essentials. 2nd ed. Williams & Wilkins, Baltimore, MD.Google Scholar
  118. West, J.B., and Dollery, C.T. (1965). Distribution of blood flow and the pressure-flow relations of the whole lung. J. Appl. Physiol. 20: 175–183.Google Scholar
  119. West, J.B., Dollery, C.T., and Naimark, A. (1964). Distribution of blood in isolated lung: Relation to vascular and alveolar pressure. J. Appl. Physiol. 19: 713–724.PubMedGoogle Scholar
  120. West, J.B., Dollery, C.T., Matthews, C.M.E., and Zardini, P. (1965). Distribution of blood flow and ventilation in saline-filled lung. J. Appl. Physiol. 20: 1107–1117.Google Scholar
  121. Wiener, F., Morkin, E., Skalak, R., and Fishman, A.P. (1966). Wave propagation in the pulmonary circulation. Circ. Res. 19: 834–850.PubMedCrossRefGoogle Scholar
  122. Will, J.A., Dawson, C.A., Weir, E.K., and Buckner, C.K. (eds.) (1987). The Pulmonary Circulation in Health and Disease, Academic Press, San Diego.Google Scholar
  123. Wilson, T.A., and Bachofen, H.C. (1982). A model for mechanical structure of the alveolar duct. J. Appl. Physiol. 52: 1064–1070.PubMedGoogle Scholar
  124. Wright, R.R. (1961). Elastic tissue of normal and emphysematous lungs. A tridimensional histologic study. Am. J. Pathol. 39: 355–366.PubMedGoogle Scholar
  125. Yen, R.T. (1988). Elastic properties of pulmonary blood vessels. In Respiratory Physiology (H.K. Chang and M. Paiva, eds.), Marcel Dekker, New York, Chapter 14, pp. 533–539.Google Scholar
  126. Yen, R.T. (1989). Elasticity of microvessels in postmortem human lungs. In Microvascular Mechanics (J.S. Lee and T.C Shalak, eds.), Springer-Verlag, New York, Chapter 12, pp. 175–190.CrossRefGoogle Scholar
  127. Yen, M.R.T., and Foppiano, L. (1981). Elasticity of small pulmonary veins in the cat. J. Biomech. Eng. 103: 38–42.PubMedCrossRefGoogle Scholar
  128. Yen, M.R.T., and Fung, Y.C. (1973). Model experiments on apparent blood viscosity and hematocrit in pulmonary alveoli. J. Appl. Physiol. 35: 510–517.PubMedGoogle Scholar
  129. Yen, R.T, and Sobin, S.S. (1988). Elasticity of arterioles and venules in postmortem human lungs. J. Appl. Physiol. 64: 611–619.PubMedGoogle Scholar
  130. Yen, M.R.T., Fung, Y.C., and Bingham, N. (1980). Elasticity of small pulmonary arteries in the cat. J. Biomech. Eng. 102: 170–177.PubMedCrossRefGoogle Scholar
  131. Yen, R.T, Zhuang, F.Y, Fung, Y.C., Ho, H.H., Tremer, H., and Sobin, S.S. (1983). Morphometry of the cat’s pulmonary venous tree. J. Appl. Physiol. 55: 236–242.PubMedGoogle Scholar
  132. Yen, R.T, Zhuang, F.Y, Fung, Y.C., Ho, H.H., Tremer, H., and Sobin, S.S. (1984). Morphometry of the cat’s pulmonary arteries. J. Biomech. Eng. 106: 131–136.PubMedCrossRefGoogle Scholar
  133. Young, J. (1930). Malpighi’s “de Pulmonibus.” Proc. Roy. Soc. Med. 23, Part 1, 1–14.Google Scholar
  134. Zhuang, F.Y., Fung, Y.C., and Yen, R.T. (1983). Analysis of blood flow in cat’s lung with detailed anatomical and elasticity data. J. Appl. Physiol.: Respirat. Environ. Exerc. Physiol. 55: 1341–1348.Google Scholar
  135. Zhuang, F.Y, Yen, M.R.T., Fung, Y.C., and Sobin, S.S. (1985). How many pulmonary alveoli are supplied by a single arteriole and drained by a single venule? Microvasc. Res. 29: 18–31.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Y. C. Fung
    • 1
  1. 1.Department of BioengineeringUniversity of California, San DiegoLa JollaUSA

Personalised recommendations