Skip to main content

Blood Flow in the Lung

  • Chapter
Biomechanics

Abstract

We shall now apply the general principles discussed in the preceding chapters to one organ, the lung. The purpose is to illustrate, in one concrete example, the use of physical principles to an organ with a specific anatomy, histology, and mechanical properties to explain and predict the function of that organ in quantitative terms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Tinawi, A., Madden, J.A., Dawson, C.A., Linehan, J.H., Harder, D.R., and Rickaby, D.A. (1991). Distensibility of small arteries of dog lung. J. Appl. Physiol. 71: 1714–1722.

    PubMed  CAS  Google Scholar 

  • Banister, J., and Torrance, R.W. (1960). The effects of the tracheal pressure upon flow: Pressure relations in the vascular bed of isolated lungs. Q. J. Exp. Physiol. 45: 352–367.

    CAS  Google Scholar 

  • Bergel, D.H., and Milnor, W.R. (1965). Pulmonary vascular impedance in the dog. Circ. Res. 16: 401–415.

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya, J., Overholser, K., Gropper, M., and Staub, N.C. (1982). Comparison of pressures measured by micropuncture and venous occlusion in Zones III and II of the isolated dog lung. Fed. Proc. 41: 1685 (abstract).

    Google Scholar 

  • Brody, J.S., Stemmler, E.J., and duBois, A.B. (1968). Longitudinal distribution of vascular resistance in the pulmonary arteries, capillaries, and veins. J. Clin. Invest. 47: 783–784.

    Article  PubMed  CAS  Google Scholar 

  • Cramer, H. (1946). Mathematical Method of Statistics. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Crystal, R.G., and West, J.B. (1991). The Lung, Scientific Foundations. Raven Press, New York.

    Google Scholar 

  • Cumming, G., Henderson, R., Horsfield, K., and Singhal, S.S. (1969). The functional morphology of the pulmonary circulation. In the Pulmonary Circulation and Interstitial Space (Fishman, A.P., and Hecht, H.H., eds.), University of Chicago Press, Chicago, IL, pp. 327–338.

    Google Scholar 

  • Dale, P.J., Mathews, F.L., and Schroter, R. (1980). Finite element analysis of lung alveolus. J. Biomech. 13: 856–873.

    Article  Google Scholar 

  • Daly, I., de B., and Hebb, C. (1966). Pulmonary and Bronchial Vascular Systems. Williams & Wilkins, Baltimore, MD.

    Google Scholar 

  • Debes, J.C., and Fung, Y.C. (1992). Effect of temperature on the biaxial mechanics of excised lung parenchyma of the dog. J. Appl. Physiol. 73: 1171–1180.

    PubMed  CAS  Google Scholar 

  • Debes, J.C., and Fung, Y.C. (1995). Biaxial mechanics of excised canine pulmonary arteries. Am. J. Physiol. 269: H433–H442.

    PubMed  CAS  Google Scholar 

  • Fishman, A.P. (1963). Dynamics of the pulmonary circulation. In Handbook of Physiology, Sec. 2. Circulation, Vol. II (W.H. Hamilton and P. Dow, eds.), American Physiological Society, Washington, D.C., pp. 1667–1743.

    Google Scholar 

  • Fishman, A.P. (1972). Pulmonary edema: The water exchange function of the lung. Circulation 46: 390–408.

    Article  PubMed  CAS  Google Scholar 

  • Fishman, A.P, and Hecht, H.H. (eds.) (1968). The Pulmonary Circulation and Interstitial Space. University of Chicago Press, Chicago, IL.

    Google Scholar 

  • Folkow, B., and Neil, E. (1971). Circulation. Oxford University Press, New York.

    Google Scholar 

  • Fung, Y.C. (1969). Studies on the blood flow in the lung. In Proceedings of the Second Canadian Congress of Applied Mechanics, Waterloo, Canada, pp. 433–453.

    Google Scholar 

  • Fung, Y.C. (1972). Theoretical pulmonary microvascular impedance. Ann. Biomed. Eng. 1: 221–245.

    Article  PubMed  CAS  Google Scholar 

  • Fung, Y.C. (1974). Fluid in the interstitial space of the pulmonary alveolar sheet. Microvasc. Res. 7: 89–113.

    Article  PubMed  CAS  Google Scholar 

  • Fung, Y.C. (1975a). Does the surface tension make the lung inherently unstable? Circ. Res. 37: 497–502.

    Article  PubMed  CAS  Google Scholar 

  • Fung, Y.C. (1975b). Stress, deformation, and atelectasis of the lung. Circ. Res. 37: 481–496.

    Article  PubMed  CAS  Google Scholar 

  • Fung, Y.C. (1975c). 1975 Eugene Landis Lecture: Microcirculation as seen by a red cell. Microvasc. Res. 10: 246–264.

    Article  PubMed  CAS  Google Scholar 

  • Fung, Y.C. (1988). A model of the lung structure and its validation. J. Appl. Physiol. 64: 2132–2141.

    PubMed  CAS  Google Scholar 

  • Fung, Y.C. (1989). Connection of micro-and-macromechanics of the lung. In Microvascular Mechanics: Hemodynamics of Systematic and Pulmonary Microcirculation (J.S. Lee and T.C. Skalak, eds.), Springer-Verlag, New York. Chapter 13, pp. 191–217.

    Chapter  Google Scholar 

  • Fung, Y.C. (1990). Biomechanics: Motion, Flow, Stress, and Growth. Springer-Verlag, New York.

    Google Scholar 

  • Fung, Y.C. (1993). Biomechanics: Mechanical Properties of Living Tissues, 2nd ed. Springer-Verlag, New York.

    Google Scholar 

  • Fung, Y.C., and Liu, S.Q. (1991). Change in the zero-stress state of rat pulmonary arteries in hypoxic pulmonary hypertension. J. Appl. Physiol. 70: 2455–2470.

    Article  PubMed  CAS  Google Scholar 

  • Fung, Y.C., and Liu, S.Q. (1992). Strain distribution in small blood vessels with zerostress state taken into consideration. Am. J. Physiol. 262: H544–H552.

    PubMed  CAS  Google Scholar 

  • Fung, Y.C., and Sobin, S.S. (1969). Theory of sheet flow in lung alveoli. J. Appl. Physiol. 26: 472–488.

    PubMed  CAS  Google Scholar 

  • Fung, Y.C., and Sobin, S.S. (1972a). Elasticity of the pulmonary alveolar sheet. Circ. Res. 30: 451–469.

    Article  PubMed  CAS  Google Scholar 

  • Fung, Y.C., and Sobin, S.S. (1972b). Pulmonary alveolar blood flow. Circ. Res. 30: 470–490.

    Article  PubMed  CAS  Google Scholar 

  • Fung, Y.C., and Sobin S.S. (1977a). Pulmonary alveolar blood flow. In Bioengineering Aspects of Lung Biology (J.B. West, ed.), Marcel Dekker, New York, pp. 267–358.

    Google Scholar 

  • Fung, Y.C., and Sobin, S.S. (1977b). Mechanics of pulmonary circulation. In Cardiovascular Flow Dynamics and Measurements (N.H.C. Hwang and N.A. Norman, eds.), University Park Press, Baltimore, MD, pp. 665–730.

    Google Scholar 

  • Fung, Y.C., and Yen, R.T. (1986). A new theory of pulmonary blood flow in zone 2 condition. J. Appl. Physiol. 60: 1638–1650.

    PubMed  CAS  Google Scholar 

  • Fung, Y.C., and Zhuang, F.Y. (1986). An analysis of the sluicing gate in pulmonary blood flow. J. Biomech. Eng. 108: 175–182.

    Article  PubMed  CAS  Google Scholar 

  • Fung, Y.C., Fronek, K., and Patitucci, P. (1979). Pseudoelasticity of arteries and the choice of its mathematical expression. Am. J. Physiol. 237: H620–H631.

    PubMed  CAS  Google Scholar 

  • Fung, Y.C., Sobin, S.S., Tremer, H., Yen, M.R.T., and Ho, H.H. (1983). Patency and compliance of pulmonary veins when airway pressure exceeds blood pressure. J. Appl. Physiol. 54: 1538–1549.

    PubMed  CAS  Google Scholar 

  • Gaar, Jr., K.A., Taylor, A.E., Owens, L.-J., and Guyton, A.C. (1967). Pulmonary capillary pressure and filtration coefficient in the isolated perfused lung. Am. J. Physiol. 213: 910–914.

    PubMed  Google Scholar 

  • Gan, R.Z., and Yen, R.T. (1994). Vascular impedance analysis in dog lung with detailed morphometric and elasticity data. J. Appl. Physiol. 77: 706–717.

    PubMed  CAS  Google Scholar 

  • Gan, R.Z., Tian, Y, Yen, R.T, and Kassab, G.S. (1993). Morphometry of the dog pulmonary venous tree. J. Appl. Physiol. 75: 432–440.

    PubMed  CAS  Google Scholar 

  • Giuntini, C (ed.) (1970). Central Hemodynamics and Gas Exchange. Minerva Medica, Torino, Italy.

    Google Scholar 

  • Glazier, J.B., Hughes, J.M.B., Maloney, J.E., and West, J.B. (1969). Measurements of capillary dimensions and blood volume in rapidly frozen lungs. J. Appl. Physiol. 26: 65–76.

    PubMed  CAS  Google Scholar 

  • Guyton, A.C., and Lindsey, A.W. (1959). Effect of elevated left atrial pressure and decreased plasma protein concentration on the development of pulmonary edema. Circ. Res. 7: 649–657.

    Article  PubMed  CAS  Google Scholar 

  • Hakim, T.S., Michel, R.P., and Chang, H.K. (1982). Partition of pulmonary vascular resistance in dog by arterial and venous occlusion. J. Appl. Physiol. 52: 710–715.

    PubMed  CAS  Google Scholar 

  • Hakim, T.S., Dean, G.W., and Lisbona, R. (1988a). Quantification of spatial blood flow distribution in isolated canine lung. Invest. Radiol. 23: 498–504.

    Article  PubMed  CAS  Google Scholar 

  • Hakim, T.S., Dean, G.W., and Lisbona, R. (1988b). Effect of body posture on spatial distribution of pulmonary blood flow. J. Appl. Physiol. 64: 1160–1170.

    PubMed  CAS  Google Scholar 

  • Hakim, T.S., Lisbona, R., and Dean, G.W. (1987). Gravity-independent inequality in pulmonary blood flow in humans. J. Appl. Physiol. 63: 1114–1121.

    PubMed  CAS  Google Scholar 

  • Hakim, T.S., Lisbona, R., and Dean, G.W. (1989). Effect of cardiac output on gravity-dependent and nondependent inequality in pulmonary blood flow. J. Appl. Physiol. 66: 1570–1578.

    PubMed  CAS  Google Scholar 

  • Hansen, J.E., and Ampaya, E.P. (1975). Human air space shapes, sizes, areas, and volumes. J. Appl. Physiol. 38: 990–995.

    PubMed  CAS  Google Scholar 

  • Hansen, J.E., Ampaya, E.P., Bryant, G.H., and Navin, J.J. (1975). The branching pattern of airways and air spaces in a single human terminal bronchiole. J. Appl. Physiol. 38: 983–989.

    PubMed  CAS  Google Scholar 

  • Haworth, S.T., Linehan, J.H., Bronikowski, T.A., and Dawson, C.A. (1991). A hemodynamic model representation of the dog lung. J. Appl. Physiol. 70: 15–26.

    PubMed  CAS  Google Scholar 

  • Horsfield, K. (1978). Morphometry of the small pulmonary arteries in man. Circ. Res. 42: 593–597.

    Article  PubMed  CAS  Google Scholar 

  • Huang, W., Yen, R.T., McLaurine, M., and Bledsoe, G. (1996). Morphometry of the human pulmonary vasculature. J. Appl. Physiol..

    Google Scholar 

  • Jiang, Z.L., Kassab, G.S., and Fung, Y.C. (1994). Diameter-defined Strahler system and connectivity matrix of the pulmonary arterial tree. J. Appl. Physiol. 76: 882–892.

    PubMed  CAS  Google Scholar 

  • Johnson, Jr., R.L., Spicer, W.S., Bishop, J.M., and Forster, R.E. (1960). Pulmonary capillary blood volume, flow and diffusing capacity during exercise. J. Appl. Physiol. 15: 893–902.

    PubMed  Google Scholar 

  • Kassab, G.S., Rider, C.A., Tang, N.A., and Fung, Y.C. (1993). Morphometry of pig coronary arterial trees. Am. J. Physiol. 265: H350–H365.

    PubMed  CAS  Google Scholar 

  • Krenz, G.S., Lin, J.M., Dawson, C.A., and Linehan, J.H. (1994). Impact of parallel heterogeneity on a continuum model of the pulmonary arterial tree. J. Appl. Physiol. 77: 660–670.

    PubMed  CAS  Google Scholar 

  • Lai-Fook, S.J. (1979). A continuum mechanics analysis of pulmonary vascular interdependence in isolated dog lobes. J. Appl. Physiol. Respirat. Environ. Exerc. Physiol. 46: 419–429.

    CAS  Google Scholar 

  • Lamm, W.J.E., Kirk, K.R., Hanson, W.L, Wagner, Jr., W.W., and Albert, R.K. (1991). Flow through zone 1 lungs utilizes alveolar corner vessels. J. Appl. Physiol. 70: 1518–1523.

    PubMed  CAS  Google Scholar 

  • Lee, J.S. (1969). Slow viscous flow in a lung alveoli model. J. Biomech. 2: 187–198.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J.S., and Flicker, E. (1974). Equilibrium of forces acting on subpleural alveoli. J. Appl. Physiol. 36: 366–374.

    PubMed  Google Scholar 

  • Lee, J.S., and Fung, Y.C. (1968). Experiments on blood flow in lung alveoli models. Paper No. 68-WA/BHF-2, American Society of Mechanical Engineers, New York pp. 1–8.

    Google Scholar 

  • Liu, S.Q., and Fung, Y.C. (1989). Relationship between hypertension, hypertrophy, and opening angle of zero-stress state of arteries following aortic construction. J. Biomech. Eng. 111: 325–335.

    Article  PubMed  CAS  Google Scholar 

  • Maloney, J.E., and Castle, B.L. (1969). Pressure-diameter relations of capillaries and small blood vessels in frog lung. Respir. Physiol. 7: 150–162.

    Article  PubMed  CAS  Google Scholar 

  • Maseri, A., Caldini, P., Permutt, S., and Zierler, K.L. (1970). Frequency function of transit times through dog pulmonary circulation. Circ. Res. 26: 527–543.

    Article  PubMed  CAS  Google Scholar 

  • Miller, W.S. (1947). The Lung. Thomas, Springfield, IL.

    Google Scholar 

  • Milnor, W.R. (1972). Pulmonary hemodynamics. In Cardiovascular Fluid Dynamics, Vol. 2 (D.H. Bergel, ed.), Academic Press, New York, pp. 299–340.

    Google Scholar 

  • Milnor, W.R., Bergel, D.H., and Bargainer, J.D. (1966). Hydraulic power associated with pulmonary blood flow and its relation to heart rate. Circ. Res. 19: 467–480.

    Article  PubMed  CAS  Google Scholar 

  • Milnor, W.R., Conti, C.R., Lewis, K.B., and O’Rourke, M.F. (1969). Pulmonary arterial pulse wave velocity and impedance in man. Circ. Res. 25: 637–649.

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto, Y., and Moll, W.A. (1971). Measurements of dimensions and pathway of red blood cells in rapidly frozen lungs in situ. Respir. Physiol. 12: 141–156.

    Article  PubMed  CAS  Google Scholar 

  • Nagaishi, C. (1972). Functional Anatomy and Histology of the Lung. University Park Press, Baltimore, MD.

    Google Scholar 

  • Negrini, D., Gonano, C., and Miserocchi, G. (1992). Microvascular pressure profile in intact in situ lung. J. Appl. Physiol. 72: 332–339.

    PubMed  CAS  Google Scholar 

  • Oldmixon, E.H., Butler, J.P., and Hoppin, Jr., F.G. (1988). Dihedral angle between alveolar septa. J. Appl. Physiol. 64: 299–307.

    PubMed  CAS  Google Scholar 

  • Olman, M.A., Gan, R.Z., Yen, R.T., Villespin, I., Maxwell, R., Pedersen, C., Konopka, R., Debes, J., and Moser, K.M. (1994). Effect of chronic thromboembolism on the pulmonary artery pressure-flow relationship in dogs. J. Appl. Physiol. 76: 875–881.

    PubMed  CAS  Google Scholar 

  • Orsos, F. (1936). Die Grüstsystem der Lunge und deren physiologische und pathologische Bedeutung. Beitr. Klin. Tuberk. Spezif. Tuberk. Forsch. 87: 568–609.

    Article  Google Scholar 

  • Patel, D.J., de Freitas, F.M., and Fry, D.L. (1963). Hydraulic input impedance to aorta and pulmonary artery in dogs. J. Appl. Physiol. 18: 134–140.

    PubMed  CAS  Google Scholar 

  • Permutt, S., and Riley, R.L. (1963). Hemodynamics of collapsible vessels with tone: The vascular waterfall. J. Appl. Physiol. 18: 924–932.

    PubMed  CAS  Google Scholar 

  • Permutt, S., Bromberger-Barnea, B., and Bane, H.N. (1962). Alveolar pressure, pulmonary venous pressure, and the vascular waterfall. Med. Thorac. 19: 239–260.

    PubMed  CAS  Google Scholar 

  • Permutt, S., Caldini, P., Maseri, A., Palmer, W.H., Sasamori. T., and Zierler, K. (1969). Recruitment versus distensibility in the pulmonary vascular bed. In The Pulmonary Circulation and Interstitial Space (A.P. Fishman and H.H. Hecht, eds.), University of Chicago Press, Chicago, IL, pp. 375–387.

    Google Scholar 

  • Pollack, G.H., Reddy, R.V., and Noordergraaf, A. (1968). Input impedance, wave travel, and reflections in the human pulmonary arterial tree: Studies using an electrical analog. IEEE Trans. Biomed. Eng. BME-15: 151–164.

    Article  Google Scholar 

  • Purday, H.F.P. (1949). An Introduction to the Mechanics of Viscous Flow. Dover, New York, pp. 16–18.

    Google Scholar 

  • Raj, J.V., and Chen, P. (1986a). Micropuncture measurements of microvascular pressure in isolated lamb lungs during hypoxia. Circ. Res. 59: 398–404.

    Article  PubMed  CAS  Google Scholar 

  • Raj, J.V., and Chen, P. (1986b). Microvascular pressures measured by micropuncture in isolated perfused lamb lungs. J. Appl. Physiol. 61: 2194–2201.

    PubMed  CAS  Google Scholar 

  • Roos, A., Thomas, Jr., L.J., Nagel, E.L., and Prommas, D.C. (1961). Pulmonary vascular resistance as determined by lung inflation and vascular pressures. J. Appl. Physiol. 16: 77–84.

    PubMed  CAS  Google Scholar 

  • Rosenquist, T.H., Bernick, S., Sobin, S.S., and Fung, Y.C. (1973). The structure of the pulmonary interalveolar microvascular sheet. Microvasc. Res. 5: 199–212.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, H. (1959). The Submiscroscopic Anatomy and Pathology of the Lung. Springer-Verlag, Berlin.

    Google Scholar 

  • Singhal, S., Henderson, R., Horsfield, K., Harding, K., and Cumming, G. (1973). Morphometry of the human pulmonary arterial tree. Circ. Res. 33: 190–197.

    Article  PubMed  CAS  Google Scholar 

  • Skalak, R. (1969). Wave propagation in the pulmonary circulation. In The Pulmonary Circulation and Interstitial Space (A.P. Fishman and H.H. Hecht, eds.), University of Chicago Press, Chicago, IL, pp. 361–373.

    Google Scholar 

  • Skalak, R., Wiener, F., Morkin, E., and Fishman, A.P. (1966). The energy distribution in the pulmonary circulation. Part I. Theory. Phys. Med. Biol. 11: 287-294; Part II: Experiments. 11: 437–449.

    CAS  Google Scholar 

  • Smith, J.C., and Mitzner, W. (1980). Analysis of pulmonary vascular interdependence in excised dog lobes. J. Appl. Physiol.: Respirat. Envir. Exerc. Physiol. 48: 450–467.

    CAS  Google Scholar 

  • Sobin, S.S., and Tremer, H.M. (1966). Functional geometry of the microcirculation. Fed. Proc. 15: 1744–1752.

    Google Scholar 

  • Sobin, S.S., Lindal, R.G., and Bernick, S. (1977). The pulmonary arteriole. Microvasc. Res. 14: 227–239.

    Article  PubMed  CAS  Google Scholar 

  • Sobin, S.S., Tremer, H.M., and Fung, Y.C. (1970). The morphometric basis of the sheet-flow concept of the pulmonary alveolar microcirculation in the cat. Circ. Res. 26: 397–414.

    Article  PubMed  CAS  Google Scholar 

  • Sobin, S.S., Fung, Y.C., and Tremer, H.M. (1982). The effect of incomplete fixation of elastin on the appearance of pulmonary alveoli. J. Biomech. Eng. 104: 68–71.

    Article  PubMed  CAS  Google Scholar 

  • Sobin, S.S., Fung, Y.C., Tremer, H.M., and Rosenquist, T.H. (1972). Elasticity of the pulmonary alveolar microvascular sheet in the cat. Circ. Res. 30: 440–450.

    Article  PubMed  CAS  Google Scholar 

  • Sobin, S.S., Lindal, R.G., Fung, Y.C., and Tremer, H.M. (1978). Elasticity of the smallest noncapillary pulmonary blood vessels in the cat. Microvasc. Res. 15: 57–68.

    Article  PubMed  CAS  Google Scholar 

  • Sobin, S.S., Tremer, H.M., Lindal, R.G., and Fung, Y.C. (1979). Distensibility of human pulmonary capillary blood vessels in the interalveolar septa (abstract). Fed. Proc. 38: 990.

    Google Scholar 

  • Sobin, S.S., Fung, Y.C., Lindal, R.G., Tremer, H.M., and Clark, L. (1980). Topology of pulmonary arterioles, capillaries, and venules in the cat. Microvasc. Res. 19: 217–233.

    Article  PubMed  CAS  Google Scholar 

  • Stamenovic, D., and Wilson, T.A. (1985). A strain energy function for lung parenchyma. J. Biomech. Eng. 107: 81–86.

    Article  PubMed  CAS  Google Scholar 

  • Starling, E.H. (1915). The Linacre lecture on the law of the heart, given at Cambridge, 1915. Longmans, Green & Co., London, 1918. In Starling on The Heart (Chapman, C.B., and Mitchell, J.H., eds.), facs. reprints. Dawson, London, 1965, pp. 119-147.

    Google Scholar 

  • Staub, N.C. (ed.) (1978). Lung Water and Solute Exchange. Marcel Dekker, New York.

    Google Scholar 

  • Staub, N.C., and Schultz, E.L. (1968). Pulmonary capillary length in dog, cat, and rabbit. J. Appl. Physiol. 5: 371–378.

    CAS  Google Scholar 

  • Staub, N.C., Nagano, H., and Pearce, M.L. (1967). Pulmonary edema in dogs, especially the sequence of fluid accumulation in lungs. J. Appl. Physiol. 22: 227–240.

    PubMed  CAS  Google Scholar 

  • Tancredi, R., and Zierler, K.L. (1971). Indicator-dilution, flow-pressure and volume-pressure curves in excised dog lung. Fed. Proc. 30: 380 (abstract).

    Google Scholar 

  • Underwood, E.E. (1970). Quantitative Stereology. Addison-Wesley Pub. Co.

    Google Scholar 

  • Vawter, D.L., Fung, Y.C., and West, J.B. (1979). Constitutive equation of lung tissue elasticity. J. Biomech. Eng. 101: 38–45.

    Article  Google Scholar 

  • von Hayek, H. (1960). The Human Lung. Hefner, New York.

    Google Scholar 

  • Wagner, Jr., W.W, and Weir, E.K. (1994). The Pulmonary Circulation and Gas Exchange, Futura Pub., Armonk, NY.

    Google Scholar 

  • Wagner, Jr., W.W, Latham, L.P, Gillespie, M.N., and Guenther, J.P. (1982). Direct measurement of pulmonary capillary transit times. Science 218: 379–381.

    Article  PubMed  Google Scholar 

  • Warrell, D.A., Evans, J.W., Clarke, R.O., Kingaby, G.P., and West, J.B. (1972). Pattern of filling in the pulmonary capillary bed. J. Appl. Physiol. 32: 346–356.

    CAS  Google Scholar 

  • Weibel, E.R. (1963). Morphometry of the Human Lung. Academic Press, New York.

    Google Scholar 

  • Weibel, E.R. (1973). Morphological basis of alveolar-capillary gas exchange. Physiol. Res. 53: 419–495.

    CAS  Google Scholar 

  • Weiner, D.E., Verrier, R.L., Miller, D.T., and Lefer, A.M. (1967). Effect of adrenalectomy on hemodynamics and regional blood flow in the cat. Am. J. Physiol. 213: 473–476.

    PubMed  CAS  Google Scholar 

  • West, J.B. (1977a). Regional Differences in the Lung. Academic Press, New York.

    Google Scholar 

  • West, J.B. (ed.) (1977b). Bioengineering Aspects of the Lung, Marcel Dekker, New York.

    Google Scholar 

  • West, J.B. (1979). Respiratory Physiology—the Essentials. 2nd ed. Williams & Wilkins, Baltimore, MD.

    Google Scholar 

  • West, J.B. (1982). Pulmonary Pathophysiology—the Essentials. 2nd ed. Williams & Wilkins, Baltimore, MD.

    Google Scholar 

  • West, J.B., and Dollery, C.T. (1965). Distribution of blood flow and the pressure-flow relations of the whole lung. J. Appl. Physiol. 20: 175–183.

    Google Scholar 

  • West, J.B., Dollery, C.T., and Naimark, A. (1964). Distribution of blood in isolated lung: Relation to vascular and alveolar pressure. J. Appl. Physiol. 19: 713–724.

    PubMed  CAS  Google Scholar 

  • West, J.B., Dollery, C.T., Matthews, C.M.E., and Zardini, P. (1965). Distribution of blood flow and ventilation in saline-filled lung. J. Appl. Physiol. 20: 1107–1117.

    Google Scholar 

  • Wiener, F., Morkin, E., Skalak, R., and Fishman, A.P. (1966). Wave propagation in the pulmonary circulation. Circ. Res. 19: 834–850.

    Article  PubMed  CAS  Google Scholar 

  • Will, J.A., Dawson, C.A., Weir, E.K., and Buckner, C.K. (eds.) (1987). The Pulmonary Circulation in Health and Disease, Academic Press, San Diego.

    Google Scholar 

  • Wilson, T.A., and Bachofen, H.C. (1982). A model for mechanical structure of the alveolar duct. J. Appl. Physiol. 52: 1064–1070.

    PubMed  CAS  Google Scholar 

  • Wright, R.R. (1961). Elastic tissue of normal and emphysematous lungs. A tridimensional histologic study. Am. J. Pathol. 39: 355–366.

    PubMed  CAS  Google Scholar 

  • Yen, R.T. (1988). Elastic properties of pulmonary blood vessels. In Respiratory Physiology (H.K. Chang and M. Paiva, eds.), Marcel Dekker, New York, Chapter 14, pp. 533–539.

    Google Scholar 

  • Yen, R.T. (1989). Elasticity of microvessels in postmortem human lungs. In Microvascular Mechanics (J.S. Lee and T.C Shalak, eds.), Springer-Verlag, New York, Chapter 12, pp. 175–190.

    Chapter  Google Scholar 

  • Yen, M.R.T., and Foppiano, L. (1981). Elasticity of small pulmonary veins in the cat. J. Biomech. Eng. 103: 38–42.

    Article  PubMed  CAS  Google Scholar 

  • Yen, M.R.T., and Fung, Y.C. (1973). Model experiments on apparent blood viscosity and hematocrit in pulmonary alveoli. J. Appl. Physiol. 35: 510–517.

    PubMed  CAS  Google Scholar 

  • Yen, R.T, and Sobin, S.S. (1988). Elasticity of arterioles and venules in postmortem human lungs. J. Appl. Physiol. 64: 611–619.

    PubMed  CAS  Google Scholar 

  • Yen, M.R.T., Fung, Y.C., and Bingham, N. (1980). Elasticity of small pulmonary arteries in the cat. J. Biomech. Eng. 102: 170–177.

    Article  PubMed  CAS  Google Scholar 

  • Yen, R.T, Zhuang, F.Y, Fung, Y.C., Ho, H.H., Tremer, H., and Sobin, S.S. (1983). Morphometry of the cat’s pulmonary venous tree. J. Appl. Physiol. 55: 236–242.

    PubMed  CAS  Google Scholar 

  • Yen, R.T, Zhuang, F.Y, Fung, Y.C., Ho, H.H., Tremer, H., and Sobin, S.S. (1984). Morphometry of the cat’s pulmonary arteries. J. Biomech. Eng. 106: 131–136.

    Article  PubMed  CAS  Google Scholar 

  • Young, J. (1930). Malpighi’s “de Pulmonibus.” Proc. Roy. Soc. Med. 23, Part 1, 1–14.

    Google Scholar 

  • Zhuang, F.Y., Fung, Y.C., and Yen, R.T. (1983). Analysis of blood flow in cat’s lung with detailed anatomical and elasticity data. J. Appl. Physiol.: Respirat. Environ. Exerc. Physiol. 55: 1341–1348.

    CAS  Google Scholar 

  • Zhuang, F.Y, Yen, M.R.T., Fung, Y.C., and Sobin, S.S. (1985). How many pulmonary alveoli are supplied by a single arteriole and drained by a single venule? Microvasc. Res. 29: 18–31.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fung, Y.C. (1997). Blood Flow in the Lung. In: Biomechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2696-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2696-1_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2842-9

  • Online ISBN: 978-1-4757-2696-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics