Skip to main content
Book cover

Biomechanics pp 108–205Cite as

Blood Flow in Arteries

  • Chapter

Abstract

The larger systemic arteries, shown in Figure 3.1:1, conduct blood from the heart to the peripheral organs. Their dimensions are given in Table 3.1:1. In humans, the aorta originates in the left ventricle at the aortic valve, and almost immediately curves about 180°, branching off to the head and upper limbs. It then pursues a fairly straight course downward through the diaphragm to the abdomen and legs. The aortic arch is tapered, curved, and twisted (i.e., its centerline does not lie in a plane). Other arteries have constant diameter between branches, but every time a daughter branch forks off the main trunk the diameter of the trunk is reduced. Overall, the aorta may be described as tapered. In the dog, the change of area fits the exponential equation,

$$ A=A_{0}e^{(Bx/R_{o})}$$

where A is the area of the aorta, A 0 and R 0 are, respectively, the area and radius at the upstream site, x is the distance from that upstream site, and B is a “taper factor,” which has been found to lie between 0.02 and 0.05. Figure 3.1:2 shows a sketch of the dog aorta.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   139.09
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   179.34
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR   179.34
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anliker, M. (1972). Toward a nontraumatic study of the circulatory system. In Biomechanics: Its Foundations and Objectives (Y.C. Fung, N. Perrone, and M. Anliker, eds.), Prentice-Hall, Englewood Cliffs, NJ, pp. 337–379.

    Google Scholar 

  • Anliker, M., and Maxwell, J.A. (1966). The dispersion of waves in blood vessels. In Biomechanics (Y.C. Fung, ed.), American Society of Mechanical Engineers, New York, pp. 47–67.

    Google Scholar 

  • Anliker, M., and Raman, K.R. (1966). Korotkoff sounds at diastole—a phenomenon and dynamic instability of fluid-filled shells. Int. J. Solids Structures. 2: 467–492.

    Article  Google Scholar 

  • Anliker, M., Histand, M.B., and Ogden, E. (1968). Dispersion and attenuation of small artificial pressure waves in canine aorta. Circ. Res. 23: 539–551.

    Article  PubMed  CAS  Google Scholar 

  • Aoki, T., and Ku, D.N. (1993). Collapse of diseased arteries with eccentric cross-section. J. Biomech. 26: 133–142.

    Article  PubMed  CAS  Google Scholar 

  • Atabek, H.B. (1962). Development of flow in the inlet length of a circular tube starting from rest. Z. Angew. Math. Phys. 13: 417–430.

    Article  Google Scholar 

  • Atabek, H.B. (1980). Blood flow and pulse propagation in arteries. In Basic Hemodynamics and its Role in Disease Processes (DJ. Patel and R.N. Vaishnav, eds.), University Park Press, Baltimore, MD, pp. 253–361.

    Google Scholar 

  • Attinger, E.O. (ed.) (1964). Pulsatile Blood Flow. McGraw-Hill, New York.

    Google Scholar 

  • Benditt, E.P., and Benditt, J. M. (1973). Evidence for a monoclonal origin of human atherosclerotic plaques. Proc. Natl. Acad. Sci. USA, 70: 1753–1756.

    Article  PubMed  CAS  Google Scholar 

  • Bergel, D.H. (ed.) (1972). Cardiovascular Fluid Dynamics, Vols. 1 & 2. Academic Press, New York.

    Google Scholar 

  • Bohr, D.F., Somlyo, A.P., and Sparks, H.V., Jr. (eds.) (1980). Handbook of Physiology, Sec. 2. The Cardiovascular System. Vol. 2, Vascular Smooth Muscles. American Physiological Society, Bethesda, MD.

    Google Scholar 

  • Boussinesq, J. (1891). Maniere dont les vitesses, se distrib. depui l’entree—Moindre longueur d’un tube circulaire, pour qu’un regime uniforme s’y établisse. Comptes Rendus, 113: 9, 49.

    Google Scholar 

  • Caro, C.G., Fitzgerald, J.M., and Schroter, R.C. (1969). Arterial wall shear and distribution of early atheroma in man. Nature 223: 1159–1161.

    Article  PubMed  CAS  Google Scholar 

  • Caro, C.G., Fitzgerald, J.M., and Schroter, R.C. (1971). Atheroma and arterial wall shear. Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc. Roy. Soc. Lond. B. 177: 109–159.

    Article  CAS  Google Scholar 

  • Caro, C.G., Pedley, T.J., and Seed, W.A. (1974). Mechanics of the circulation. In Cadiovascular Physiology (A.C. Guyton, ed.), Chapter 1, Medical and Technical Publishers, London.

    Google Scholar 

  • Caro, C.G., Pedley, T.J., Schroter, R.C., and Seed, W.A. (1978). The Mechanics of the Circulation. Oxford University Press, Oxford.

    Google Scholar 

  • Dai, K., Xue, H., Dou, R., and Fung, Y.C. (1985). On the detection of messages carried in arterial pulse waves. J. Biomech. Eng. 107: 268–273.

    Article  PubMed  CAS  Google Scholar 

  • DeBakey, M.E., Lawrie, G.M., and Glaeser, D.H. (1985). Patterns of atherosclerosis and their surgical significance. Ann. Surg. 201: 115–131, Lippincott Co., Philadelphia, PA.

    Article  PubMed  CAS  Google Scholar 

  • Deshpande, M.D., and Giddens, D.P. (1980). Turbulence measurements in a constricted tube. J. Fluid Mech. 97: 65–90.

    Article  Google Scholar 

  • Euler, L. (1775). Principia pro motu sanguins per arterias determinado. Opera posthuma mathematica et physica anno 1844 detecta, ediderunt P.H. Fuss et N. Fuss. Petropoli, Apud Eggers et socios, Vol. 2, pp. 814–823.

    Google Scholar 

  • Friedman, M.H., and Deters, O.J. (1987). Correlation among shear rate measures in vascular flows. J. Biomech. Eng. 109: 25–26.

    Article  PubMed  CAS  Google Scholar 

  • Friedman, M.H., Deters, O.J., Mark, F. F., Bargeron, C.B., and Hutchins, G.M. (1983). Arterial geometry affects hemodynamics. A potential risk factor for atherosclerosis. Atherosclerosis 46: 225–231.

    Article  PubMed  CAS  Google Scholar 

  • Fry, D.L. (1968). Acute vascalar endothelial changes associated with increased blood velocity gradients. Circ. Res. 22: 165–197.

    Article  PubMed  CAS  Google Scholar 

  • Fry, D.L. (1973). Responses of the arterial wall to certain factors. In Atherosclerosis: Initiating Factors. Ciba Foundation Symp. Elsevier, Amsterdam, p. 93.

    Google Scholar 

  • Fry, D.L. (1977). Aortic Evans blue dye accumulation: Its measurement and interpretation. Am. J. Physiol. 232: H204–H222.

    PubMed  CAS  Google Scholar 

  • Fry, D.L., Griggs, Jr., D.M., and Greenfield Jr., J.C. (1964). In vivo studies of pulsatile blood flow: the relationship of the pressure gradient to the blood velocity. In Pulsatile Blood Flow (E.O. Attinger, ed.), McGraw-Hill, New York, Chap. 5, pp. 101–114.

    Google Scholar 

  • Fung, Y.C. (1990). Biomechanics: Motion, Flow, Stress, and Growth. Springer-Verlag, New York.

    Google Scholar 

  • Fung, Y.C. (1993a). A First Course in Continuum Mechanics. 3rd ed. Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Fung, Y.C. (1993b). Biomechanics: Mechanical Properties of Living Tissues. 2nd ed. Springer-Verlag, New York.

    Google Scholar 

  • Fung, Y.C., and Liu, S.Q. (1993). Elementary mechanics of the endothelium of blood vessels. J. Biomech. Eng. 115: 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Fung, Y.C., Fronek, K., and Patitucci, P. (1979). On pseudo-elasticity of arteries and the choice of its mathematical expression. Am. J. Physiol. 237: H620–H631.

    PubMed  CAS  Google Scholar 

  • Giddens, D.P., Zarins, C.K., and Glagov, S. (1990). Response of arteries to near-wall fluid dynamic behavior. Appl. Mech. Rev. 43: S98–S102.

    Article  Google Scholar 

  • Hamilton, W.F., and Dow, P. (1939). An experimental study of the standing waves in the pulse propagated through the aorta. Am. J. Physiol. 125: 48–59.

    Google Scholar 

  • Jacobs, R.B. (1953). On the propagation of a disturbance through a viscous liquid flowing in a distensible tube of appreciable mass. Bull. Math. Biophys. 5: 395–409.

    Article  Google Scholar 

  • Jones, E., Anliker, M., and Chang, I.D. (1971). Effects of viscosity and constraints on the dispersion and dissipation of waves in large blood vessels. I & II. Biophys. J. 11: 1085–1120, 1121-1134.

    Article  PubMed  CAS  Google Scholar 

  • Joukowsky, N.W. (1900). Ueber den hydraulischen Stoss in Wasserheizungsrohren. Memoires de l’Academie Imperiale des Science de St. Petersburg, 8 series, Vol. 9, No. 5.

    Google Scholar 

  • Kamiya, A., and Togawa, T. (1972). Optimal branching of the vascular tree (minimum volume theory). Bull. Math. Biophys. 34: 431–438.

    Article  PubMed  CAS  Google Scholar 

  • Kamiya, A., and Togawa, T. (1980). Adaptive regulation of wall shear stress to flow change in the canine carotid artery. Am. J. Physiol. 239: H14–H21.

    PubMed  CAS  Google Scholar 

  • Kamiya, A., Bukhari, R., and Togawa, T. (1984). Adaptive regulation of wall shear stress optimizing vascular tree function. Bull. Math. Biol. 46: 127–137.

    PubMed  CAS  Google Scholar 

  • Kassab, G.S., and Fung, Y.C. (1995). The pattern of coronary arteriolar bifurcations and the uniform shear hypothesis. Ann. Biomed. Eng., 23: 13–20.

    Article  PubMed  CAS  Google Scholar 

  • Kassab, G.S., Rider, C.A., Tang, N.J., and Fung, Y.C. (1993). Morphometry of the pig coronary arterial trees. Am. J. Physiol., 266: H350–H365.

    Google Scholar 

  • King, A.L. (1947). Waves in elastic tubes: velocity of the pulse wave in large arteries. J. Appl. Phys. 18: 595–600.

    Article  Google Scholar 

  • Klip, W. (1958). Difficulties in the measurement of pulse wave velocity. Am. Heart J. 56: 806–813.

    Article  PubMed  CAS  Google Scholar 

  • Klip, W. (1962). Velocity and Damping of the Pulse Wave. Martinus Nijhoff, The Hague.

    Google Scholar 

  • Klip, W. (1967). Formulas for phase velocity and damping of longitudinal waves in thick-walled viscoelastic tubes. J. Appl. Phys. 38: 3745–3755.

    Article  Google Scholar 

  • Korteweg, D.J. (1878). Ueber die Fortpflanzungesgeschwindigkeit des Schalles in elastischen Rohren. Ann. Physik. Chemie 5: 525–542.

    Article  Google Scholar 

  • Ku, D.N., Giddens, D.P., Zarins, C.K., and Glagov, S. (1985). Pulsatile flow and atherosclerosis in the human carotid bifurcation. Arteriosclerosis 5: 293–302.

    Article  PubMed  CAS  Google Scholar 

  • Lamb, H. (1897-1898). On the velocity of sound in a tube, as affected by the elasticity of the walls. Phil. Soc. Manchester Memoirs Proc., lit. A, 42: 1–16.

    Google Scholar 

  • Lambert, J.W. (1958). On the nonlinearities of fluid flow in nonrigid tubes. J. Franklin Inst. 266: 83–102.

    Article  Google Scholar 

  • Lanczos, C. (1952). Introduction. In Tables of Chebyshev Polynomials. National Bureau of Standards, Appl Math, Ser. 9, U.S. Govt. Printing Office, Washington, D.C., pp.7–9.

    Google Scholar 

  • Landowne, M. (1958). Characteristics of impact and pulse wave propagation in brachial and radial arteries. J. Appl. Physiol. 12: 91–97.

    PubMed  CAS  Google Scholar 

  • Lei, M., Kleinstreuer, G, and Truskey, G.A. (1995). Numerical investigation and prediction of atherogenic sites in branching arteries. J. Biomech. Eng. 17: 350–357.

    Article  Google Scholar 

  • Lew, H.S., and Fung, Y.C. (1970). Entry flow into blood vessels at arbitrary Reynolds number. J. Biomech. 3: 23–38.

    Article  PubMed  CAS  Google Scholar 

  • Liebow, A.A. (1963). Situations which lead to changes in vascular patterns. In: Handbook of Physiology, Section 2: Circulation, Vol. 2. Washington, D.G: American Physiological Society, pp. 1251–1276.

    Google Scholar 

  • Lighthill, M.J. (1978). Waves in Fluids. Cambridge University Press, London, UK.

    Google Scholar 

  • Ling, S.C., and Atabek, H.B. (1972). A nonlinear analysis of pulsatile flow in arteries. J. Fluid. Mech. 55: 493–511.

    Article  Google Scholar 

  • Liu, S.Q., Yen, M., and Fung, Y.C. (1994). On measuring the third dimension of cultured endothelial cells in shear flow. Proc. Natl. Acad. Sci. U.S.A. 91: 8782–8786.

    Article  PubMed  CAS  Google Scholar 

  • Maxwell, J.A., and Anliker, M. (1968). The dissipation and dispersion of small waves in arteries and veins with viscoelastic wall properties. Biophys. J. 8: 920–950.

    Article  PubMed  CAS  Google Scholar 

  • McCord, B.N., and Ku, D.N. (1993). Mechanical rupture of the atherosclerotic plaque fibrous cap. Bioengineering Conf. ASME, BED Vol. 24, pp. 324–326.

    Google Scholar 

  • McDonald, D.A. (1960, 1974). Blood Flow in Arteries. 1st ed., 2nd ed. Williams & Wilkins, Baltimore, MD.

    Google Scholar 

  • McGill, H.C. Jr., Geer, J.C., and Holman, R.L. (1957). Sites of vascular vulnerability in dogs demonstrated by Evans Blue. AMA Arch. Pathol. 64: 303–311.

    PubMed  CAS  Google Scholar 

  • Morgan, G.W., and Ferrante, W.R. (1955). Wave propagation in elastic tubes filled with streaming liquid. J. Acoust. Soc. Amer. 27: 715–725.

    Article  Google Scholar 

  • Morgan, G.W, and Kiely, J.P. (1954). Wave propagation in a viscous liquid contained in a flexible tube. J. Acoust. Soc. Amer. 26: 323–328.

    Article  Google Scholar 

  • Motomiya, M., and Karino, T. (1984). Flow patterns in the human carotid artery bifurcation. Stroke 15: 50–56.

    Article  PubMed  CAS  Google Scholar 

  • Murray, C.D. (1926). The physiological principle of minimum work. I. The vascular system and the cost of blood volume. Proc. Natl. Acad. Sci. U.S.A. 12: 207-214; J. Gen. Physiol. 9: 835–841.

    CAS  Google Scholar 

  • Nerem, R.M., Seed, W.A., and Wood, N.B. (1972). An experimental study of the velocity distribution and transition to turbulence in the aorta. J. Fluid Mech. 52: 137–160.

    Article  Google Scholar 

  • Oka, S. (1974). Rheology-Biorheology. Syokabo, Tokyo. (In Japanese).

    Google Scholar 

  • Patel, D.J., and Vaishnav, R.N. (eds.) (1980). Basic Hemodynamics and its Role in Disease Process. University Park Press, Baltimore, MD.

    Google Scholar 

  • Pedley, T.J. (1980). The Fluid Mechanics of Large Blood Vessels. Cambridge University Press, London.

    Book  Google Scholar 

  • Poiseuille, J.L. (1841). Recherches expérimentales sur le mouvement des liquides dans les tubes de très petits diamètres. Compte Rendus, Académie des Sciences. Paris.

    Google Scholar 

  • Prandtl, L. (1904). Über Flüssigkeitsbewegung bei sehr Kleiner Reibung. Proc. 3rd Intern. Math. Congress. Heidelberg.

    Google Scholar 

  • Rodbard, S. (1975). Vascular caliber. Cardiology 60: 4–49.

    Article  PubMed  CAS  Google Scholar 

  • Rokitansky, C. von (1852). A Manual of Pathological Anatomy. Translated by G.E. Day. Vol. 4. London, The Sydenham Society.

    Google Scholar 

  • Rosen, R. (1967). Optimality Principles in Biology. Butterworth, London.

    Google Scholar 

  • Ross, R. (1988). The pathogenesis of atherosclerosis. In Heart Disease (E. Braunwald, ed.) Saunders, Philadelphia, Chapter 35, pp. 1135–1152.

    Google Scholar 

  • Ross, R., and Glomset, J. (1973). Atherosclerosis and the arterial smooth muscle cell. Science 180: 1332.

    Article  PubMed  CAS  Google Scholar 

  • Rubinow, S.I., and Keller, J.B. (1972). Flow of a viscous fluid through an elastic tube with applications to blood flow. J. Theo. Biol. 35(2): 299–313.

    Article  CAS  Google Scholar 

  • Schiller, L. (1922). Die Entwicklung der laminaren Geschwindigkeitsverteilung und ihre Bedeutung für Zahigkeitsmessungen. Z. Angew. Math. Mech. 2: 96–106.

    Article  Google Scholar 

  • Schlichting, H. (1968). Boundary Layer Theory, 6th ed. McGraw-Hill, New York.

    Google Scholar 

  • Schwartz, C.J., Valente, A.J., Sprague, E.A., Kelley, J.L., and Nerem, R.M. (1991). The pathogenesis of atherosclerosis: An overview. Clin. Cardiol. 14: 1–16.

    Article  Google Scholar 

  • Skalak, R. (1966). Wave propagation in blood flow. In Biomechanics Symposium (Y.C. Fung, ed.). American Society of Mechanical Engineers, New York, pp. 20–40.

    Google Scholar 

  • Skalak, R. (1972). Synthesis of a complete circulation. In Cardiovascular Fluid Dynamics (D.H. Bergel, ed.), Vol. 2. Academic Press, New York, pp. 341–376.

    Google Scholar 

  • Sramek, B.B., Valenta, X, and Klimes, F. (eds.) (1995). Biomechanics of the Cardiovascular System, Czech Technical Univ. Press Prague.

    Google Scholar 

  • Szegö, G. (1939). Orthogonal Polynomials, 4th ed. American Math. Soc. Colloquium Vol. 23.

    Google Scholar 

  • Taber, L.A. (1995). Biomechanics of growth, remodeling, and morphogenesis. Appl. Mech. Rev. 48: 487–545.

    Article  Google Scholar 

  • Targ, S.M. (1951). Basic Problems of the Theory of Laminar Flows. Moscow (In Russian).

    Google Scholar 

  • Taylor, M.G. (1959). An experimental determination of the propagation of fluid oscillations in a tube with a viscoelastic wall. Phys. Med. Biol. 4: 63–82.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, M.G. (1966a). Use of random excitation and spectral analysis in the study of frequency-dependent parameters of the cardiovascular system. Circ. Res. 18: 585–595.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, M.G. (1966b). Input impedance of an assembly of randomly branching elastic tubes. Biophys. J. 6: 29-51, 6: 697–716.

    Article  CAS  Google Scholar 

  • Thoma, R. (1893). Untersuchungen über die Histogenese und Histomechanik des Gefassy sternes. Stuttgart: Enke.

    Google Scholar 

  • Thubrikar, M.J., and Robicsec, F. (1995). Pressure-induced arterial wall stress and atherosclerosis. Ann. Thorac. Surg. 59: 1594–1603.

    Article  PubMed  CAS  Google Scholar 

  • Thubrikar, M.J., Baker, J.W., and Nolan, S.P. (1988). Inhibition of atherosolerosis associated with reduction of arterial intramural stress in rabbits. Arteriosclerosis 8: 410–420.

    Article  PubMed  CAS  Google Scholar 

  • Thubrikar, M.J., Roskelley, S.K., and Eppink, R.T. (1990). Study of stress concentration in the walls of the bovine coronary arterial branch. J. Biomech. 23: 15–26.

    Article  PubMed  CAS  Google Scholar 

  • Valenta, J. (ed.) (1993). Biomechanics, Academia, Prague, Elsevier, Amsterdam.

    Google Scholar 

  • Van der Werff, T.J. (1973). Periodic method of characteristics. J. Comp. Phys. 11: 296–305.

    Article  Google Scholar 

  • Virchow, R. (1856). Phlogose und thrombose im gefassystem. Gessamette Abhandlungen zur Wissenschaftlichen Medicin. Frankfurt-am-Main, Meidinger Sohn u. Co. p. 458.

    Google Scholar 

  • Werlé, H. (1974). Le Tunnel Hydrodynamique au Service de la Recherche Aérospatiale. Publication No. 156, ONERA, France. Paris.

    Google Scholar 

  • Wetterer, E., and Kenner, T. (1968). Grundlagen der Dynamik des Arterienpulses. Springer-Verlag, Berlin.

    Google Scholar 

  • Witzig, K. (1914). Über erzwungene Wellenbewegungen zaher, inkompressibler Flüssigkeiten in elastischen Rohren. Inaugural Dissertation, Universitat Bern, K.J. Wyss, Bern.

    Google Scholar 

  • Womersley, J.R. (1955a). Method for the calculation of velocity, rate of flow, and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127: 553–563.

    PubMed  CAS  Google Scholar 

  • Womersley, J.R. (1955b). Oscillatory motion of a viscous liquid in a thin-walled elastic tube-I: The linear approximation for long waves. Phil. Mag. 46(Ser. 7): 199–221.

    Google Scholar 

  • Xue, H., and Fung, Y.C. (1989). Persistence of asymmetry in nonaxisymmetric entry flow in a circular cylindrical tube and its relevance to arterial pulse wave diagnosis. J. Biomech. Eng. 111: 37–41.

    Article  PubMed  CAS  Google Scholar 

  • Yao, L.S., and Berger, S.A. (1975). Entry flow in a curved pipe. J. Fluid Mech. 67: 177–196.

    Article  Google Scholar 

  • Yih, C.S. (1977). Fluid Mechancs. West River Press, Ann Arbor, MI.

    Google Scholar 

  • Young, T. (1808). Hydraulic investigations, subservient to an intended Croonian lecture on the motion of the blood. Phil. Trans. Roy. Soc. London 98: 164–186.

    Article  Google Scholar 

  • Young, T. (1809). On the functions of the heart and arteries. Phil. Trans. Roy. Soc. London 99: 1–31.

    Google Scholar 

  • Zamir, M. (1976). The role of shear forces in arterial branching. J. Gene. Biolo. 67: 213–222.

    CAS  Google Scholar 

  • Zamir, M. (1977). Shear forces and blood vessel radii in the cardiovascular system. J. Gen. Physiol. 69: 449–461.

    Article  PubMed  CAS  Google Scholar 

  • Zarins, C.K., Zatina, M.A., Giddens, D.P., Ku, D.N., and Glagov, S. (1987). Shear stress regulation of artery lumen diameter in experimental atherogenesis. J. Vasc. Surg. 5: 413–420.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fung, Y.C. (1997). Blood Flow in Arteries. In: Biomechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2696-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2696-1_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2842-9

  • Online ISBN: 978-1-4757-2696-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics