Abstract
The larger systemic arteries, shown in Figure 3.1:1, conduct blood from the heart to the peripheral organs. Their dimensions are given in Table 3.1:1. In humans, the aorta originates in the left ventricle at the aortic valve, and almost immediately curves about 180°, branching off to the head and upper limbs. It then pursues a fairly straight course downward through the diaphragm to the abdomen and legs. The aortic arch is tapered, curved, and twisted (i.e., its centerline does not lie in a plane). Other arteries have constant diameter between branches, but every time a daughter branch forks off the main trunk the diameter of the trunk is reduced. Overall, the aorta may be described as tapered. In the dog, the change of area fits the exponential equation,
where A is the area of the aorta, A 0 and R 0 are, respectively, the area and radius at the upstream site, x is the distance from that upstream site, and B is a “taper factor,” which has been found to lie between 0.02 and 0.05. Figure 3.1:2 shows a sketch of the dog aorta.
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in via an institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Anliker, M. (1972). Toward a nontraumatic study of the circulatory system. In Biomechanics: Its Foundations and Objectives (Y.C. Fung, N. Perrone, and M. Anliker, eds.), Prentice-Hall, Englewood Cliffs, NJ, pp. 337–379.
Anliker, M., and Maxwell, J.A. (1966). The dispersion of waves in blood vessels. In Biomechanics (Y.C. Fung, ed.), American Society of Mechanical Engineers, New York, pp. 47–67.
Anliker, M., and Raman, K.R. (1966). Korotkoff sounds at diastole—a phenomenon and dynamic instability of fluid-filled shells. Int. J. Solids Structures. 2: 467–492.
Anliker, M., Histand, M.B., and Ogden, E. (1968). Dispersion and attenuation of small artificial pressure waves in canine aorta. Circ. Res. 23: 539–551.
Aoki, T., and Ku, D.N. (1993). Collapse of diseased arteries with eccentric cross-section. J. Biomech. 26: 133–142.
Atabek, H.B. (1962). Development of flow in the inlet length of a circular tube starting from rest. Z. Angew. Math. Phys. 13: 417–430.
Atabek, H.B. (1980). Blood flow and pulse propagation in arteries. In Basic Hemodynamics and its Role in Disease Processes (DJ. Patel and R.N. Vaishnav, eds.), University Park Press, Baltimore, MD, pp. 253–361.
Attinger, E.O. (ed.) (1964). Pulsatile Blood Flow. McGraw-Hill, New York.
Benditt, E.P., and Benditt, J. M. (1973). Evidence for a monoclonal origin of human atherosclerotic plaques. Proc. Natl. Acad. Sci. USA, 70: 1753–1756.
Bergel, D.H. (ed.) (1972). Cardiovascular Fluid Dynamics, Vols. 1 & 2. Academic Press, New York.
Bohr, D.F., Somlyo, A.P., and Sparks, H.V., Jr. (eds.) (1980). Handbook of Physiology, Sec. 2. The Cardiovascular System. Vol. 2, Vascular Smooth Muscles. American Physiological Society, Bethesda, MD.
Boussinesq, J. (1891). Maniere dont les vitesses, se distrib. depui l’entree—Moindre longueur d’un tube circulaire, pour qu’un regime uniforme s’y établisse. Comptes Rendus, 113: 9, 49.
Caro, C.G., Fitzgerald, J.M., and Schroter, R.C. (1969). Arterial wall shear and distribution of early atheroma in man. Nature 223: 1159–1161.
Caro, C.G., Fitzgerald, J.M., and Schroter, R.C. (1971). Atheroma and arterial wall shear. Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc. Roy. Soc. Lond. B. 177: 109–159.
Caro, C.G., Pedley, T.J., and Seed, W.A. (1974). Mechanics of the circulation. In Cadiovascular Physiology (A.C. Guyton, ed.), Chapter 1, Medical and Technical Publishers, London.
Caro, C.G., Pedley, T.J., Schroter, R.C., and Seed, W.A. (1978). The Mechanics of the Circulation. Oxford University Press, Oxford.
Dai, K., Xue, H., Dou, R., and Fung, Y.C. (1985). On the detection of messages carried in arterial pulse waves. J. Biomech. Eng. 107: 268–273.
DeBakey, M.E., Lawrie, G.M., and Glaeser, D.H. (1985). Patterns of atherosclerosis and their surgical significance. Ann. Surg. 201: 115–131, Lippincott Co., Philadelphia, PA.
Deshpande, M.D., and Giddens, D.P. (1980). Turbulence measurements in a constricted tube. J. Fluid Mech. 97: 65–90.
Euler, L. (1775). Principia pro motu sanguins per arterias determinado. Opera posthuma mathematica et physica anno 1844 detecta, ediderunt P.H. Fuss et N. Fuss. Petropoli, Apud Eggers et socios, Vol. 2, pp. 814–823.
Friedman, M.H., and Deters, O.J. (1987). Correlation among shear rate measures in vascular flows. J. Biomech. Eng. 109: 25–26.
Friedman, M.H., Deters, O.J., Mark, F. F., Bargeron, C.B., and Hutchins, G.M. (1983). Arterial geometry affects hemodynamics. A potential risk factor for atherosclerosis. Atherosclerosis 46: 225–231.
Fry, D.L. (1968). Acute vascalar endothelial changes associated with increased blood velocity gradients. Circ. Res. 22: 165–197.
Fry, D.L. (1973). Responses of the arterial wall to certain factors. In Atherosclerosis: Initiating Factors. Ciba Foundation Symp. Elsevier, Amsterdam, p. 93.
Fry, D.L. (1977). Aortic Evans blue dye accumulation: Its measurement and interpretation. Am. J. Physiol. 232: H204–H222.
Fry, D.L., Griggs, Jr., D.M., and Greenfield Jr., J.C. (1964). In vivo studies of pulsatile blood flow: the relationship of the pressure gradient to the blood velocity. In Pulsatile Blood Flow (E.O. Attinger, ed.), McGraw-Hill, New York, Chap. 5, pp. 101–114.
Fung, Y.C. (1990). Biomechanics: Motion, Flow, Stress, and Growth. Springer-Verlag, New York.
Fung, Y.C. (1993a). A First Course in Continuum Mechanics. 3rd ed. Prentice-Hall, Englewood Cliffs, N.J.
Fung, Y.C. (1993b). Biomechanics: Mechanical Properties of Living Tissues. 2nd ed. Springer-Verlag, New York.
Fung, Y.C., and Liu, S.Q. (1993). Elementary mechanics of the endothelium of blood vessels. J. Biomech. Eng. 115: 1–12.
Fung, Y.C., Fronek, K., and Patitucci, P. (1979). On pseudo-elasticity of arteries and the choice of its mathematical expression. Am. J. Physiol. 237: H620–H631.
Giddens, D.P., Zarins, C.K., and Glagov, S. (1990). Response of arteries to near-wall fluid dynamic behavior. Appl. Mech. Rev. 43: S98–S102.
Hamilton, W.F., and Dow, P. (1939). An experimental study of the standing waves in the pulse propagated through the aorta. Am. J. Physiol. 125: 48–59.
Jacobs, R.B. (1953). On the propagation of a disturbance through a viscous liquid flowing in a distensible tube of appreciable mass. Bull. Math. Biophys. 5: 395–409.
Jones, E., Anliker, M., and Chang, I.D. (1971). Effects of viscosity and constraints on the dispersion and dissipation of waves in large blood vessels. I & II. Biophys. J. 11: 1085–1120, 1121-1134.
Joukowsky, N.W. (1900). Ueber den hydraulischen Stoss in Wasserheizungsrohren. Memoires de l’Academie Imperiale des Science de St. Petersburg, 8 series, Vol. 9, No. 5.
Kamiya, A., and Togawa, T. (1972). Optimal branching of the vascular tree (minimum volume theory). Bull. Math. Biophys. 34: 431–438.
Kamiya, A., and Togawa, T. (1980). Adaptive regulation of wall shear stress to flow change in the canine carotid artery. Am. J. Physiol. 239: H14–H21.
Kamiya, A., Bukhari, R., and Togawa, T. (1984). Adaptive regulation of wall shear stress optimizing vascular tree function. Bull. Math. Biol. 46: 127–137.
Kassab, G.S., and Fung, Y.C. (1995). The pattern of coronary arteriolar bifurcations and the uniform shear hypothesis. Ann. Biomed. Eng., 23: 13–20.
Kassab, G.S., Rider, C.A., Tang, N.J., and Fung, Y.C. (1993). Morphometry of the pig coronary arterial trees. Am. J. Physiol., 266: H350–H365.
King, A.L. (1947). Waves in elastic tubes: velocity of the pulse wave in large arteries. J. Appl. Phys. 18: 595–600.
Klip, W. (1958). Difficulties in the measurement of pulse wave velocity. Am. Heart J. 56: 806–813.
Klip, W. (1962). Velocity and Damping of the Pulse Wave. Martinus Nijhoff, The Hague.
Klip, W. (1967). Formulas for phase velocity and damping of longitudinal waves in thick-walled viscoelastic tubes. J. Appl. Phys. 38: 3745–3755.
Korteweg, D.J. (1878). Ueber die Fortpflanzungesgeschwindigkeit des Schalles in elastischen Rohren. Ann. Physik. Chemie 5: 525–542.
Ku, D.N., Giddens, D.P., Zarins, C.K., and Glagov, S. (1985). Pulsatile flow and atherosclerosis in the human carotid bifurcation. Arteriosclerosis 5: 293–302.
Lamb, H. (1897-1898). On the velocity of sound in a tube, as affected by the elasticity of the walls. Phil. Soc. Manchester Memoirs Proc., lit. A, 42: 1–16.
Lambert, J.W. (1958). On the nonlinearities of fluid flow in nonrigid tubes. J. Franklin Inst. 266: 83–102.
Lanczos, C. (1952). Introduction. In Tables of Chebyshev Polynomials. National Bureau of Standards, Appl Math, Ser. 9, U.S. Govt. Printing Office, Washington, D.C., pp.7–9.
Landowne, M. (1958). Characteristics of impact and pulse wave propagation in brachial and radial arteries. J. Appl. Physiol. 12: 91–97.
Lei, M., Kleinstreuer, G, and Truskey, G.A. (1995). Numerical investigation and prediction of atherogenic sites in branching arteries. J. Biomech. Eng. 17: 350–357.
Lew, H.S., and Fung, Y.C. (1970). Entry flow into blood vessels at arbitrary Reynolds number. J. Biomech. 3: 23–38.
Liebow, A.A. (1963). Situations which lead to changes in vascular patterns. In: Handbook of Physiology, Section 2: Circulation, Vol. 2. Washington, D.G: American Physiological Society, pp. 1251–1276.
Lighthill, M.J. (1978). Waves in Fluids. Cambridge University Press, London, UK.
Ling, S.C., and Atabek, H.B. (1972). A nonlinear analysis of pulsatile flow in arteries. J. Fluid. Mech. 55: 493–511.
Liu, S.Q., Yen, M., and Fung, Y.C. (1994). On measuring the third dimension of cultured endothelial cells in shear flow. Proc. Natl. Acad. Sci. U.S.A. 91: 8782–8786.
Maxwell, J.A., and Anliker, M. (1968). The dissipation and dispersion of small waves in arteries and veins with viscoelastic wall properties. Biophys. J. 8: 920–950.
McCord, B.N., and Ku, D.N. (1993). Mechanical rupture of the atherosclerotic plaque fibrous cap. Bioengineering Conf. ASME, BED Vol. 24, pp. 324–326.
McDonald, D.A. (1960, 1974). Blood Flow in Arteries. 1st ed., 2nd ed. Williams & Wilkins, Baltimore, MD.
McGill, H.C. Jr., Geer, J.C., and Holman, R.L. (1957). Sites of vascular vulnerability in dogs demonstrated by Evans Blue. AMA Arch. Pathol. 64: 303–311.
Morgan, G.W., and Ferrante, W.R. (1955). Wave propagation in elastic tubes filled with streaming liquid. J. Acoust. Soc. Amer. 27: 715–725.
Morgan, G.W, and Kiely, J.P. (1954). Wave propagation in a viscous liquid contained in a flexible tube. J. Acoust. Soc. Amer. 26: 323–328.
Motomiya, M., and Karino, T. (1984). Flow patterns in the human carotid artery bifurcation. Stroke 15: 50–56.
Murray, C.D. (1926). The physiological principle of minimum work. I. The vascular system and the cost of blood volume. Proc. Natl. Acad. Sci. U.S.A. 12: 207-214; J. Gen. Physiol. 9: 835–841.
Nerem, R.M., Seed, W.A., and Wood, N.B. (1972). An experimental study of the velocity distribution and transition to turbulence in the aorta. J. Fluid Mech. 52: 137–160.
Oka, S. (1974). Rheology-Biorheology. Syokabo, Tokyo. (In Japanese).
Patel, D.J., and Vaishnav, R.N. (eds.) (1980). Basic Hemodynamics and its Role in Disease Process. University Park Press, Baltimore, MD.
Pedley, T.J. (1980). The Fluid Mechanics of Large Blood Vessels. Cambridge University Press, London.
Poiseuille, J.L. (1841). Recherches expérimentales sur le mouvement des liquides dans les tubes de très petits diamètres. Compte Rendus, Académie des Sciences. Paris.
Prandtl, L. (1904). Über Flüssigkeitsbewegung bei sehr Kleiner Reibung. Proc. 3rd Intern. Math. Congress. Heidelberg.
Rodbard, S. (1975). Vascular caliber. Cardiology 60: 4–49.
Rokitansky, C. von (1852). A Manual of Pathological Anatomy. Translated by G.E. Day. Vol. 4. London, The Sydenham Society.
Rosen, R. (1967). Optimality Principles in Biology. Butterworth, London.
Ross, R. (1988). The pathogenesis of atherosclerosis. In Heart Disease (E. Braunwald, ed.) Saunders, Philadelphia, Chapter 35, pp. 1135–1152.
Ross, R., and Glomset, J. (1973). Atherosclerosis and the arterial smooth muscle cell. Science 180: 1332.
Rubinow, S.I., and Keller, J.B. (1972). Flow of a viscous fluid through an elastic tube with applications to blood flow. J. Theo. Biol. 35(2): 299–313.
Schiller, L. (1922). Die Entwicklung der laminaren Geschwindigkeitsverteilung und ihre Bedeutung für Zahigkeitsmessungen. Z. Angew. Math. Mech. 2: 96–106.
Schlichting, H. (1968). Boundary Layer Theory, 6th ed. McGraw-Hill, New York.
Schwartz, C.J., Valente, A.J., Sprague, E.A., Kelley, J.L., and Nerem, R.M. (1991). The pathogenesis of atherosclerosis: An overview. Clin. Cardiol. 14: 1–16.
Skalak, R. (1966). Wave propagation in blood flow. In Biomechanics Symposium (Y.C. Fung, ed.). American Society of Mechanical Engineers, New York, pp. 20–40.
Skalak, R. (1972). Synthesis of a complete circulation. In Cardiovascular Fluid Dynamics (D.H. Bergel, ed.), Vol. 2. Academic Press, New York, pp. 341–376.
Sramek, B.B., Valenta, X, and Klimes, F. (eds.) (1995). Biomechanics of the Cardiovascular System, Czech Technical Univ. Press Prague.
Szegö, G. (1939). Orthogonal Polynomials, 4th ed. American Math. Soc. Colloquium Vol. 23.
Taber, L.A. (1995). Biomechanics of growth, remodeling, and morphogenesis. Appl. Mech. Rev. 48: 487–545.
Targ, S.M. (1951). Basic Problems of the Theory of Laminar Flows. Moscow (In Russian).
Taylor, M.G. (1959). An experimental determination of the propagation of fluid oscillations in a tube with a viscoelastic wall. Phys. Med. Biol. 4: 63–82.
Taylor, M.G. (1966a). Use of random excitation and spectral analysis in the study of frequency-dependent parameters of the cardiovascular system. Circ. Res. 18: 585–595.
Taylor, M.G. (1966b). Input impedance of an assembly of randomly branching elastic tubes. Biophys. J. 6: 29-51, 6: 697–716.
Thoma, R. (1893). Untersuchungen über die Histogenese und Histomechanik des Gefassy sternes. Stuttgart: Enke.
Thubrikar, M.J., and Robicsec, F. (1995). Pressure-induced arterial wall stress and atherosclerosis. Ann. Thorac. Surg. 59: 1594–1603.
Thubrikar, M.J., Baker, J.W., and Nolan, S.P. (1988). Inhibition of atherosolerosis associated with reduction of arterial intramural stress in rabbits. Arteriosclerosis 8: 410–420.
Thubrikar, M.J., Roskelley, S.K., and Eppink, R.T. (1990). Study of stress concentration in the walls of the bovine coronary arterial branch. J. Biomech. 23: 15–26.
Valenta, J. (ed.) (1993). Biomechanics, Academia, Prague, Elsevier, Amsterdam.
Van der Werff, T.J. (1973). Periodic method of characteristics. J. Comp. Phys. 11: 296–305.
Virchow, R. (1856). Phlogose und thrombose im gefassystem. Gessamette Abhandlungen zur Wissenschaftlichen Medicin. Frankfurt-am-Main, Meidinger Sohn u. Co. p. 458.
Werlé, H. (1974). Le Tunnel Hydrodynamique au Service de la Recherche Aérospatiale. Publication No. 156, ONERA, France. Paris.
Wetterer, E., and Kenner, T. (1968). Grundlagen der Dynamik des Arterienpulses. Springer-Verlag, Berlin.
Witzig, K. (1914). Über erzwungene Wellenbewegungen zaher, inkompressibler Flüssigkeiten in elastischen Rohren. Inaugural Dissertation, Universitat Bern, K.J. Wyss, Bern.
Womersley, J.R. (1955a). Method for the calculation of velocity, rate of flow, and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127: 553–563.
Womersley, J.R. (1955b). Oscillatory motion of a viscous liquid in a thin-walled elastic tube-I: The linear approximation for long waves. Phil. Mag. 46(Ser. 7): 199–221.
Xue, H., and Fung, Y.C. (1989). Persistence of asymmetry in nonaxisymmetric entry flow in a circular cylindrical tube and its relevance to arterial pulse wave diagnosis. J. Biomech. Eng. 111: 37–41.
Yao, L.S., and Berger, S.A. (1975). Entry flow in a curved pipe. J. Fluid Mech. 67: 177–196.
Yih, C.S. (1977). Fluid Mechancs. West River Press, Ann Arbor, MI.
Young, T. (1808). Hydraulic investigations, subservient to an intended Croonian lecture on the motion of the blood. Phil. Trans. Roy. Soc. London 98: 164–186.
Young, T. (1809). On the functions of the heart and arteries. Phil. Trans. Roy. Soc. London 99: 1–31.
Zamir, M. (1976). The role of shear forces in arterial branching. J. Gene. Biolo. 67: 213–222.
Zamir, M. (1977). Shear forces and blood vessel radii in the cardiovascular system. J. Gen. Physiol. 69: 449–461.
Zarins, C.K., Zatina, M.A., Giddens, D.P., Ku, D.N., and Glagov, S. (1987). Shear stress regulation of artery lumen diameter in experimental atherogenesis. J. Vasc. Surg. 5: 413–420.
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 1997 Springer Science+Business Media New York
About this chapter
Cite this chapter
Fung, Y.C. (1997). Blood Flow in Arteries. In: Biomechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2696-1_3
Download citation
DOI: https://doi.org/10.1007/978-1-4757-2696-1_3
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4419-2842-9
Online ISBN: 978-1-4757-2696-1
eBook Packages: Springer Book Archive
