Skip to main content

Abstract

The graded response model represents a family of mathematical models that deals with ordered polytomous categories. These ordered categories include rating such as letter grading, A, B, C, D, and F, used in the evaluation of students’ performance; strongly disagree, disagree, agree, and strongly agree, used in attitude surveys; or partial credit given in accordance with an examinee’s degree of attainment in solving a problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bock, R.D. (1972). Estimating item parameters and latent ability when responses are scored in two or more nominal categories. Psychometrika 37, 29–51.

    Article  MathSciNet  MATH  Google Scholar 

  • Bock, R.D. and Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika 46, 443–459.

    Article  MathSciNet  Google Scholar 

  • Kolakowski, D. and Bock, R.D. (1973). Maximum Likelihood Item Analysis and Test Scoring: Logistic Model for Multiple Item Responses. Ann Arbor, MI: National Educational Resources.

    Google Scholar 

  • Koch, W.R. (1983). Likert scaling using the graded response latent trait model. Applied Psychological Measurement 7, 15–32.

    Article  Google Scholar 

  • Levine, M. (1984). An Introduction to Multilinear Formula Scoring Theory (Office of Naval Research Report, 84–4 ). Champaign, IL: Model-Based Measurement Laboratory, Education Building, University of Illinois.

    Google Scholar 

  • Lord, F.M. (1952). A theory of mental test scores. Psychometric Monograph, No. 7.

    Google Scholar 

  • Lord, F.M. and Novick, M.R. (1968). Statistical Theories of Mental Test Scores. Reading, MA: Addison Wesley.

    MATH  Google Scholar 

  • Masters, G.N. (1982). A Rasch model for partial credit scoring. Psychometrika 47, 149–174.

    Article  MATH  Google Scholar 

  • Muraki, E. (1992). A generalized partial credit model: Application of an EM algorithm. Applied Psychological Measurement 16, 159–176.

    Article  Google Scholar 

  • Muraki, E. and Bock, R.D. (1993). Parscale. Chicago, IL: Scientific Software.

    Google Scholar 

  • Ramsay, J.O. and Wang, X. (1993). Hybrid IRT Models. Paper presented at the Meeting of the Psychometric Society, Berkeley, CA.

    Google Scholar 

  • Roche, A.F., Wainer, H., and Thissen, D. (1975). Skeletal Maturity: The Knee Joint As a Biological Indicator. New York, NY: Plenum Medical Book.

    Google Scholar 

  • Samejima, F. (1969). Estimation of ability using a response pattern of graded scores. Psychometrika Monograph, No. 17.

    Google Scholar 

  • Samejima, F. (1972). A general model for free-response data. Psychometrika Monograph, No. 18.

    Google Scholar 

  • Samejima, F. (1973). Homogeneous case of the continuous response model. Psychometrika 38, 203–219.

    Article  MATH  Google Scholar 

  • Samejima, F. (1983). Some methods and approaches of estimating the operating characteristics of discrete item responses. In H. Wainer and S. Messick (Eds.), Principles of Modern Psychological Measurement: A Festschrift for Frederic M. Lord (pp. 159–182 ). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Samejima, F. (1993). Roles of Fisher type information in latent trait models. In H. Bozdogan (Ed.), Proceedings of the First US/Japan Conference on the Frontiers of Statistical Modeling: An Informational Approach (pp. 347–378 ). Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Samejima, F. (1994). Nonparametric estimation of the plausibility functions of the distractors of vocabulary test items. Applied Psychological Measurement 18, 35–51.

    Article  Google Scholar 

  • Samejima, F. (1995). Acceleration model in the heterogeneous case of the general graded response model. Psychometrika 60, 549–572.

    Article  MathSciNet  MATH  Google Scholar 

  • Samejima, F. (1996). Rationale and actual procedures of efficient nonparametric approaches for estimating the operating characteristics of discrete item responses. (In press.)

    Google Scholar 

  • Thissen, D. (1991). Multilog User’s Guide Version 6. Chicago, IL: Scientific Software.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Samejima, F. (1997). Graded Response Model. In: van der Linden, W.J., Hambleton, R.K. (eds) Handbook of Modern Item Response Theory. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2691-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2691-6_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2849-8

  • Online ISBN: 978-1-4757-2691-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics