Skip to main content

Models for Locally Dependent Responses: Conjunctive Item Response Theory

  • Chapter

Abstract

The last 15 years have been locally dependent IRT advances along nonparametric and parametric lines. Results include nonparametric tests for unidimensionality and response function monotonicity (Holland, 1981; Holland and Rosenbaum, 1986; Rosenbaum, 1984, 1987; Stout, 1987, 1990; Suppes and Zanotti, 1981), locally dependent models without individual difference provisions (Andrich, 1985; Embretson, 1984; Gibbons et al. 1989; Spray and Ackerman, 1986) and locally dependent models with individual differences provisions (Jannarone, 1986, 1987, 1991; Jannarone et al. 1990; Kelderman and Jannarone, 1989).

Keywords

  • Latent Trait
  • Exponential Family
  • Item Parameter
  • Local Independence
  • Item Response Model

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4757-2691-6_27
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-1-4757-2691-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen, E.B. (1980). Discrete Statistical Models with Social Science Applications. Amsterdam: North Holland

    MATH  Google Scholar 

  • Andrich, D. (1985). A latent trait model with response dependencies: impli-cations for test construction and analysis. In S.E. Embretson (Ed.), Test Design: Developments in Psychology and Psychometrics (pp. 245–275). Orlando, FL: Academic Press.

    Google Scholar 

  • Bickel, P. and Doksum, K. (1977). Mathematical Statistics: Basic Ideas and Selected Topics. San Francisco: Holden-Day.

    Google Scholar 

  • Embretson, S. (1984). A general latent trait model for item responses. Psychometrika 49, 211–218.

    Google Scholar 

  • Gibbons, R.D., Bock, R.D., and Hedeker, D.R. (1989). Conditional Dependence (Office of Naval Research Final Report No. 89–1). Chicago: University of Chicago.

    Google Scholar 

  • Holland, P.W. (1981). When are item response models consistent with observed data? Psychometrika 46, 79–92.

    Google Scholar 

  • Holland, P.W. and Rosenbaum, P.R. (1986). Conditional association and unidimensionality in monotone latent variable models. Annals of Statistics 14, 1523–1543.

    Google Scholar 

  • Jannarone, R.J. (1986). Conjunctive item response theory kernels. Psychometrika 51, 357–373.

    Google Scholar 

  • Jannarone, R.J. (1987). Locally Independent Models for Reflecting Learning Abilities (Center for Machine Intelligence Report No. 87–67). Columbia, SC: University of South Carolina.

    Google Scholar 

  • Jannarone, R.J. (1990). Locally Dependent Cognitive Process Measurement: Contrasts and Connections with Traditional Test Theory (Center for Machine Intelligence Report No. 90–01). Columbia, SC: University of South Carolina.

    Google Scholar 

  • Jannarone, R.J. (1991). Conjunctive measurement theory: Cognitive research prospects. In M. Wilson (Ed.), Objective Measurement: Theory into Practice. Norwood, NJ: Ablex, 211–236.

    Google Scholar 

  • Jannarone, R.J. (1994). Local dependence: objectively measurable or objectionably abominable? In M. Wilson (Ed.), Objective Measurement: Theory into Practice, Vol. II. Norwood, NJ: Ablex, 211–236.

    Google Scholar 

  • Jannarone, R.J. (to appear, a). Measuring quickness and correctness concurrently: A conjunctive IRT approach. In M. Wilson (Ed.), Objective Measurement: Theory into Practice, Vol. III. Norwood, NJ: Ablex.

    Google Scholar 

  • Jannarone, R.J. (to appear, b). Concurrent Information Processing: A Psycho-Statistical Model for Real-Time Neurocomputing. New York: Van Nostrand Reinhold.

    Google Scholar 

  • Jannarone, R.J. and Roberts, J.S. (1984). Reflecting interactions in personality scales: Meehl’s paradox revisited. Journal of Personality and Social Psychology 47, 621–628.

    Google Scholar 

  • Jannarone, R.J., Yu, K.F., and Laughlin, J.E. (1990). Easy Bayes estimation for Rasch-type models. Psychometrika 55, 449–460.

    Google Scholar 

  • Jöreskog, K.G. (1978). Statistical analysis of covariance and correlation matrices. Psychometrika 43, 443–477.

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Kelderman, H. and Jannarone, R.J. ( 1989, April). Conditional maximum likelihood estimation in conjunctive item response models. Paper presented at the meeting of the American Educational Research Association, San Francisco.

    Google Scholar 

  • Lazarsfeld, P.F. (1960). Latent structure analysis and test theory. In H. Gulliksen and S. Messick (Eds.), Psychological Scaling: Theory and Applications (pp. 83–96 ). New York: McGraw-Hill.

    Google Scholar 

  • Lehmann, E.L. (1983). Theory of Point Estimation. New York: Wiley.

    MATH  CrossRef  Google Scholar 

  • Lehmann, E L (1986). Testing Statistical Hypotheses ( 2nd ed. ). New York: Wiley.

    MATH  CrossRef  Google Scholar 

  • Lord, F.M. and Novick, M.R. (1968). Statistical Theories of Mental Test Scores. Reading, MA: Addison-Wesley.

    MATH  Google Scholar 

  • McDonald, R.P. (1981). The dimensionality of test and items. British Journal of Mathematical and Statistical Psychology 34, 100–117.

    MathSciNet  CrossRef  Google Scholar 

  • Rosenbaum, P.R. (1984). Testing the conditional independence and mono-tonicity assumptions of item response theory. Psychometrika 49, 425436.

    Google Scholar 

  • Rosenbaum, P.R. (1987). Probability inequalities for latent scales. British Journal of Mathematical and Statistical Psychology 40, 157–168.

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Spray, J.A. and Ackerman, T.A. ( 1986, April). The effects of item response dependency on trait or ability dimensionality. Paper presented at the meeting of the Psychometric Society, Toronto.

    Google Scholar 

  • Stout, W. (1987). A nonparametric approach for assessing latent trait dimensionality. Psychometrika 52, 589–617.

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Stout, W. (1990). A nonparametric multidimensional IRT approach with applications to ability estimation. Psychometrika 55, 293–326.

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Suppes, P. and Zanotti, M. (1981). When are probabilistic explanations possible? Synthese 48, 191–199.

    MathSciNet  MATH  CrossRef  Google Scholar 

  • Wainer, H. and Kiely G. (1987). Item clusters in computerized adaptive testing: A case for tests. Journal of Educational Measurement 24, 185–202.

    CrossRef  Google Scholar 

  • Yen, W.M. (1984). Effects of local item dependence on the fit and equating performance of the three-parameter logistic model. Applied Psychological Measurement 8, 125–145.

    CrossRef  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jannarone, R.J. (1997). Models for Locally Dependent Responses: Conjunctive Item Response Theory. In: van der Linden, W.J., Hambleton, R.K. (eds) Handbook of Modern Item Response Theory. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2691-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2691-6_27

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2849-8

  • Online ISBN: 978-1-4757-2691-6

  • eBook Packages: Springer Book Archive