Skip to main content

Item Response Theory: Brief History, Common Models, and Extensions

  • Chapter
Handbook of Modern Item Response Theory

Abstract

Long experience with measurement instruments such as thermometers, yardsticks, and speedometers may have left the impression that measurement instruments are physical devices providing measurements that can be read directly off a numerical scale. This impression is certainly not valid for educational and psychological tests. A useful way to view a test is as a series of small experiments in which the tester records a vector of responses by the testee. These responses are not direct measurements, but provide the data from which measurements can be inferred.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agresti, A. (1990). Categorical Data Analysis. New York, NY: Wiley.

    MATH  Google Scholar 

  2. Andersen, E.B. (1973). A goodness of fit test for the Rasch model. Psychometrika 38, 123–140.

    Article  MathSciNet  MATH  Google Scholar 

  3. Andersen, E.B. (1980). Discrete Statistical Models with Social Science Applications. Amsterdam, The Netherlands: North-Holland.

    MATH  Google Scholar 

  4. Baker, F.B. (1992). Item Response Theory: Parameter Estimation Techniques. New York, NY: Marcel Dekker.

    MATH  Google Scholar 

  5. Berkson, J.A. (1944). Application of the logistic function to bio-assay. Journal of the American Statistical Association 39, 357–365.

    Google Scholar 

  6. Berkson, J.A. (1951). Why I prefer logits to probits. Biometrics 7, 327–329.

    Article  Google Scholar 

  7. Berkson, J.A. (1953). A statistically precise and relatively simple method of estimating the bioassay with quantal response, based on the logistic function. Journal of the American Statistical Association 48, 565–600.

    MATH  Google Scholar 

  8. Berkson, J.A. (1955). Maximum likelihood and minimum chi-square estimates of the logistic function. Journal of the American Statistical Association 50, 120–162.

    Google Scholar 

  9. Binet, A. and Simon, Th.A. (1905). Méthodes nouvelles pour le diagnostic du niveau intellectuel des anormaux. l’Année Psychologie 11, 191–336.

    Article  Google Scholar 

  10. Bock, R.D. (1972). Estimating item parameters and latent ability when responses are scored in two or more nominal categories. Psychometrika 37, 29–51.

    Article  MathSciNet  MATH  Google Scholar 

  11. Bock, R.D. and Aitken, M. (1981). Marginal maximum likelihood estimation of item parameters: An application of an EM algorithm. Psychometrika 46, 443–459.

    Article  MathSciNet  Google Scholar 

  12. Bock, R.D. and Lieberman, M. (1970). Fitting a response model for n dichotomously scored items. Psychometrika 35, 179–197.

    Article  Google Scholar 

  13. Christoffersson, A. (1975). Factor analysis of dichotomized variables. Psychometrika 40, 5–32.

    Article  MathSciNet  MATH  Google Scholar 

  14. Cox, D.R. (1958). The Planning of Experiments. New York, NY: Wiley.

    Google Scholar 

  15. de Leeuw, J. and Verhelst, N.D. (1986). Maximum-likelihood estimation in generalized Rasch models. Journal of Educational Statistics 11, 183–196.

    Article  Google Scholar 

  16. Engelen, R.H.J. (1989). Parameter Estimation in the Logistic Item Response Model. Unpublished doctoral dissertation, University of Twente, Enschede, The Netherlands.

    Google Scholar 

  17. Fennessy, L.M. (1995). The Impact of Local Dependencies on Various IRT Outcomes. Unpublished doctoral dissertation, University of Massachusetts, Amherst.

    Google Scholar 

  18. Ferguson, G.A. (1942). Item selection by the constant process. Psychometrika 7, 19–29.

    Article  Google Scholar 

  19. Fischer, G.H. (1974). Einführung in die Theorie psychologischer Tests. Bern, Switzerland: Huber.

    Google Scholar 

  20. Fischer, G.H. (1983). Logistic latent trait models with linear constraints. Psychometrika 48, 3–26.

    Article  MathSciNet  MATH  Google Scholar 

  21. Glas, C.A.W. (1988). The derivation of some tests for the Rasch model from the multinomial distribution. Psychometrika 53, 525–546.

    Article  MathSciNet  MATH  Google Scholar 

  22. Glas, C.A.W. (1989). Contributions to Estimating and Testing Rasch Models. Unpublished doctoral dissertation, University of Twente, Enschede, The Netherlands.

    Google Scholar 

  23. Haley, D.C. (1952). Estimation of the Dosage Mortality Relationship When the Dose is Subject to Error (Technical Report No. 15 ). Palo Alto, CA: Applied Mathematics and Statistics Laboratory, Stanford University.

    Google Scholar 

  24. Hambleton, R.K. (1989). Principles and selected applications of item response theory. In R.L. Linn (ed.), Educational Measurement ( 3rd ed., pp. 143–200 ). New York, NY: Macmillan.

    Google Scholar 

  25. Hambleton, R.K. and Swaminathan, H. (1985). Item Response Theory: Principles and Applications. Boston: Kluwer Academic Publishers.

    Google Scholar 

  26. Hambleton, R.K., Swaminathan, H., and Rogers, H.J. (1991). Fundamentals of Item Response Theory. Newbury Park, CA: Sage.

    Google Scholar 

  27. Hattie, J. (1985). Assessing unidimensionality of tests and items. Applied Psychological Measurement 9, 139–164.

    Article  Google Scholar 

  28. Kelderman, H. (1984). Loglinear Rasch model tests. Psychometrika 49, 223–245.

    Article  MATH  Google Scholar 

  29. Lawley, D.N. (1943). On problems connected with item selection and test construction. Proceedings of the Royal Society of Edinburgh 61, 273–287.

    MathSciNet  MATH  Google Scholar 

  30. Lazarsfeld, P.F. (1950). Chapters 10 and 11 in S.A. Stouffer et al. (eds.), Studies in Social Psychology in World War II: Vol. 4. Measurement and Prediction. Princeton, NJ: Princeton University Press.

    Google Scholar 

  31. Lazarsfeld, P.F. and Henry, N.W. (1968). Latent Structure Analysis. Boston, MA: Houghton Mifflin.

    MATH  Google Scholar 

  32. Lehmann, E.L. (1959). Testing Statistical Hypotheses. New York, NY: Wiley.

    MATH  Google Scholar 

  33. Liou, M. (1994). More on the computation of higher-order derivatives of the elementary symmetric functions in the Rasch model. Applied Psychological Measurement 18, 53–62.

    Article  Google Scholar 

  34. Loevinger, J. (1947). A systematic approach to the construction and evaluation of tests of ability. Psychological Monographs 61 (Serial No. 285).

    Google Scholar 

  35. Lord, F.M. (1952). A theory of test scores. Psychometric Monographs, No. 7.

    Google Scholar 

  36. Lord, F.M. (1980). Applications of Item Response Theory to Practical Testing Problems. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  37. Lord, F.M. and Novick, M.R. (1968). Statistical Theories of Mental Test Scores. Reading, MA: Addison-Wesley.

    Google Scholar 

  38. Masters, G.N. and Wright, B.D. (1984). The essential process in a family of measurement models. Psychometrika 49, 529–544.

    Article  Google Scholar 

  39. McCullagh, P. and Neider, J.A. (1989). Generalized Linear Models ( 2nd edition ). London: Chapman and Hill.

    MATH  Google Scholar 

  40. McDonald, R.P. (1967). Nonlinear factor analysis. Psychometric Monograph, No. 15.

    Google Scholar 

  41. McDonald, R.P. (1989). Future directions for item response theory. International Journal of Educational Research 13, 205–220.

    Article  Google Scholar 

  42. Mellenbergh, G.J. (1994). Generalized linear item response theory. Psychological Bulletin 115, 300–307.

    Article  Google Scholar 

  43. Mellenbergh, G.J. (1995). Conceptual notes on models for discrete polyto- mous item responses. Applied Psychological Measurement 19, 91–100.

    Article  Google Scholar 

  44. Mislevy, R.L. (1986). Bayes modal estimation in item response theory. Psychometrika 51, 177–195.

    Article  MathSciNet  MATH  Google Scholar 

  45. Molenaar, W. (1974). De logistische en de normale kromme [The logistic and the normal curve]. Nederlands Tijdschrift voor de Psychologie 29, 415–420.

    Google Scholar 

  46. Item Response Theory 27

    Google Scholar 

  47. Molenaar, W. (1983). Some improved diagnostics for failure in the Rasch model. Psychometrika 55, 75–106.

    Article  MathSciNet  Google Scholar 

  48. Mosier, C.I. (1940). Psychophysics and mental test theory: Fundamental postulates and elementary theorems. Psychological Review 47, 355–366.

    Article  Google Scholar 

  49. Mosier, C.I. (1941). Psychophysics and mental test theory. II. The constant process. Psychological Review 48, 235–249.

    Article  Google Scholar 

  50. Muthén, B. (1978). Contributions to factor analysis of dichotomous variables. Psychometrika 43, 551–560.

    Article  MathSciNet  MATH  Google Scholar 

  51. Novick, M.R. (1966). The axioms and principal results of classical test theory. Journal of Mathematical Psychology 3, 1–18.

    Article  MathSciNet  MATH  Google Scholar 

  52. Rasch, G. (1960). Probabilistic Models for Some Intelligence and Attainment Tests. Copenhagen, Denmark: Danish Institute for Educational Research.

    Google Scholar 

  53. Rasch, G. (1961). On general laws and the meaning of measurement in psychology. Proceedings of the IV Berkeley Symposium on Mathematical Statistics and Probability (Vol. 4, pp. 321–333 ). Berkeley, CA: University of California.

    Google Scholar 

  54. Richardson, M.W. (1936). The relationship between difficulty and the differential validity of a test. Psychometrika 1, 33–49.

    Article  MATH  Google Scholar 

  55. Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. Psychometric Monograph, No. 17.

    Google Scholar 

  56. Samejima, F. (1972). A general model for free-response data. Psychometric Monograph, No. 18.

    Google Scholar 

  57. Samejima, F. (1973). A comment on Birnbaum’s three-parameter logistic model in the latent trait theory. Psychometrika 38, 221–233.

    Article  MATH  Google Scholar 

  58. Spearman, C. (1904). The proof and measurement of association between two things. American Journal of Psychology 15, 72–101.

    Article  Google Scholar 

  59. Swaminathan, H. and Gifford, J.A. (1982). Bayesian estimation in the Rasch model. Journal of Educational Statistics 7, 175–192.

    Article  Google Scholar 

  60. Swaminathan, H. and Gifford, J.A. (1985). Bayesian estimation in the two-parameter logistic model. Psychometrika 50, 349–364.

    Article  MATH  Google Scholar 

  61. Swaminathan, H. and Gifford, J.A. (1986). Bayesian estimation in the three-parameter logistic model. Psychometrika 51, 589–601.

    Article  MathSciNet  MATH  Google Scholar 

  62. Takane, Y. and de Leeuw, J. (1987). On the relationship between item response theory and factor analysis of discretized variables. Psychometrika 52, 393–408.

    Article  MathSciNet  MATH  Google Scholar 

  63. Tanner, M.A. (1993). Tools for Statistical Inference: Methods for the Exploration of Posterior Distributions and Likelihood Functions. New York, NY: Springer-Verlag.

    MATH  Google Scholar 

  64. Thissen, D. (1982). Marginal maximum-likelihood estimation for the one-parameter logistic model. Psychometrika 47, 175–186.

    Article  MATH  Google Scholar 

  65. Thissen, D. and Steinberg, L. (1984). Taxonomy of item response models. Psychometrika 51, 567–578.

    Article  Google Scholar 

  66. Thurstone, L.L. (1925). A method of scaling psychological and educational tests. Journal of Educational Psychology 16, 433–451.

    Article  Google Scholar 

  67. Thurstone, L.L. (1927a). The unit of measurements in educational scales. Journal of Educational Psychology 18, 505–524.

    Article  Google Scholar 

  68. Thurstone, L.L. (1927b). A law of comparative judgement. Psychological Review 34, 273–286.

    Article  Google Scholar 

  69. Tsutakawa, R.K. (1984). Estimation of two-parameter logistic item response curves. Journal of Educational Statistics 9, 263–276.

    Article  Google Scholar 

  70. Tsutakawa, R.K. and Lin, H.Y. (1986). Bayesian estimation of item response curves. Psychometrika 51, 251–267.

    Article  MathSciNet  MATH  Google Scholar 

  71. Tucker, L.R. (1946). Maximum validity of a test with equivalent items. Psychometrika 11, 1–13.

    Article  MathSciNet  MATH  Google Scholar 

  72. Urry, V.W. (1974). Approximations to item parameters of mental test models. Journal of Educational Measurement 34, 253–269.

    Article  Google Scholar 

  73. van Engelenburg, G. (1995). Step Approach and Polytomous Items (internal report). Amsterdam, The Netherlands: Department of Methodology, Faculty of Psychology, University of Amsterdam.

    Google Scholar 

  74. van der Linden, W.J. (1986). The changing conception of testing in education and psychology. Applied Psychological Measurement 10, 325–352.

    Article  Google Scholar 

  75. van den Wollenberg, A.L. (1982). Two new test statistics for the Rasch model. Psychometrika 47, 123–139.

    Article  MATH  Google Scholar 

  76. Verhelst, N.D., Glas, C.A.W. and van der Sluis, A. (1984). Estimation problems in the Rasch model: The basic symmetric functions. Computational Statistics Quarterly 1, 245–262.

    MathSciNet  Google Scholar 

  77. Verhelst, N.D. and Molenaar, W. (1988). Logit-based parameter estimation in the Rasch model. Statistica Neerlandica 42, 273–295.

    Article  MathSciNet  MATH  Google Scholar 

  78. Yen, W.M. (1981). Using simulation results to choose a latent trait model. Applied Psychological Measurements 5, 245–262.

    Article  Google Scholar 

  79. Yen, W.M., Burket, G.R. and Sykes, R.C. (1991). Nonunique solutions to the likelihood equation for the three-parameter logistic model. Psychometrika 56, 39–54.

    Article  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

van der Linden, W.J., Hambleton, R.K. (1997). Item Response Theory: Brief History, Common Models, and Extensions. In: van der Linden, W.J., Hambleton, R.K. (eds) Handbook of Modern Item Response Theory. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2691-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2691-6_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2849-8

  • Online ISBN: 978-1-4757-2691-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics