Skip to main content

Impacts and the Early Evolution of Life

  • Chapter

Abstract

The K/T event shows that, even today, biospheric cratering is an important process. Impacts were much larger and more frequent on the early Earth. In all likelihood impacts posed the greatest challenge to the survival of early life.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, Y. (1988), Conditions required for sustaining a surface magma ocean, Proc. 21st ISAS Lun. Planet. Symp., 225–231 (1988).

    Google Scholar 

  • Abe, Y. and Matsui, T. (1988), Evolution of an impact-generated H2O–0O2 atmosphere and formation of a hot proto-ocean on Earth, J. Atm. Sci. 45, 3081–3101.

    Article  ADS  Google Scholar 

  • Alvarez, L.W., Alvarez, W., Asaro, F., and Michel, H.V. (1980), Extraterrestrial cause for the Cretaceous—Tertiary extinction, Science 208, 1095–1108.

    Article  ADS  Google Scholar 

  • Anders E. (1989), Prebiotic organic matter from comets and asteroids, Nature 342, 255–257.

    Article  ADS  Google Scholar 

  • Baldwin, R.B. (1981), On the origin of the planetesimals that produced the milti-ringedbasins. In Schultz, P. and Merrill, R.B. (eds.) Multi-ring Basins, Proc. Lun. Planet. Sci. 12A, Pergamon Press, New York, 19–28.

    Google Scholar 

  • Baldwin, R.B. (1987a), On the relative and absolute ages of seven lunar front face basins I, Icarus 71, 1–18.

    Article  MathSciNet  ADS  Google Scholar 

  • Baldwin, R.B. (1987b), On the relative and absolute ages of seven lunar front face basins II, Icarus 71, 19–29.

    Article  ADS  Google Scholar 

  • Belton, M.J.S., Head, J.W., Pieters, C.M., Greeley, R., McEwen, A.S., Neukem, G., Klaasen, K. P., Anger, C.D., Can, M.H., Chapman, C.R., Davies, M.E., Fanale, F.P., Gierasch, P.J. Greenberg, R., Ingersoll, A.P., Johnson, T., Paczkowski, B., Pilcher, C.B., and Veverka, J. (1992), Lunar impact basins and crustal heterogeneity: New western limb and far side data from Galileo, Science 255, 570–576.

    Article  ADS  Google Scholar 

  • Bratt, S.R., Solomon, S.C., and Head, J.W. (1985a), The evolution of impact basins: Cooling, subsidence, and thermal stress, J. Geophys. Res. 90, 12415–12433.

    Article  ADS  Google Scholar 

  • Bratt, S.R., Solomon, S.C., Head, J.W. and Thuber, C.H. (1985b), The deep structure of lunar basins: Implications for basin formation and modification, J. Geophys. Res. 90, 3049–3064.

    Article  ADS  Google Scholar 

  • Carlson, R.W. and Lugmair, G.W. (1979), Earth Planet Sci. Lett. 45, 123–132.

    Article  ADS  Google Scholar 

  • Carlson, R.W. and Lugmair, G.W. (1988), Earth Planet Sci. Lett. 90, 119–130.

    Article  ADS  Google Scholar 

  • Chapman, C.R., Williams, J.G., and Hartmann, W.K. (1978), The Asteroids, Ann Rev. Astron. Astrophys. 16, 33–75.

    Article  ADS  Google Scholar 

  • Chyba, C. (1991), Terrestrial mantle siderophiles and the lunar impact record, Icarus 92, 217–233.

    Article  ADS  Google Scholar 

  • Connan, J. (1984), Adv. Petroleum Geochem. 1, 299–335.

    Google Scholar 

  • Davis, P.A. and Spudis, P. (1987), J. Geophys. Res. 92, E387–E395.

    Article  ADS  Google Scholar 

  • Drake, M.J. (1986), Is lunar bulk material similar to Earth’s mantle? In W.K. Hartmann, R.J. Phillips, and G.J. Taylor (eds.), Origin of the Moon, ( Lunar and Planetary Institute, Houston ), pp. 105–143.

    Google Scholar 

  • Donnison, J.R. (1986), The distribution of cometary magnetudes, Astron. Astrophys. 167, 359–363.

    ADS  Google Scholar 

  • Donnison, J.R. and Sugden, R.A., The distribution of asteroidal diameters (1984), Mon. Not. Roy. Astron. Soc. 210, 673–682.

    ADS  Google Scholar 

  • Dohnanyi, J.S. (1972), Interplanetary objects in review: statistics of their masses and dynamics, Icarus 17, 1–48.

    Article  ADS  Google Scholar 

  • Duncan, M., Quinn, T., and S. Tremaine (1987), The formation and extent of the solar system comet cloud, Astron. J. 94, 1330–1338.

    Article  ADS  Google Scholar 

  • Duncan, M., Quinn, T., and S. Tremaine (1988), The origin of short period comets, Astrophys. J. 328, L69–L73.

    Article  ADS  Google Scholar 

  • Grieve, R.A.F. (1982), The record of impact on Earth: Implications for a major Cretaceous/Tertiary impact event. In Silver, L.T., and Schultz, P.H., eds., Geological Implications of Impacts of Large Asteroids and Comets on the Earth, Geological Society of America Special Paper 190, 25–37.

    Google Scholar 

  • Hahn, G. and Bailey, M.E. (1990), Rapid dynamical evolution of giant comet Chiron, Nature 348, 132–136.

    Article  ADS  Google Scholar 

  • Hartmann, W.K. (1981). In Proceedings of the Conference on the Lunar Highlands Crust, 155–173 ( Pergamon Press, New York ).

    MATH  Google Scholar 

  • Hartmann, W.K., Phillips R.J. and Taylor, G.J., eds. (1986), Origin of the Moon, Lunar and Planetary Institute, Houston.

    Google Scholar 

  • Hartmann, W.K., D.J. Tholen, K.J. Meech, and D.P. Criukshank (1990), 2060 Chiron: Colorimetry and possible cometary behavior, Icarus 83, 1–15.

    Article  ADS  Google Scholar 

  • Hildebrand, A.R., Penfield, G.T., King, D.A., Pilkington, M., Camargo Z.,A., Jacobsen, S.B. and Boynton, W.V. (1991), Chicxulub crater: a possible Cretaceous/Tertiary boundary impact crater on the Yucatan Peninsula, Mexico, Geology 19, 867–871.

    Google Scholar 

  • Hughes, D.W. (1982), Asteroidal size distribution, Mon. Not. Roy. Astron. Soc. 199, 1149–1157.

    ADS  Google Scholar 

  • Hughes D.W. (1988), Cometary distribution and the ratio between the numbers of long-and short-period comets, Icarus 73, 149–162.

    Article  ADS  Google Scholar 

  • Kasting, J.F. (1988), Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus, Icarus 74, 472–494.

    Article  ADS  Google Scholar 

  • Kasting, J.F. (1990), Bolide impacts and the oxidation state of carbon in the Earth’s early atmosphere, Orig. Life 20, 199–231.

    Article  Google Scholar 

  • Korotev, R.L. (1987), J. Geophys. Res. 92, E447–E461.

    Article  ADS  Google Scholar 

  • Koster van Groos, A.F. (1988), Weathering, the carbon cycle, and the differentiation of the continental crust and mantle, J. Geophys. Res. 93, 8952–58.

    Article  ADS  Google Scholar 

  • Lake, J.A. (1988), Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences, Nature 331, 184–186.

    Article  ADS  Google Scholar 

  • Lebofsky, L.A., Tholen, D.J., Rieke, G.H., and Lebofsky, M.J. (1984), 2060 Chiron: Visual and thermal infrared observations, Icarus 60, 532–537.

    Article  ADS  Google Scholar 

  • Lindstrom, M.M. and Lindstrom, D.J. (1986), J. Geophys. Res. 91, D263–D276.

    Article  ADS  Google Scholar 

  • Maher, K.A. and Stevenson, D.J. (1988), Impact Frustration of the origin of life, Nature 331, 612–614.

    Article  ADS  Google Scholar 

  • Marvin, U.B., Carey, J.W., and Lindstrom, M.M. (1989), Science 243, 925–931.

    Article  ADS  Google Scholar 

  • McKinnon, W.B., Chapman, C.R., and Housen, K.R. (1991), Cratering of the Uranian satellites. In J.T. Bergstrahl, E.D. Miner, and M.S. Matthews (eds.), Uranus ( University of Arizona Press, Tucson ), pp. 1177–1252.

    Google Scholar 

  • Melosh, H.J. (1989), Impact Cratering: A Geological Process, Oxford University Press, New York.

    Google Scholar 

  • Melosh, H.J. (1990), Giant impacts and the thermal state of the Earth. In Newsom, H.E. and Jones, J.H., eds., Origin of the Earth, Oxford University Press, pp. 69–84.

    Google Scholar 

  • Melosh, H.J., and Vickery, A.M. (1989), Impact erosion of the primitive atmosphere of Mars, Nature 338, 487–490.

    Article  ADS  Google Scholar 

  • Melosh, H.J., Schneider, N., Zahnle, K., and Latham, D. (1990), Ignition of global wildfires at the Cretaceous/Tertiary boundary, Nature 343, 251–254.

    Article  ADS  Google Scholar 

  • Mysen, B.O. and Kushiro, I. (1988), Condensation, evaporation, melting, and crystallization in the primitive solar nebula, Am. Min. 73, 1–19.

    ADS  Google Scholar 

  • Nakajima, S., Hayashi, Y.-Y., and Abe, Y. (1992), A study of the “runaway greenhouse effect” with a one-dimensional radiative-convective equilibrium model, J. Atm. Sci. 49, 2256–2266.

    Article  ADS  Google Scholar 

  • Newsom, H.E. and Jones, J.H. (1990), Origin of the Earth,Oxford University Press.

    Google Scholar 

  • Newsom, H.E. and Taylor, S.R. (1989), Geochemical implications of the formation of the Moon by a single giant impact Nature 338, 29–34.

    Article  ADS  Google Scholar 

  • Oberbeck, V. and Fogleman, G. (1989). Impacts and the origin of life, Nature 339, 434.

    Article  ADS  Google Scholar 

  • Oberbeck, V. and Fogleman, G (1990). Estimates of the maximum time required for the origin of life, Orig. of Life 340.

    Google Scholar 

  • Oikawa S. and Everhart, E., Past and future orbit of 1977 UB, object Chiron (1979), Astron. J. 84, 134–139.

    Article  ADS  Google Scholar 

  • Olsson-Steel, D. (1987) Collisions in the solar system. IV. Cometary impacts upon the planets Mon. Not. Roy. Astron. Soc. 227, 501–524.

    ADS  Google Scholar 

  • Pace, N., Olsen, G.J., and Woese, C.R. (1986), Ribosomal RNA phylogeny and the primary lines of evolutionary descent Cell 45, 325–326.

    Article  Google Scholar 

  • Pieters, C.M. (1986), Composition of the lunar highland crust from near-infrared spectroscopy. Rev. Geophys. 24, 557–578.

    Article  ADS  Google Scholar 

  • Ringwood, A.E. and Seifert, S. (1986) in Hartmann, W.K., Phillips R.J. and Taylor, G.J., eds., Origin of the Moon, Lunar and Planetary Institute, Houston, 331–358.

    Google Scholar 

  • Rivera, M.C. and Lake, J.A. (1992), Evidence that eukaryotes and eocyte prokaryotes are immediate relatives, Science 257, 74–76.

    Article  ADS  Google Scholar 

  • Safronov, V.S. (1972), Evolution of the Protoplanetary Cloud and Formation of the Earth and the Planets. NASA TT F-677.

    Google Scholar 

  • Safronov, V.S., G.V. Pechernikova, E.I. Ruskol, and A.V. Vitjazev (1986), Protosatellite swarms. In Burns, J. and Matthews, M.S., eds. Satellites, The University of Arizona Press, Tucson, pp. 89–116.

    Google Scholar 

  • Schmidt, R.M., and Holsapple, K.A. (1982), Estimates of crater size for large body impact. In Silver, L.T., and Schultz, P.H., eds., Geological Implications of Impacts of Large Asteroids and Comets on the Earth, Geological Society of America Special Paper 190, 93–102.

    Google Scholar 

  • Schmidt, R.M., and Housen, K.R. (1987), Some recent advances in the scaling of impact and explosion cratering, Int. J. Impact Mech. 5, 543–560.

    Article  ADS  Google Scholar 

  • Scholl, H. (1979), History and evolution of Chiron’s orbit, Icarus 40, 345–349.

    Article  ADS  Google Scholar 

  • Sharpton, V., and Ward, R, eds. (1990), Global Catastrophes in Earth History,Geological Society of America Special Paper 247.

    Google Scholar 

  • Shoemaker, E.M., R.F. Wolfe, and C.S. Shoemaker (1982), Cratering timescales for the Galilean satellites. In Morrison, D., ed., Satellites ofJupiter, The University of Arizona Press, Tucson, pp. 277–339.

    Google Scholar 

  • Shoemaker, E.M., Wolfe, R.F., and Shoemaker, C.S. (1990), Asteroid and comet flux in the neighborhood of Earth. In V.L. Sharpton and P.D. Ward, eds., Global Catastrophes in Earth History. Geol. Soc. of Am. Special Paper 247, pp. 155–180.

    Google Scholar 

  • Silver, L.T., and Schultz, P.H., eds. (1982), Geological Implications of Impacts of Large Asteroids and Comets on the Earth. Geological Society of America Special Paper 190.

    Google Scholar 

  • Sleep, N.S., Zahnle. K., Kasting, J.F., and Morowitz, H. (1989), Annihilation of ecosystems by large asteroid impacts on the early Earth, Nature 342, 139–142.

    Article  ADS  Google Scholar 

  • Spudis, P.D. (1993), The Geology of Multi-Ring Impact Basins, Cambridge University Press.

    Google Scholar 

  • Spudis, P.D., Hawke, B.R., and Lucey, P.G. (1988), Proc. Lunar Planet. Sci. Conf. 18, 155–168.

    ADS  Google Scholar 

  • Stevenson, D.J. (1987), Origin of the Moon-the Collision Hypothesis, Ann. Rev. Earth Planet. Sci. 15, 271–315.

    Article  ADS  Google Scholar 

  • Suits, G.W. (1979), Natural Sources, in Wolfe, W. and Zissis, G., The Infrared Handbook, Office of Naval Research, Washington, DC, 3–1–3–154.

    Google Scholar 

  • Swindle, T.D., Caffee, M.W., Hohenberg, C.M., and Taylor, S.R. (1986), I-Pu-Xe dating and the relative ages of the Earth and Moon. In W.K. Hartmann, R.J. Phillips, and G.J. Taylor (eds.), Origin of the Moon, ( Lunar and Planetary Institute, Houston ), pp. 331–358

    Google Scholar 

  • Swisher, C., Grajales-Nishimura, J., Montanans, A., Margolis, S., Claeys, R, Alvarez, W., Renne, P., Cedillo-Pardo, E., Maurrasse, F., Curtis, G., Smit, J., and McWilliams, M. (1992), Coeval 40Ar/39Ar ages of 65.0 million years ago from Chicxulub crater melt rock and Cretaceous-Tertiary boundary tektites, Science 257, 954–958.

    Article  ADS  Google Scholar 

  • Taylor, S.R. (1986), Planetary Science: A Lunar Perspective, Lunar and Planetary Institute, Houston.

    Google Scholar 

  • Tera, F., Papanastassiou, D.A., and Wasserburg, G.J. (1974), Isotopic evidence for a terminal lunar cataclysm, Earth Planet. Sci. Lett. 22, 1–21.

    Article  ADS  Google Scholar 

  • Tremaine, S. and Dones, L. (1993), On the statistical distribution of massive impactors, Icarus 106, 335–341.

    Article  ADS  Google Scholar 

  • Turcotte, D.L. (1992), Fractals and Chaos in Geology and Geophysics,Oxford University Press.

    Google Scholar 

  • Turcotte, D.L., and Schubert G. (1982), Geodynamics,Wiley.

    Google Scholar 

  • Warren, P.H., Jerde, E.A., and Kallemeyn, G.W. (1989), Earth Planet. Sci. Lett. 91, 245–260.

    Article  ADS  Google Scholar 

  • Wetherill, G.W. (1975), Late heavy bombardment of the moon and terrestrial planets, Proc. Lunar Sci. Conf. 6, 1539–1561.

    ADS  Google Scholar 

  • Wetherill, G.W. (1981), Nature and origin of basin-forming projectiles. In Schultz, P. and Merrill, R.B., Multi-ring Basins, Proc. Lun. Planet. Sci. 12A, Pergamon Press, New York, 1–18.

    Google Scholar 

  • Wilhelms, D.E. (1987), The Geologic History of the Moon, U.S.G.S. Professional Paper 1348.

    Google Scholar 

  • Vickery, A.M., and Melosh, H.J. (1990), Atmospheric erosion and impactor retention in large impacts, with application to mass extinctions. In Sharpton, V.L., and Ward, P.D., eds., Global Catastrophes in Earth History, Geological Society of America Special Paper 247, 289–300.

    Google Scholar 

  • Zahnle, K. (1990), Atmospheric chemistry by large impacts. In Sharpton, V.L., and Ward, P.D., eds., Global Catastrophes in Earth History, Geological Society of America Special Paper 247, 271–288.

    Google Scholar 

  • Zel’dovich, I.B., and Raizer, Y.P. (1967), Physics of Shock Waves and High Temperature Hydrodynamic Phenomena,Academic.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zahnle, K.J., Sleep, N.H. (1997). Impacts and the Early Evolution of Life. In: Thomas, P.J., Chyba, C.F., McKay, C.P. (eds) Comets and the Origin and Evolution of Life. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2688-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2688-6_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-2690-9

  • Online ISBN: 978-1-4757-2688-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics