Advertisement

Numerical Models of Comet and Asteroid Impacts

  • P. J. Thomas
  • L. Brookshaw

Abstract

Numerical simulation techniques can be applied to the collision of large organic-rich objects (comets and carbonaceous chondrite asteroids) with the early Earth. Results from these simulations imply that it is possible for a fraction of the extraterrestrial organic material to survive the high temperatures occurring during the impact (and thus contribute prebiotic material to the early Earth). Recent models for atmospheric passage, however, predict that the fate of such candidate impactors is an airburst capable of pyrolyzing the entire organic inventory of the comet or asteroid.

Keywords

Carbonaceous Chondrite Atmospheric Drag Organic Survivability Chondrite Meteorite Comet Impactor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldwin, B. and Y. Shaeffer (1971), Ablation and breakup of large meteoroids during atmospheric entry, J. Geophys. Res., 76, 4653.ADSCrossRefGoogle Scholar
  2. Biberman, L.M., S. Ya. Bronin, and M.V. Byrkin (1980), Acta Astronaut., 7, 53–65.ADSCrossRefGoogle Scholar
  3. Ceplecha, Z. (1977), Meteoroid populations and orbits. In Comets, Asteroids and Meteorites ( A.H. Delsemme, ed.). University of Toledo, Toledo, OH.Google Scholar
  4. Chamerberlin, T.C. and R.T. Chamberlin (1908), Early terrestrial conditions that may have favored organic synthesis, Science, 28, 897–911.ADSCrossRefGoogle Scholar
  5. Chyba, C.F., P.J. Thomas, L. Brookshaw, and C. Sagan (1990), Cometary delivery of organic molecules to the early Earth, Science, 249, 366–373.ADSCrossRefGoogle Scholar
  6. Chyba, C.F., P.J. Thomas, and K.J. Zahnle (1993), The 1980 Tunguska explosion: Atmospheric disruption of a stony asteroid, Nature, 361, 40–44.ADSCrossRefGoogle Scholar
  7. Clark, B.C. (1988), Primeval procreative comet pond, Origins Life, 18, 209.ADSCrossRefGoogle Scholar
  8. Eliezer, S., A. Ghatak, and H. Hora (1986), An Introduction to Equations of State: Theory and Applications. Cambridge University Press, Cambridge.Google Scholar
  9. Folinsbee, R.E., J.A.V. Douglas, and J.A. Maxwell (1967), Revelstoke, a new Type I carbonaceous chondrite, Geochim. Cosmochim. Acta, 31, 1625–1635.ADSCrossRefGoogle Scholar
  10. Kasting, J.F. (1990), Bolide impacts and the oxidation state of carbon in the Earth’s early atmosphere, Origins Life, 20, 199–231.CrossRefGoogle Scholar
  11. Krinov, E.L. (1966), Giant Meteorites. Pergamon, Oxford.Google Scholar
  12. Levin, B.Y. and V.A. Bronshten (1986), The Tunguska event and the meteors with terminal flares, Meteoritics, 21, 199–215.ADSCrossRefGoogle Scholar
  13. Melosh, H.J. (1989), Impact Cratering: A Geologic Process. Oxford University Press, New York.Google Scholar
  14. Monaghan, J.J. (1985), Particle methods for hydrodynamics, Comput. Phys. Rep., 3, 7 1124.Google Scholar
  15. Monaghan, J.J. (1992), Ann. Rev. Astrophys., 30, 543–574.ADSCrossRefGoogle Scholar
  16. O’Keefe, J.D. and T.J. Ahrens (1982), Cometary and meteorite swarm impact on planetary surfaces, J. Geophys. Res., 87, 6668–6680.ADSCrossRefGoogle Scholar
  17. Oro, J. (1961), Comets and the formation of biochemical compounds on the primitive Earth, Nature, 190, 389–390.ADSCrossRefGoogle Scholar
  18. Passey, Q.R. and H.J. Melosh (1980), Effects of atmospheric breakup on crater field formation, Icarus, 42, 211–233.ADSCrossRefGoogle Scholar
  19. SESAME ‘83 (1983), Report on the Los Alamos Equation-of-State Library, LALP-83–4. Los Alamos National Laboratory, Los Alamos, NM.Google Scholar
  20. Thompson, S.L., and H.S. Lauson (1972), Improvements in the Chart-D radiation-hydrodynamic code III: Revised analytic equations of state. Sandia National Laboratory Report RR-71 0714.Google Scholar
  21. Tillotson, J.H. (1962), Metallic equation of state for hypervelocity impact. General Atomic Report GA-3216.Google Scholar
  22. Tyburczy, J.A., T.S. Duffy, T.J. Ahrens, and M.A. Lange (1991), Shock wave equation of state of serpentine to 150 GPA: Implications for the occurrence of water in the earth’s lower mantle, J. Geophys. Res., 96, 18011.ADSCrossRefGoogle Scholar
  23. Walker, J.C.G. (1986), Carbon dioxide on the early Earth, Origins Life, 16, 117–127.ADSGoogle Scholar
  24. Wilkening, L.L. (1978), Carbonaceous chondritic material in the Solar System, D. Naturwiss., 65, 73.Google Scholar
  25. Zahnle, K. and M.-M. Mac Low (1994), The collision of Jupiter and comet Shoemaker-Levy 9, Icarus, 108, 1–17.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • P. J. Thomas
  • L. Brookshaw

There are no affiliations available

Personalised recommendations