Advertisement

Polymers and Other Macromolecules in Comets

  • W. F. Huebner
  • D. C. Boice

Abstract

Prebiotic molecules derive from abiotic organic molecules, radicals, and ions. Organic molecules pervade the universe from the low temperatures in interstellar clouds to temperatures as high as a few 1000 K in circumstellar envelopes. Here we review the role of organic molecules that condensed at low temperatures before or during comet formation in the early history of the solar system. New laboratory data and spacecraft encounters and ground-based observations of carbon-rich volatile and dust components of comet comae provide a broad database for the investigation of these organic molecules. Probable icy organic constituents of the nucleus and of complex organic particles, which are the most likely candidates for the distributed sources of gas-phase organic species in the coma, will be discussed. There is broad agreement that many organic molecules observed in the coma originate from the dust that must have existed in the solar nebula at the time and place of comet formation. We show that complex organic molecules found in comets may be a source of the prebiotic molecules that led to the origins of life and may include some biologically important compounds that did not form by abiotic synthesis on Earth.

Keywords

Giant Planet Solar Nebula Comet Nucleus Interstellar Cloud Oort Cloud 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allamandola, L.J., Sandford, S.A., and Wopenka, B., 1987, Interstellar polycyclic aromatic hydorcarbons and carbon in interplanetary dust particles and meteorites. Science, 237, 56–59.ADSCrossRefGoogle Scholar
  2. Allamandola, L.J., Sandford, S.A., and Valero, G.J., 1988, Photochemical and thermal evolution of interstellar/precometary ice analogs. Icarus 76, 225–252.ADSCrossRefGoogle Scholar
  3. Alvarez, L.W., Alvarez, W., Asaro, F., and Michel, H.V., 1980, Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science, 208, 1095–1108.ADSCrossRefGoogle Scholar
  4. Boice, D.C., Huebner, W.F., Sablik, M.J., and Konno, I., 1990, Distributed coma sources and the CH4/CO ratio in Comet Halley. Geophys. Res. Lett., 17, 1813–1816.ADSCrossRefGoogle Scholar
  5. Bonner, W.A., 1991, The origin and amplification of biomolecular chirality. Origins Life Evol. Biosphere, 21, 59–111.ADSCrossRefGoogle Scholar
  6. Bonner, W.A., 1992, Terrestrial and extraterrestrial sources of molecular homochirality. Origins Life Evol. Biosphere, 21, 407–420.ADSGoogle Scholar
  7. Brown, W.L., Lanzerotti, L.J., Poate, J.M., and Augustyniak, W.M., 1978, “Sputtering” of ice by MeV light ions. Phys. Rev. Lett. 40, 1027–1030.Google Scholar
  8. Brown, W.L., Augustyniak, W.M., Brody, E., Cooper, B., Lanzerotti, L.J., Ramirez, A., Evatt, R.E., and Johnson, R.E., 1980, Energy dependence of the erosion of H2O ice films by H and He ions. Nucl. Instr. Methods, 170, 321–325.CrossRefGoogle Scholar
  9. Brown, W.L., Augustyniak, W.M., Simmons, E., Marcantonio, K.J., Lanzerotti, L.J., Johnson, R.E., Boring, J.W., Reimann, C.T., Foti, G., and Pirronello, V., 1982, Erosion and molecular formation in condensed gas films by electron loss of fast ions. Nucl. Instr. Methods, 198, 1–8.ADSCrossRefGoogle Scholar
  10. Budzien, S.A., and Feldman, P.D., 1992, Upper limits to the S2 abundance in several comets observed with the International Ultraviolet Explorer. Icarus, 99, 143–152.Google Scholar
  11. Chyba, C.F., 1990a, Impact delivery and erosion of planetary oceans in the early inner Solar System. Nature, 343, 129–133.ADSCrossRefGoogle Scholar
  12. Chyba, C.F, 1990b, Extraterrestrial amino acids and terrestrial life. Nature, 348, 113–114.ADSCrossRefGoogle Scholar
  13. Chyba, C.F., Thomas, P.J., Brookshaw, L., and Sagan, C., 1990, Cometary delivery of organic molecules to the early Earth. Science, 249, 366–373.ADSCrossRefGoogle Scholar
  14. Clark, B.C., Mason, L.W., and Kissel, J., 1987, Systematics of the CHON and other light 4. Polymers and Other Macromolecules in Comets element particle populations in Comet P/Halley. Astron. Astrophys., 187, 779–784.ADSGoogle Scholar
  15. Cochran, A.L., 1987, Another look at abundance correlations among comets. Astron. J., 93, 231–238.ADSCrossRefGoogle Scholar
  16. Colangeli, L., Schwehm, G., Bussoletti, E., Fonti, S., Blanco, A., and Orofino, V., 1990, Hydrogenated amorphous carbon grains in Comet Halley? Astrophys. J., 348, 718–724ADSCrossRefGoogle Scholar
  17. Cruikshank, D.P., Allamandola, L.J., Hartmann, W.K., Tholen, D.J., Brown, R.H., Matthews, C.N., and Bell, J.F., 1991, Solid C-N bearing material on outer Solar System bodies. Icarus 94, 345–353.Google Scholar
  18. Delsemme, A.H., 1991, Nature and history of the organic compounds in comets: An astrophysical view. In Comets in the Post-Halley Era. R.L. Newburn, Jr., M. Neugebauer and J. Rahe, eds., Vol. 1, pp. 377–428.Google Scholar
  19. d’Hendecourt, L.B., and Jourdain de Muizon, M., 1989, The discovery of interstellar carbon dioxide. Astron. Astrophys., 223, L5 - L8.ADSGoogle Scholar
  20. Eberhardt, P. Krankowsky, D., Schulte, W., Dolder, U., Lämmerzahl, R, Berthelier, J.J., Woweries, J., Stubbeman, U., Hodges, R.R., Hoffman, J.H., and Illiano, J.M., 1987, The CO and N2 abundance in Comet P/Halley. Astron. Astrophys. 187 481–484.Google Scholar
  21. Engel, M.H., Macko, S.A., and Silfer, J.A., 1990, Carbon isotope composition of individual amino acids in the Murchison meteorite. Nature, 348, 47–49.ADSCrossRefGoogle Scholar
  22. Fink, U., 1991, Comet Yanaka (1988r): A new class of carbon poor comet. Science, 257, 19–26.Google Scholar
  23. Geiss, J., 1988, Composition in Halley’s Comet: Clues to origin and history of cometary matter. Rev. Mod. Astron., 1, 1–27.ADSCrossRefGoogle Scholar
  24. Goldanskii, V.I., Frank-Kamenetskii, M.D., and Barklov, I.M., 1973, Quantum low-temperature limit of a chemical reaction rate. Science 182, 1344–1345.ADSCrossRefGoogle Scholar
  25. Greenberg, J.M., 1982, What are Comets made of? A Model Based on Interstellar Dust. In Comets. L.L. Wilkening, ed., University of Arizona Press, pp. 131–163.Google Scholar
  26. Greenberg, J.M., 1989, Comet nuclei as aggregated interstellar dust. Comet Halley results. In Evolution of Interstellar Dust and Related Topics. A. Bonetti, J.M. Greenberg, S. Aiello, eds., North-Holland, Amsterdam, pp. 383–395.Google Scholar
  27. Greenberg, J.M., Singh, P.D., de Almeida, A.A., 1993, What is new about the new Comet Yanaka (1998r)? Astrophys. J. Lett. 414, L45 - L48.ADSCrossRefGoogle Scholar
  28. Grün, E., and Jessberger, E., 1990, Dust. In Physics and Chemistry of Comets. W.F. Huebner, ed. Springer-Verlag, New York, pp. 113–176.CrossRefGoogle Scholar
  29. Huebner, W.F., 1987, First polymer in space identified in Comet Halley. Science, 237, 628–630.ADSCrossRefGoogle Scholar
  30. Huebner, W.F., and Boice, D.C., 1992, Comets as a source of prebiotic molecules. Origins Life Evol. Biosphere, 21, 299–315.ADSGoogle Scholar
  31. Huntress Jr., W.T., Allen, M., and Delitzky, M.L., 1991, Carbon suboxide in Comet Halley? Nature, 352, 316–318.ADSCrossRefGoogle Scholar
  32. Irvine, W.M., Ohishi, M., and Kaifu, N., 1991, Chemical abundances in cold, dark interstellar clouds. Icarus, 91, 2–6.ADSCrossRefGoogle Scholar
  33. Johnson, R.E., Lanzerotti, L.J., and Brown, W.L., 1982, Planetary applications of ion induced erosion of condensed gas frosts. Nucl. Instr. Methods, 198, 147–158.ADSCrossRefGoogle Scholar
  34. Johnson, R.E., Brown, W.L., and Lanzerotti, L.J., 1983a, Energetic charged particle erosion of ices in the Solar System. J. Phys. Chem., 87, 4218–4220.ADSCrossRefGoogle Scholar
  35. Johnson, R.E., Boring, J.W., Reimann, C.T., Barton, L.A., Sieveka, E.M., Garrett, J.W., Farmer, K.R., Brown, W.L., and Lanzerotti, L.J., 1983b, Plasma ion-induced molecular ejection on the Galilean satellites: Energies of ejected molecules. Geophys. Res. Lett., 10, 892–895.ADSCrossRefGoogle Scholar
  36. Johnson, R.E., Cooper, J.F., and Lanzerotti, L.J., 1987, Radiation Formation of a Non-Volatile Crust. In 20th ESLAB Symposium on the Exploration of Halley’s Comet, B. Battrick, E.J. Rolfe, and R. Reinhard, eds., ESA Publication SP-250, Vol. II, pp. 269–272.Google Scholar
  37. Keller, H.U., 1990, The Nucleus. In Physics and Chemistry of Comets. W.F. Huebner, ed., Springer-Verlag, New York, pp. 13–68.CrossRefGoogle Scholar
  38. Khare, B.N., Sagan, C., Arakawa, E.T., Suits, F., Calicot, T.A., and Williams, M.W., 1984, Optical constants of organic tholins produced in a simulated Titanian atmosphere: From soft x-ray to microwave frequencies. Icarus, 60, 127–137.ADSCrossRefGoogle Scholar
  39. Khare, B.N., Thompson, W.R., Murray, B.G.J.P.T., Chyba, C.F., Sagan, C., and Arakawa, E.T., 1989, Solid organic residues produced by irradiation of hydrocarbon-containing H2O and H2O/NH3 ices: Infrared spectroscopy and astronomical implications. Icarus, 79, 350–361.ADSCrossRefGoogle Scholar
  40. Kissel, J., Sagdeev, R.Z., Bertraux, J.L., Angarov, V.N., Audouze, J., Blamont, J.E., Büchler, K., Evlanov, E.N., Fechtig, H., Fomenkova, M.N., von Horner, H., Inogamov, N.A., Khromov, V.N., Knabe, W., Krueger, F.R., Langevin, Y., Leonas, V.B., LevasseurRegourd, A.C., Managadze, G.G., Podkolzin, S.N., Shapiro, V.D., Tabaldyev, S.R., and Zubkov, B.V., 1986a, Composition of Comet Halley dust particles from Vega observations. Nature, 321, 280–282.Google Scholar
  41. Kissel, J. Brownlee, D.E., Büchler, K., Clark, B.C., Fechtig, H., Grün, E., Hornung, K., Igenbergs, E.B., Jessberger, E.K., Krueger, F.R., Kuczera, H., McDonnell, J.A.M., Morfill, G.M., Rahe, J., Schwehm, G.H., Sekanina, Z., Utterback, N.G., Völk, H.J., and Zook, H.A., 1986b, Composition of Comet Halley dust particles from Giotto observations. Nature, 321 336–337.Google Scholar
  42. Kissel, J., Krueger, F.R., 1987, The organic component in dust from Comet Halley as measured by the PUMA mass spectrometer on board Vega 1. Nature, 326, 755–760.ADSCrossRefGoogle Scholar
  43. Korth, A., Marconi, M.L., Mendis, D.A., Krueger, F.R., Richter, A.K., Lin, R.P., Mitchell, D.L., Anderson, K.A., Carlson, C.W., Rème, H., Sauvard, J.A., d’Uston, C., 1989, Probable detection of organic-dust-borne aromatic C3H3+ ions in the coma of Comet Halley. Nature, 337, 53–55.ADSCrossRefGoogle Scholar
  44. Korth, A., Krueger, F.R., Mendis, D.A., and Mitchell, D.L., 1990, Organic ions in the coma of Comet Halley. In Asteroids, Comets, Meteors III. C.-I. Lagerkvist, H. Rickman, B.A. Lindblad and M. Lindgren, eds., pp. 373–377.Google Scholar
  45. Lanzerotti, L.J., Brown, W.L., Augustyniak, W.M., Johnson, R.E., and Armstrong, T.P., 1982, Laboratory studies of charged particle erosion of SO2 ice and applications to the frosts of Io. Astrophys. J., 259, 920–929.ADSCrossRefGoogle Scholar
  46. Lanzerotti, L.J., Brown, W.L. and Johnson, R.E., 1985, Laboratory studies of ion irradiations of water, sulfur dioxide and methane ices. In Ices in the Solar System. J. Klinger, D. Benest, A. Dollfus and R. Smoluchowski, eds., Reidel, Dordrecht, pp. 317–335.CrossRefGoogle Scholar
  47. Lanzerotti, L.J., Brown, W.L. and Johnson, R.E., 1986, Astrophysical implications of ice sputtering. Nucl. Instr. Methods Phys. Res., B14, 373–377.ADSCrossRefGoogle Scholar
  48. Lawler, M.E. and Brownlee, D.E., 1992, CHON as a component of dust from Comet Halley. Nature, 359, 810–812.ADSCrossRefGoogle Scholar
  49. Mansueto, E.S., Ju, C.Y., and Wight, C.A., 1989, Laser-initiated polymerization of solid formalehyde. J. Phys. Chem., 93, 2143–2147.CrossRefGoogle Scholar
  50. Marconi, M.L., Korth, A., Mendis, D.A., Lin, R.P., Mitchell, D.L, Rème, H., and d’Uston, C., 1989, On the possible detection of dust-borne C3H+ ions in the coma of Comet Halley. Astrophys. J. Lett., 343, L77 - L79.ADSCrossRefGoogle Scholar
  51. Marconi, M.L., Mendis, D.A., Korth, A., Lin, R.P., Mitchell, D.L., and Rème, H., 1990, 1284. Polymers and Other Macromolecules in Comets The identification of H2S` with the ion of mass per charge (ml g) 35 observed in the coma of Comet Halley. Astrophys. J. Lett., 352, L17 — L20.CrossRefGoogle Scholar
  52. Matthews, C.N. and Ludicky, R., 1986, The dark nucleus of Comet Halley: Hydrogen cyanide polymers. In 20th ESLAB Symposium of Halley’s Comet. B. Battrick, E.J. Rolfe, and R. Reinhard, eds., ESA report SP-250, Vol. 2, pp. 273–277.Google Scholar
  53. McDonnell, J.A.M., Lamy, P.L., and Pankiewicz, G.S., 1991, Physical properties of cometary dust. In Comets in the Post-Halley Era. R.L. Newburn, Jr., M. Neugebauer, and J. Rahe, eds., Kluwer Academic, Dordrecht, pp. 1043–1073.Google Scholar
  54. Meier, R. Eberhardt, P., Krankowsky, D., and Hodges, R.R., 1993, The extended formaldehyde source in Comet P/Halley. Astron. Astrophys. 277, 677–690.Google Scholar
  55. Meyer, D.M. and Roth, K.C., 1991, Discovery of interstellar NH. Astrophys. J., 376, L49 - L52.ADSCrossRefGoogle Scholar
  56. Mumma, M.J. and Reuter, D.C., 1989, On the identification of formaldehyde in Halley’s comet. Astrophys. J., 344, 940–948.ADSCrossRefGoogle Scholar
  57. Orb, J., 1961, Comets and the formation of biochemical compounds on the primitive Earth. Nature, 190, 389–390.ADSCrossRefGoogle Scholar
  58. Orb, J. Kimball, A., Fritz, R., and Master, F., 1959, Amino acid synthesis from formaldehyde and hydroxylamine. Arch. Biochem. Biophys.,85 115–130.Google Scholar
  59. Pirronello, V., 1985, Molecule formation in cometary environments. In Ices in the Solar System. J. Klinger, D. Benest, A. Dollfus, and R. Smoluchowski, eds. Reidel, Dordrecht, pp. 261–272.CrossRefGoogle Scholar
  60. Pirronello, V., Brown, W.L, Lanzerotti, L.J., Marcantonio, K.J., and Simmons, E.H., 1982, Formaldehyde formation in a H2O/CO2 ice mixture under irradiation by fast ions. Astrophys. J., 262, 636–640.ADSCrossRefGoogle Scholar
  61. Prasad, S.S. and Huntress, Jr., W.T., 1980, A model for gas phase chemistry in interstellar clouds: I. The basic model, library of chemical reactions, and chemistry among C, N, and O compounds. Astrophys. J. Suppl. Ser., 43, 1–35.ADSCrossRefGoogle Scholar
  62. Rickman, H. and Huebner, W.F., 1990, Comet Formation and Evolution. In Physics and Chemistry of Comets. W.F. Huebner, ed., Springer-Verlag, Berlin, pp. 245–303.CrossRefGoogle Scholar
  63. Sandford, S.A. and Allamandola, L.J., 1990, The volume-and surface-binding energies of ice systems containing CO, CO2, and H2O. Icarus, 87, 188–192.ADSCrossRefGoogle Scholar
  64. Sanzovo, G.C., Singh, P.D., and Huebner, W.F., 1993. Dust colors, dust release rates and dust-to-gas ratios in Comet Bowel! (1992 I), Bradfield (1979 X), Brorsen-Metcalf (1989 X), Giacobini-Zinner (1985 XIII), Levy (1990 XX) and Stephan-Oterma (1980 X), Astron. J. Submitted.Google Scholar
  65. Schmidt, H.U., Wegmann, R., Huebner, W.F., and Boice, D.C., 1988. Cometary gas and plasma flow with detailed chemistry. Comp. Phys. Comm., 49, 17–59.ADSCrossRefGoogle Scholar
  66. Schutte, W., Allamandola, L.J., and Sandford, S.A., 1992. Formation of organic molecules by formaldehyde reactions in astrophysical ices at very low temperatures. In IAU Symposium No. 150, Astrochemistry of Cosmic Phenomena. P.D. Singh, ed., Kluwer Academic, Dordrecht, pp. 29–30.Google Scholar
  67. Schutte, W., Allamandola, L.J., and Sandford, S.A., 1993a. Formaldehyde and organic molecule production in astrophysical ices at cryogenic temperatures. Science, 259, 1143–1145.ADSCrossRefGoogle Scholar
  68. Schutte, W., Allamandola, L.J., and Sandford, S.A., 1993b. An experimental study of the organic molecules produced in cometary and interstellar ice analogs by thermal formaldehyde reactions. Icarus, 104, 118–137.ADSCrossRefGoogle Scholar
  69. Singh, P.D., de Almeida, A.A., and Huebner, W.F., 1992. Dust release rates and dust-to-gas mass ratios of eight comets. Astron. J. 104, 848–858.ADSCrossRefGoogle Scholar
  70. Spohn, T. and Benkhoff, J., 1990. Thermal history models for KOSI sublimation experiments. Icarus, 87, 358–371.ADSCrossRefGoogle Scholar
  71. Strazulla, G., Calcagno, G., and Foti, G., 1984. Build-up of carbonaceous materials by fast protons on Pluto and Triton. Astron. Astrophys., 148, 441–444.ADSGoogle Scholar
  72. Van Dishoeck, E.F., Jansen, D.J., Schilke, P., and Phillips, T.G., 1993. Detection of the interstellar NH2 radical. Astrophys. J. Lett., 416, L83 - L86.ADSCrossRefGoogle Scholar
  73. Wegmann, R., Schmidt, H.U., Huebner, W.F., and Boice, D.C., 1987. Cometary MHD and Chemistry. Astron. Astrophys., 187, 339–350.ADSGoogle Scholar
  74. Weissman, P.R., and Campins, H., 1993. Short-period comets. In Resources of Near Earth Space. J. Lewis, M.S. Matthews, and M. Guerrieri, eds. University of Arizona Press, Tucson, AZ, pp. 569–617.Google Scholar
  75. Wyckoff, S., 1990. Ammonia and nitrogen abundances in comets. In Workshop on Observations of Recent Comets ( 1990 ). W.F. Huebner, P.A. Wehinger, J. Rahe, and I. Konno, eds. pp. 28–33.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • W. F. Huebner
  • D. C. Boice

There are no affiliations available

Personalised recommendations