Comets and the Origin and Evolution of Life

  • J. Oró
  • A. Lazcano


The historical development of the study of comets and the origins of life is reviewed.


Solar System Terrestrial Planet Cometary Nucleus Carbonaceous Chondrite Early Solar System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alden, W.C. (1929), Thomas Chrowder Chamberlin’s contributions to glacial geology. Jour. Geol., 37, 293–319.ADSCrossRefGoogle Scholar
  2. Allen, C.S. (1973), Astrophysical Quantities ( The Athlone Press, London).Google Scholar
  3. Alvarez, W. and Muller, R.A. (1984), Evidence from crater ages for periodic impacts on the Earth. Nature, 308, 718–720.ADSCrossRefGoogle Scholar
  4. Alvarez, L.W., Alvarez, W., Asaro, F., and Michel, H.V. (1980), Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science, 208, 1095–1108.ADSCrossRefGoogle Scholar
  5. Anders, E. (1989), Pre-biotic organic matter from comets and asteroids. Nature, 342, 255–257.ADSCrossRefGoogle Scholar
  6. Anders, E. and Owen, T. (1977), Mars and Earth: Origin and abundance of volatiles. Science, 198, 453–465.ADSCrossRefGoogle Scholar
  7. Aumann, H.H., Gillett, F.C. Beichmann, C.A., de Jong, T., Houck, J., R. Low, F., Neugebauer, G., Walker, R.G. and Wesselius, P. (1984), Discovery of a shell around Alpha Lyrae. Astrophys. Jour. Lett., 278, L23 - L27.ADSCrossRefGoogle Scholar
  8. Bailey, M.E., Clube, S.V.M., and Napier, W.M. (1990), The Origin of Comets ( Pergamon Press, Oxford ) p. 452.Google Scholar
  9. Barak, I. and Bar-Nun, A. (1975), The mechanism of amino acid synthesis by high temperature shock waves. Origins Life 6, 483–506.ADSCrossRefGoogle Scholar
  10. Bar-Nun, A., Bar-Nun, N., Bauer, S.H., and Sagan C. (1970), Shock synthesis of amino acids in simulated primitive environments. Science, 168, 470–473.ADSCrossRefGoogle Scholar
  11. Bar-Nun, A., Lazcano-Araujo, A., and Orb, J. (1981), Could life have originated in cometary nuclei? Origins Life, 11, 387–394.ADSCrossRefGoogle Scholar
  12. Barrett, A.A. (1978), J. Roy. Soc. Can., 72, 81.ADSGoogle Scholar
  13. Benz, W., Slattery, W.L., and Cameron, A.G.W. (1986), The origin of the Moon and the single impact hypothesis. I. Icarus, 66, 515–535.ADSCrossRefGoogle Scholar
  14. Benz, W., Slattery, W.L., and Cameron, A.G.W. (1987), The origin of the Moon and the single impact hypothesis. II. Icarus, 71, 30–45.ADSCrossRefGoogle Scholar
  15. Bernath, P.F., Hinkle, K.H., and Keady, J.J. (1989), Detection of C5 in the circumstellar shell of ICR+10216. Science, 244, 562–564.ADSCrossRefGoogle Scholar
  16. Berzelius, J.J. (1834), Über Meteorsteine, 4. Meteorstein von Alais. Ann. Phys. Chem., 33, 113–123.ADSGoogle Scholar
  17. Beust, H., Lagrange-Henri, A.M., Vidal-Majdar, A., and Ferlet, R. (1990), The)3 Pictoris circumstellar disk X. Numerical simulations of infalling evaporating bodies. Astron. Astrophys., 236, 202–216.ADSGoogle Scholar
  18. Briggs, R., Ertem, G., Ferris, J.P., Greenberg, J.M., McCain, P.J., Mendoza-Gómez, X.C., and Schutte, W. (1992), Comet Halley as an aggregate of interstellar dust and further evidence for the photochemical formation of organics in the interstellar medium. Origins Life, 22, 287–307.CrossRefGoogle Scholar
  19. Brown, H. (1952), Rare gases and the formation of the Earth’s atmosphere. In G.H. Kuiper (ed.), The Atmospheres of the Earth and Planets ( Chicago University Press, Chicago ), pp. 258–266.Google Scholar
  20. Brown, J.C. and Hughes, D.W. (1977), Tunguska’s comet and non-thermal 14C production in the atmosphere. Nature, 268, 512–514.ADSCrossRefGoogle Scholar
  21. Butlerow, A. (1861), Formation sintetique d’une substance sucreé. Compt. Rend. Acad. Sci., 53, 145–147.Google Scholar
  22. Cameron, A.G.W. (1980), A new table of abundances of the elements in the solar system. In L.A. Ahrens (ed.), Origin and Distribution of the Elements ( Pergamon Press, New York ), pp. 125–143.Google Scholar
  23. Cameron, A.G.W. (1988), Origin of the solar system. Annu. Rev. Astron. Astrophys., 26, 441–472.ADSCrossRefGoogle Scholar
  24. Cameron, A.G.W. and Benz, W. (1989), Possible scenarios resulting from the giant impact. Proc. Lunar Planet. Sci. Conf. XX, 715.Google Scholar
  25. Chamberlin, T.C. (1893), The diversity of the glacial period. Am. Jour. Sci., 45, 171–200.Google Scholar
  26. Chamberlin, T.C. (1894), Proposed genetic classification of Pleistocene glacial formations. Jour. Geol., 2, 517–538.ADSCrossRefGoogle Scholar
  27. Chamberlin, T.C. (1896), Nomenclature of glacial formations. Jour. Geol., 4, 872–876.CrossRefGoogle Scholar
  28. Chamberlin, T.C. (1904), Fundamental problems of geology. Carnegie Institution of Washington Yearbook No. 2: 261–270.Google Scholar
  29. Chamberlin, T.C. (1911), The seeding of planets. Jour. Geol. 19, 175–178.CrossRefGoogle Scholar
  30. Chamberlin, T.C. and Chamberlin, R.T. (1908), Early terrestrial conditions that may have favored organic synthesis. Science, 28, 897–910.ADSCrossRefGoogle Scholar
  31. Chang, S. (1979), Comets: Cosmic connections with carbonaceous meteorites, interstellar molecules and the origin of life. In M. Neugebauer, D.K. Yeomans, J.C. Brandt and R.W. Hobbs (eds.), Space Missions to Comets ( NASA CP 2089, Washington, DC ), pp. 59–111.Google Scholar
  32. Chyba, C.F. (1987), The cometary contribution to the oceans of the primitive Earth. Nature, 330, 632–635.ADSCrossRefGoogle Scholar
  33. Chyba, C.F. (1990), Impact delivery and erosion of planetary oceans in the early inner solar system. Nature, 343, 129–133.ADSCrossRefGoogle Scholar
  34. Chyba, C.F. (1991), Terrestrial mantle siderophiles and the lunar impact record. Icarus, 92, 217–233.ADSCrossRefGoogle Scholar
  35. Chyba, C.F. (1993), Comets in other planetary systems? Adv. Space Res. (in press). Chyba, C.F. and Sagan, C. (1987), Cometary organics but no evidence for bacteria. Nature,329 208.Google Scholar
  36. Chyba, C.F. and Sagan, C. (1992), Endogenous production, exgenous delivery and impact-shock synthesis of organic molecules; an inventory for the origins of life. Nature, 355, 125–132.ADSCrossRefGoogle Scholar
  37. Chyba, C.F., Thomas, P.J., Brookshaw, L., and Sagan, C. (1990), Cometary delivery of organic molecules to the early Earth. Science, 249, 366–373.ADSCrossRefGoogle Scholar
  38. Chyba, C.F. Thomas, P.J., and Zahnle, K.J. (1993), The 1908 Tunguska explosion: Atmospheric disruption of a stony asteroid. Nature, 361, 40–44.ADSCrossRefGoogle Scholar
  39. Clark, B.C. (1988), Primeval procreative comet pond. Origins Life, 18, 209–238. Daniel, R.M. (1992), Modern life at high temperatures. Origins Life, 22, 33–42.Google Scholar
  40. Davis, M., Hut, P., and Muller, R.A. (1984), Extinction of species by periodic comet showers. Nature, 308, 715–717.ADSCrossRefGoogle Scholar
  41. Delsemme, A.H. (1984), The cometary connection with periodic chemistry. Origins Life, 14, 51–60.ADSCrossRefGoogle Scholar
  42. Delsemme, A.H. (1991), Nature and history of the organic compounds in comets: An astrophysical view. In R.L. Newbum, M. Neugebauer, and J. Rahe (eds.), Comets in the Post-Halley Era, Vols. I-II ( Dordrecht, Boston ), pp. 377–427.Google Scholar
  43. Delsemme, A.H. (1992), Cometary origin of carbon, nitrogen and water on the Earth. Origins Life, 21, 279–298.Google Scholar
  44. Donn, B.D. (1976), The study of Comets (NASA SP-393, Washington, DC).Google Scholar
  45. Eberhardt, P., Krankowski, D., Schutte, W., Dolder, U, Lämmerzahl, P., Berthelier, J.J., Woweries, J., Stubbermann, U., Hodges, R. R., Hoffman, J.H., and Illiano, J.M. (1987), The CO and NH2 abundance in comet P/Halley. Astron. Astrophys., 187, 481–487.ADSGoogle Scholar
  46. Encrenaz, T. and Knacke, R. (1991), Carbonaceous Compounds in Comets. In R.L. New-burn, M. Neugebauer and J. Rahe (eds), Comets in the Post-Halley Era, Vols. I-II ( Dordrecht, Boston ), pp. 107–137.Google Scholar
  47. Everhart, E. (1969), Close encounters of comets and planets. Astrophys. Jour., 74, 735–739.ADSGoogle Scholar
  48. Farley, J. (1977), The Spontaneous Generation Controversy: From Descartes to Oparin ( John Hopkins University Press, Baltimore).Google Scholar
  49. Fenton, C.L. and Fenton, M.A. (1952), Giants of Geology ( Doubleday, New York).Google Scholar
  50. Forterre, P. (1995), Thermoreduction, a hypothesis for the origin of prokaryotes. C.R. Acad. Sci. Paris, 318, 1–8.Google Scholar
  51. Gottschal, J.C. and Prins, R.A. (1991), Thermophiles: A life at elevated temperatures. Trends in Ecol. and Evol., 6, 157–161.CrossRefGoogle Scholar
  52. Gould, S.J. (1983), Hen’s Teeth and Horse’s Toes: Further Reflections in Natural History (W.W. Norton, New York).Google Scholar
  53. Greenberg, M.J. (1983), Chemical evolution of interstellar dust — a source of prebiotic material? In C. Ponnamperuma (ed.), Comets and the Origin of Life ( Reidel, Dordrecht ), pp. 111–127.Google Scholar
  54. Greenberg, M.J. and Grim, R. (1986), The origin and evolution cometary nuclei and comet Halley results. In B. Battrick, E.J. Rolfe and R. Reinhard (eds.), 20th ESLAB Symposium on the Exploration of Halley’s Comet (ESA Report SP-250), pp. 255–263.Google Scholar
  55. Grieve, R.A.F. and Robertson, P.B. (1979), The terrestrial cratering record I. Current status of observations. Icarus, 38, 212–219.ADSCrossRefGoogle Scholar
  56. Grün, E., Bar-Nun, A., Benkhoff, J., Bischoff, A., Düren, H., Hellmann, H., Hesselbarth, R, Hsiung, R, Keller, H.U., Klinger, J., Knölker, J., Kochan, H., Kohl, H., Kölzer, G., Krankowsky, D., Lämmerzahl, R, Mauersberger, K., Neukum, G., Oehler, A., Ratke, L., Roessler, K., Schewm, G., Spohn, G., Stöffler, D. and Thiel, K. (1991), Laboratory simulation of cometary processes: Results from first KOSI experiments. In R.L. Newbum, M. Neugebauer, and J. Rahe (eds.), Comets in the Post-Halley Era, Vols. I-II ( Dordrecht, Boston ), pp. 277–297.Google Scholar
  57. Han, T.-M. and Runnegar, B. (1992 i Megascopic eukaryotic algae from the 2.1-billionyear-old Negaunee Iron-formation, Michigan. Science, 257, 232–235.Google Scholar
  58. Hayashi, C., Nakasawa, K. and Nakasawa, Y. (1985), Formation of the solar system. In D.C. Black and M.S. Matthews (eds.), Protostars and Planets II ( University of Arizona Press, Tucson ), pp. 1100–1153.Google Scholar
  59. Hinkle, K.H., Keady, J.J., and Bernath, P.F. (1988), Detection of C3 in the interstellar shell of IRC+10216. Science, 241, 1319–1320.ADSCrossRefGoogle Scholar
  60. Hobbs, L.M., Vidal-Majdar, A., Ferlet, R., Albert, C.E. and Gry, C. (1985), The gaseous component of the disk around Beta Pictoris. Astrophys. Jour. Lett., 293, L29 - L33.ADSCrossRefGoogle Scholar
  61. Holland, H.D. (1994), Early Proterozoic atmospheric change. In S. Bengtson (ed.), Early Life on Earth. Nobel Symposium No. 84, Columbia University Press, New York, pp. 237–244.Google Scholar
  62. Hollis, J.M., Snyder, L.E., Suenram, R.D. and Lovas, F.J. (1980), A search for the lowest energy conformer of interstellar glycine. Astrophys Jour., 241, 1001–1006.ADSCrossRefGoogle Scholar
  63. Holm, N.G. (1992), Marine hydrothermal systems and the origin of life. Origins Life, 22. Special issue.Google Scholar
  64. Hong, J. H. and Becker, R. S. (1979), Hydrogen atom initiated chemistry. J. Mol. Evol., 13, 15–26.CrossRefGoogle Scholar
  65. Hoyle, F. and Wickramasinghe, C. (1984), From Grains to Bacteria ( University College Cardiff Press, Bristol).Google Scholar
  66. Hsü, K.J. (1980), Terrestrial catastrophe caused by cometary impact at the end of Cretaceous. Nature, 285, 201–203.ADSCrossRefGoogle Scholar
  67. Huber, R., Kurr, M., Jannasch, H.W. and Stetter, K.O. (1989), A novel group of abyssal methanogenic archaebacteria (Methanopyrus) growing at 110° C. Nature, 342, 833834.Google Scholar
  68. Huebner, W.F. (1987), First polymer in space identified in comet Halley. Science, 237, 628–630.ADSCrossRefGoogle Scholar
  69. Hunten, D.M. (1993), Atmospheric evolution of the terrestrial planets. Science, 259, 915920.Google Scholar
  70. Ibandov, K.I., Rahmonov, A.A. and Bjasso, A.S. (1991). Laboratory simulation of cometary structures. In R.L. Newbum, M. Neugebauer and J. Rahe (eds.), Comets in the Post-Halley Era, Vols. I-II ( Dordrecht, Boston ), pp. 299–311.Google Scholar
  71. Ip, W.H. and Fernandez, J.A. (1988), Exchange of condensed matter among the outer and terrestrial protoplanets and the effect on surface impact and atmospheric accretion. Icarus, 74, 47–61.ADSCrossRefGoogle Scholar
  72. Irvine, W.M., Leschine, S.N. and Schloerb, F.P. (1980), Thermal history, chemical composition and relationship of comets to the origin of life. Nature, 283, 748–749.ADSCrossRefGoogle Scholar
  73. Joss, P.C. (1974), Are stellar surface heavy-elements abundances systematically enhanced? Astrophys. Jour., 191, 771–774.ADSCrossRefGoogle Scholar
  74. Kamminga, H. (1988), Historical perspective: the problem of the origin of life in the context of developments in biology. Origins Life, 18, 1–11.ADSCrossRefGoogle Scholar
  75. Kandler, O. (1992), Where next with the archaebacteria? Biochem. Soc. Symp. 58, 195–207.Google Scholar
  76. Kandler, O. (1994), The early diversification of life. In S. Bengston (ed.), Early Life on Earth. Nobel Symposium No. 84. ( Columbia University Press, New York ), pp. 152–160.Google Scholar
  77. Kasting, J.F. (1990), Bolide impacts and the oxidation state of carbon in the Earth’s earliest atmosphere. Origins Life, 20, 199–231.CrossRefGoogle Scholar
  78. Kasting. J.F. (1993), Earth’s earliest atmosphere. Science, 259, 920–926.ADSCrossRefGoogle Scholar
  79. Kerr, R.A. (1985), Periodic extinctions and impacts challenged. Science, 227, 1451–1453.ADSCrossRefGoogle Scholar
  80. Khare, B.N., Sagan, C. Thompson, W.R., Arakawa, E.T., Suits, F., Callcott, T.A., Williams, M.W., Shrader, S., Ogina, H., Willingham, T.O., and Nagy, B. (1984), The Organic aerosols of Titan. Adv. Space Res., 4, (12) 59–68.CrossRefGoogle Scholar
  81. Kissel, J. and Krueger, F.R. (1987), The organic component in dust from comet Halley as measured by the PUMA mass spectrometer on board Vega 1. Nature, 326, 755–760.ADSCrossRefGoogle Scholar
  82. Knoll, A.H. and Barghoorn, E.S. (1977), Archean microfossils showing cell division from the Swaziland system of South Africa. Science, 198, 396–398.ADSCrossRefGoogle Scholar
  83. Kondo, Y. and Bruhweiler, F.C. (1985), IUE observations of Beta Pictoris: an IRAS candidate for a proto-planetary system. Astrophys. Jour. Lett., 391, L1 - L5.ADSCrossRefGoogle Scholar
  84. Korth, A., Marconi, M.L., Mendis, D.A., Krueger, F.R., Richter, K.A., Lin, R.P., Mitchell, O.L., Andersen, K.A., Carlson, C.W., Réme, H., Savaud, J.A., and d’Uston, C. (1989), Probable detection of organic-dust-borne aromatic C3H3 ions in the coma of comet Halley. Nature, 337, 53–55.ADSCrossRefGoogle Scholar
  85. Kresâk, L. (1978), The Tunguska object: A fragment of comet Encke? Bull. Astron. Inst. Czechosl., 29, 129–134.ADSGoogle Scholar
  86. Krueger, F.R. and Kissel, J. (1989), Biogenesis by cometary origin: Thermodynamical aspects of self-organization. Origins Life, 19, 87–93.CrossRefGoogle Scholar
  87. Lagrange, A.M., Ferlet, R., and Vidal-Majdar, A. (1987), The Beta Pictoris circumstellar disk IV. Redshifted UV lines. Astron. Astrophys., 173, 289–292.ADSGoogle Scholar
  88. Lagrange-Henri, A.M., Vidal-Majdar, A., and Ferlet, R. (1988), The ß Pictoris circumstellar disk VI. Evidence for material falling on to the star. Astron. Astrophys., 190, 275–282.ADSGoogle Scholar
  89. Langevin, Y., Kissel, J., Berhaus, J.L., and Chassefiere, E. (1987), First statistical analysis of 5000 mass spectra of cometary grains obtained by PUMA (Vega 1) and PIA (Giotto) impact ionization mass spectrometers in the compressed modes. Astron. Astrophys., 187, 761–766.ADSGoogle Scholar
  90. Lazcano, A. (1992a), Origins of life: The historical development of recent theories. In L. Margulis and L. Olendzenski (eds.), Environmental Evolution: Effects of the Origin and Evolution of Life on Planet Earth (MIT Press, Cambridge), pp. 57–59. Lazcano, A. (1992b), La Chispa de la Vida ( Pangea, México ).Google Scholar
  91. Lazcano, A. (1993), The significance of ancient paralogous genes in the study of the early stages of microbial evolution. In R. Guerrero and C. Pedrds-Alios (eds.). Proceedings of the 6th International Symposium of Microbial Ecology (Soc. Catalana de Biologia, Barcelona ), pp. 559–562.Google Scholar
  92. Lazcano, A. (1994a), The transition from non-living to living. In S. Bengtson (ed.), Early Life on Earth. Nobel Symposium No. 84 ( Columbia University Press, New York ), pp. 60–69.Google Scholar
  93. Lazcano, A. (1994b), The RNA world, its predecessors and descendants. In S. Bengtson (ed.), Early Life on Earth. Nobel Symposium No. 84 ( Columbia University Press, New York ), pp. 70–80.Google Scholar
  94. Lazcano, A., Ord, J., and Miller, S.L. (1983), Primitive Earth environments: Organic syn- thesis and the origin and early evolution of life. Precambrian Res., 20, 259–282.CrossRefGoogle Scholar
  95. Lazcano, A., Fox, G.E., and Ord, J. (1992), Life before DNA: the origin and evolution of Early Archean cells. In R.P. Mortlock (ed.) The Evolution of Metabolic Function ( CRC Press, Boca Raton ), pp. 237–295.Google Scholar
  96. Lazcano-Araujo, A. and Oro, J. (1981), Cometary material and the origins of life on Earth. In C. Ponnamperuma (ed.) Comets and the Origins of Life ( Reidel, Dordrecht ), pp. 191–225.CrossRefGoogle Scholar
  97. Lederberg, J. (1992), Foreword to L. Margulis Symbiosis in Cell Evolution: Microbial communities in the Archean and Proterozoic Eons ( Freeman, New York), pp. xv-xvi.Google Scholar
  98. Lerner, N.R., Peterson, E., and Chang, S. (1991), Meteoritic amino acids from cometary/interstellar precursors. Comets and the Origins and Evolution of Life. Abstracts ofa Meeting in Eau Claire, Wisconsin, September 30-October 2, 1991, p. 19.Google Scholar
  99. Levine, J.S., Augustsson, T.R., Boughner, R.E., Natajaran, M., and Sacks, L.J. (1980), Comets and the photochemistry of the paleoatmosphere. In C. Ponnamperuma (ed.) Comets und the Origin of Life ( Reidel, Dordrecht ), pp. 161–190.Google Scholar
  100. Lewis, J.S. (1974), Volatile element influx on Venus from cometary impacts. Earth Planet. Sci. Lett., 22, 239–244.ADSCrossRefGoogle Scholar
  101. Löb, W. (1913), Über das Verhalten des Formamids unter der Wirkung der stillen Entladung. Ein Beilrag zur Frage der Stickstoff-Assimilation. Berichte der Deutschen Chem. Gessellschaft, 46, 684–697.CrossRefGoogle Scholar
  102. MacMillan, W.D. (1929), The field of cosmogony. Jour. Geol. 37, 341–356.ADSCrossRefGoogle Scholar
  103. Maher, K.A. and Stevenson, D.J. (1988), Impact frustration of the origin of life. Nature, 331, 612–614.ADSCrossRefGoogle Scholar
  104. Marcus, J.N. and Olsen, M.A. (1991), Biological implications of organic compounds in comets. In R.L. Newburn, M. Neugebauer, and J. Rahe (eds.), Comets in the Post-Halley Era, Vols. I-II ( Dordrecht, Boston ), pp. 439–462.Google Scholar
  105. Matthews, C.N. and Ludicky, R. (1986), The dark nucleus of comet Halley: Hydrogen cyanide polymers. In B. Battrick, E.J. Rolfe, and R. Reinhard (eds), 20th ESLAB Symposium on the Exploration of Halley’s Comet (ESA Report SP-250), pp. 273–277.Google Scholar
  106. McKay, C.P., Boruki, W.R., Kujiro, D.R., and Church, F. (1989), Shock production of organics during cometary impacts. Lunar Planet. Sci. Conf. XX, 671–672.ADSGoogle Scholar
  107. McKinnon, W.B. (1989), Impacts giveth and impacts taketh away. Nature, 338, 465–466.ADSCrossRefGoogle Scholar
  108. Melosh, J. and Vickery, A. (1989), Impact erosion of the primordial Martian atmosphere. Nature, 338, 487–489.ADSCrossRefGoogle Scholar
  109. Miller, S.L. (1957), The mechanism of synthesis of amino acids by electric discharges. Biochem. Biophys. Acta., 23, 480–487.CrossRefGoogle Scholar
  110. Miller, S.L. (1974), The first laboratory synthesis of organic compounds under primitive Earth conditions. In J. Neyman (ed.), The Heritage of Copernicus: Theories “Pleasing to the Mind” ( MIT Press, Cambridge ), pp. 228–242.Google Scholar
  111. Miller, S.L. (1991a), The relative importance of prebiotic synthesis on the Earth and input from comets and meteorites. In R.A. Wharton, D.T. Andersen, Sara E. Bzik, and J.D. Rummel (eds.). Fourth Symposium on Chemical Evolution and the Origin and Evolution of Life NASA Conference Publication No. 3129 (Washington DC), p. 105.Google Scholar
  112. Miller, S.L. (1991b), Comets and meteorites were not a significant source of organic compounds on the primitive Earth. Comets and the Origins and Evolution of Life. Abstracts of a Meeting in Eau Claire, Wisconsin, September 30-October 2, 1991, pp. 22–23.Google Scholar
  113. Miller, S.L. and Bada, J.L. (1988), Submarine hot springs and the origin of life. Nature, 334, 609–611.ADSCrossRefGoogle Scholar
  114. Miller, S.L. and Orgel, L.E. (1974), The Origins of Life on Earth (Prentice Hall, Englewood Cliffs, NJ).Google Scholar
  115. Miller, S.L. and Urey, H.C. (1959), Organic compound synthesis on the primitive Earth. Science, 130, 245–252.ADSCrossRefGoogle Scholar
  116. Mitchell, D.L., Lin, R.P, Anderson, K.A., Carlson, C.W., Curtis, D.W., Korth, A., Réme, H., Sauvard, J.A., d’Uston, C., and Mendis, D.A. (1987), Evidence for chain molecules enriched in carbon, hydrogen and oxygen in comet Halley. Science, 237, 626–628.ADSCrossRefGoogle Scholar
  117. Moulton, F.R. and Chamberlin, T.C. (1900), Certain attempts to test the nebular hypothesis. Science 11, 311–312.Google Scholar
  118. Mukhin, L.M., Gerasimov, M.V., and Safonova, E.N. (1989), Origin of precursors of organic molecules during evaporation of meteorites and rocks. Adv. Space Res., 9, 95–97.ADSCrossRefGoogle Scholar
  119. Muller, R.A. (1985), Evidence for a solar companion star. In M.D. Papagiannis (ed), The Search for Extraterrestrial Life: Recent Developments ( Reidel, Dordrecht ), pp. 233–243.CrossRefGoogle Scholar
  120. Navarro-Gonzalez, R., Castillio-Rojas, S., and Negron-Mendoza, A. (1991), Experimental and computational study of the radiation-induced decomposition of formaldehyde. Implications to cometary nuclei. Origins Life, 21, 39–49.CrossRefGoogle Scholar
  121. Negrdn-Mendoza, A., Chacdn, E., Navarro-Gonzalez, R., Draganic, Z.D., and Draganic, I.G. (1992), Radiation-induced syntheses in cometary simulated models. Adv. Space Res. 12: 63–66.ADSCrossRefGoogle Scholar
  122. Oberbeck, V.R. and Aggarwal, H. (1992), Comet impacts and chemical evolution of the bombarded Earth. Origins Life, 21, 317–338.Google Scholar
  123. Oberbeck, V.R. and Fogelman, G. (1989a), Impacts and the origin of life. Nature, 339, 434.ADSCrossRefGoogle Scholar
  124. Oberbeck, V.R. and Fogelman, G. (1989b), Estimates of the maximum time require to originate life. Origins Life, 19, 549–560.CrossRefGoogle Scholar
  125. Oberbeck, V.R., McKay, C.P., Scattergood, T.W., Carle, G.C., and Valentin, J.R. (1989), The role of cometary particle coalescence in chemical evolution. Origins Life, 19, 35–55.Google Scholar
  126. O’Dell, C.R., Wen, Z., and Hu, X. (1993), Discovery of new objects in the Orion Nebula on HST images: shocks, compact sources and protoplanetary disks. Astrophys. Jour.(in press).Google Scholar
  127. Oparin, A.I. (1924), Proiskhozhdenie Zhizni (Moskovskii Rabochii, Moscow). Translated and published as an Appendix in J.D. Bernal ( 1967 ). The Orgin of Life (Weidenfeld and Nicolson, London ).Google Scholar
  128. Oparin, A.I. (1938), The Origin of Life ( Macmillan, New York).Google Scholar
  129. Ord, J. (1960), Synthesis of adenine from ammonium cyanide. Biochem. Biophys. Res. Comm., 2, 407–412.CrossRefGoogle Scholar
  130. Ord, J. (1961), Comets and the formation of biochemical compounds on the primitive Earth. Nature, 190, 389–390.ADSCrossRefGoogle Scholar
  131. Ord, J. (1963), Synthesis of organic compounds by high-energy electrons. Nature, 197, 971–974.ADSCrossRefGoogle Scholar
  132. Ord, J. and Mills, T. (1989), Chemical evolution of primitive solar system bodies. Adv. Space Res., 9, 105–120.ADSGoogle Scholar
  133. Ord, J., Kimball, A., Fritz, R., and Master, F. (1959), Amino acid synthesis from formaldehyde and hydroxylamine. Arch. Biochem. Biophys., 85, 115–130.CrossRefGoogle Scholar
  134. Ord, J., Holzer, G., and Lazcano-Araujo, A. (1980), The contribution of cometary volatiles to the primitive Earth. Life Sciences and Space Research XVIII, pp. 67–82.Google Scholar
  135. Ord, J., Miller, S.L., and Lazcano, A. (1990), The origin and early evolution of life on Earth. Annu. Rev. Earth Planet. Sci., 18, 317–356.ADSCrossRefGoogle Scholar
  136. Ord, J., Mills, T., and Lazcano, A. (1992a), The cometary contribution to prebiotic chemistry. Adv. Space Res., 12, 33–41.ADSGoogle Scholar
  137. Ord, J., Mills, T., and Lazcano, A. (1992b), Comets and the formation of biochemical compounds–a review. Origins Life, 21 267–277.Google Scholar
  138. Ord, J. Mills, T., and Lazcano, A. (1995), Comets and life in the universe. Adv. Space Res.,15 81–90.Google Scholar
  139. Owen, T., Bar-Nun, A., and Kleinfeld, I. (1992), Possible cometary origin of heavy noble gases in the atmospheres of Venus, Earth and Mars. Nature, 358, 43–46.ADSCrossRefGoogle Scholar
  140. Pace, N.R. (1991), Origin of life—Facing up to the physical environment. Cell, 65, 531–533.CrossRefGoogle Scholar
  141. Pollack, J.P. and Yung, Y.L. (1980), Origin and evolution of planetary atmospheres. Ann. Rev. Earth Planet. Sci., 8, 425–487.ADSCrossRefGoogle Scholar
  142. Rampino, M.R. and Stothers, R.B. (1984), Terrestrial mass extinctions, cometary impacts and the Sun’s motion perpendicular to the galactic plane. Nature, 308, 709–712.ADSCrossRefGoogle Scholar
  143. Raup, D.M. (1986), The Nemesis Affair: A Story of the Death of the Dinosaurs and the Ways of Science (W.W. Norton, New York).Google Scholar
  144. Raup, D.M. (1988), Extinction in the geological past. In D.E. Osterbrock and P.H. Raven (eds.), Origins and Extinctions ( Yale University Press, New Haven ), pp. 109–119.Google Scholar
  145. Raup, D.M. and Sepkoski, J. Jr. (1984), Periodicity of extinctions in the geological past. Proc. Natl. Acad. Sci. USA, 81, 801–805.ADSCrossRefGoogle Scholar
  146. Sagan, C., Thompson, W.R., and Khare B.N. (1992), A laboratory for prebiological organic chemistry. Accounts of Chemical Research 25, 286–292.CrossRefGoogle Scholar
  147. Schopf, W.J. ed (1983), The Earth’s Earliest Biosphere: its origin and evolution ( Princeton University Press, Princeton, NJ ).Google Scholar
  148. Schopf, W.J. (1994), The oldest known records of life: Early Archean stromatolites, micro-fossils, and organic matter. In S Bengtson (ed.), Early Life on Earth. Nobel Symposium No. 84. Columbia University Press, New York, pp. 193–206.Google Scholar
  149. Schopf, W.J. and Packer, B.M. (1987), Early Archean (3.3 billion to 3.5 billion years-old) microfossils: New evidence of ancient microbes. Science, 237, 70–73.ADSCrossRefGoogle Scholar
  150. Schutte, W.A., Allamandola, L.J., and Sandford, S.A. (1992), Laboratory simulation of the photoprocessing and warm-up of cometary and pre-cometary ices: production and analysis of complex organic molecules. Adv. Space Res., 12, 47–51.ADSCrossRefGoogle Scholar
  151. Schwartz, R.D. and James, P.B. (1984), Periodic mass extinctions and the Sun’s oscillation about the galactic plane. Nature, 308, 712–713.ADSCrossRefGoogle Scholar
  152. Sill, G.T. and Wilkening, L.L. (1978), Ice clathrate as a possible source of the atmospheres of the terrestrial planets. Icarus, 33, 13–22.ADSCrossRefGoogle Scholar
  153. Sleep, N.H., Zanhle, K.J. Kasting, J.F., and Morowitz, H.J. (1989), Annihilation of ecosystems by large asteroid impacts on the early Earth. Nature, 342, 139–142.ADSCrossRefGoogle Scholar
  154. Slettebak, A. (1975), Some interesting bright southern stars of early type. Astrophys. Jour., 197, 137–138.ADSCrossRefGoogle Scholar
  155. Smith, B.A. and Terrile, R.J. (1984), A circumstellar disk around ß Pictoris. Science, 226, 1421–1424.ADSCrossRefGoogle Scholar
  156. Stetter, K.O. (1994), The lesson of Archaebacteria. In S. Bengtson (ed.), Early Life on Earth. Nobel Symposium No. 84. Columbia University Press. New York, pp. 143–151.Google Scholar
  157. Strazzulla, G. and Johnson, R.E. (1991), Irradiation effects on comets and cometary debris. In R.L. Newbum, M. Neugebauer, and J. Rahe (eds.), Comets in the Post-Halley Era, Vols. I—II ( Dordrecht, Boston ), 243–275.CrossRefGoogle Scholar
  158. Stribling, R. and Miller, S.L. (1987), Energy yields for hydrogen cyanide and formaldehyde synthesis: The HCN and amino acid concentrations in the primitive oceans. Origins Lift, 17, 261–273.ADSCrossRefGoogle Scholar
  159. Strom, K., Strom, S.E., Edwards, S., Cabrit, S., and Skrutskie, M.F. (1989), Circumstellar material associated with stellar-type pre-main sequence stars: a possible constraint on the timescale for planet building. Astron. J., 97, 1451–1470.ADSCrossRefGoogle Scholar
  160. Suess, H. and Urey, H.C. (1956), Abundances of the elements. Rev. Mod. Phys., 28, 53–62.ADSCrossRefGoogle Scholar
  161. Theirstein, H.R. (1980), Cretaceous oceanic catastrophism. Paleobiology, 6, 244–247.Google Scholar
  162. Thomas, P.J. (ed.) (1992), Comets and the Origin and Evolution of Life. Origins Life,21. Special issue.Google Scholar
  163. Urey, H.C. (1957), The origin of tektites. Nature, 179, 556–557.ADSCrossRefGoogle Scholar
  164. Urey, H.C. (1973), Cometary collisions and geological periods. Nature, 242, 32–33.ADSCrossRefGoogle Scholar
  165. Vidal-Majdar, A., Hobbs, L.M., Ferlet, R., Gry, C., and Albert, C.E. (1986), The circumstellar gas cloud around Beta Pictoris. H. Astron. Astrophys., 167, 325–332.ADSGoogle Scholar
  166. von Helmholtz, H. (1871), The Origin of the Planetary System. In Selected writings of Hermann von Helmholtz (Wesleyan University Press, 1971, p. 284). Quotation and reference are from J. Farley (1977). The Spontaneous Generation Controversy: From Google Scholar
  167. Descartes to Oparin (Johns Hopkins University Press, Baltimore), p. 142.Google Scholar
  168. Walker, J.C.G. (1986), Impact erosion of planetary atmospheres. Icarus, 68, 87–89.ADSCrossRefGoogle Scholar
  169. Wetherill, G.W. (1975), Late heavy bombardment of the moon and terrestrial planets. In Proceedings of the 6th Lunar Science Conference ( Lunar and Planetary Institute, Houston ), pp. 1539–1561.Google Scholar
  170. Wetherill, G.W. (1990), Formation of the Earth. Annu. Rev. Earth Planet. Sci., 18, 205–256.ADSCrossRefGoogle Scholar
  171. Whipple, F.L. (1976), A speculation about comets and the Earth. Mem. Soc. Royale Sci. Liege, 9, 101–111.ADSGoogle Scholar
  172. Whitmire, D.P. and Jackson, A.A. (1984), Are periodic mass extinctions driven by a distant solar companion? Nature, 308, 713–715.ADSCrossRefGoogle Scholar
  173. Woese, C.R. (1987), Bacterial evolution. Microbiol. Rev., 51, 221–271.Google Scholar
  174. Wöhler, M.F. (1858), Über die Bestandteile des Meteorsteines von Kaba in Ungarn. Sitzber. Akad. Wiss. Wien, Math-Naturwiss. KI., 33, 205–209.Google Scholar
  175. Wöhler, M.F. and Homes, M. (1859), Die organische Substanz im Meteorsteine von Kaba. Sitzber. Akad. Wiss. Wein, Math- Naturwiss. KI., 34, 7–8.Google Scholar
  176. Zahnle, K. and Dones, L. (1992), Impact origin of Titan’s atmosphere in Proceedings Symposium on Titan, Toulouse, France. (ESA SP-338), 14–25.Google Scholar
  177. Zahnle, K. and Grinspoon, D. (1990), Comet dust as a source of amino acids at the Cretaceous/Tertiary boundary. Nature, 348, 157–159.ADSCrossRefGoogle Scholar
  178. Zhao, M. and Bada, J.L. (1989), Extraterrestrial amino acids in Cretaceous/Tertiary boundary sediments at Steuns Klint, Denmark. Nature, 339, 463–465.ADSCrossRefGoogle Scholar
  179. Zhao, M. and Bada, J.L. (1991), Limitations on impact delivery of organics to the Earth based on extraterrestrial amino acids in K/T boundary sediments. Comets and the Origins and Evolution of Life. Abstracts of a Meeting in Eau Claire, Wisconsin, September 30-October 2, 1991, 41.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • J. Oró
  • A. Lazcano

There are no affiliations available

Personalised recommendations