Perspectives on Reinstated Memory and Child Trauma
  • Arthur P. Shimamura
  • Michael D. Kopelman
Part of the NATO ASI Series book series (NSSA, volume 291)


The emotional, clinical, and even legal ramifications of an adult’s recollection of childhood trauma have forced memory research into the public limelight. Indeed, decisions related to public policy, ethical practices of clinicians, and child-parent lawsuits have depended in part on what science can tell us about the notion of reinstated memories. I use the term reinstated memories to refer to instances in which an individual recollects a traumatic experience that previously was not available to conscious or explicit report. The term is meant to be neutral with respect to the veracity of the recollection, especially compared to other terms such as recovered,repressed, or false memories, which by their terminology can appear to be biased toward either the complete validity or complete falsity of a recollection.


Prefrontal Cortex Frontal Lobe Implicit Memory Source Memory Retrograde Amnesia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baddeley, A. (1986). Working memory. Oxford, UK: Oxford University Press.Google Scholar
  2. Brooks, D. N., and Baddeley, A. D. (1976). What can amnesic patients learn? Neuropsychologia, 14, 111–122.PubMedCrossRefGoogle Scholar
  3. Buckner, R. L., Petersen, S. E., Ojemann, J. G., Miezin, F. M., and et al. (1995). Functional anatomical studies of explicit and implicit memory retrieval tasks. Journal of Neuroscience, 15, 12–29.PubMedGoogle Scholar
  4. Cahill, L., Prins, B., Weber, M., and McGaugh, J. L. (1994). b-Adrenergic activation and memory for emotional events. Nature, 371, 702–704.Google Scholar
  5. Cohen, N. J., and Squire, L. R. (1980). Preserved learning and retention of pattern analyzing skill in amnesia: Association of knowing how and knowing that. Science, 210, 207–209.PubMedCrossRefGoogle Scholar
  6. Corkin, S. (1968). Acquisition of motor skill after bilateral medial temporal lobe excision. Neuropsychologia, 6, 225–265.CrossRefGoogle Scholar
  7. Corkin, S. (1984). Lasting consequences of bilateral medial temporal lobectomy: Clinical course and experimental findings in H.M. Seminars in Neurology, 4, 249–259.CrossRefGoogle Scholar
  8. Damasio, A. R., and Anderson, S. W. (1993). The frontal lobes. In K. M. Heilman and E. Valenstein (Eds.), Clinical neuropsychology (3rd ed.) (pp. 409–460 ). New York: Oxford University Press.Google Scholar
  9. della Rocchetta, A. I. (1986). Classification and recall of pictures after unilateral frontal or temporal lobectomy. Cortex, 22, 189–211.PubMedCrossRefGoogle Scholar
  10. Eslinger, P. J., and Grattan, L. M. (1994). Altered serial position learning after frontal lobe lesion. Neuropsycholo gia, 32, 729–739.CrossRefGoogle Scholar
  11. Frith, C. D., Friston, K. J., Liddle, P. F., and Frackowiak, R. S. J. (1991). A PET study of word finding. Neuropsychologia, 29, 1137–1148.PubMedCrossRefGoogle Scholar
  12. Fuster, J. M. (1995). Frontal cortex and the cognitive support of behavior. In F. B.-R. R. A. P.-A. James L. McGaugh (Ed.), Plasticity in the central nervous system: Learning and memory. (pp. 149–160 ). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  13. Gershberg, F. B., and Shimamura, A. P. (1995). The role of the frontal lobes in the use of organizational strategies in free recall. Neuropsychologia, 13, 1305–1333. 264 A. P. ShimamuraGoogle Scholar
  14. Graf, P., Squire, L. R., and Mandler, G. (1984). The information that amnesic patients do not forget. Journal of Experimental Psychology: Learning Memory and Cognition, 10, 164–178.CrossRefGoogle Scholar
  15. Hastroudi, S., Johnson, M. K., Vnek, N., and Ferguson, S. A. (1994). Aging and the effects of affective and factual focus on source monitoring and recall. Psychology and Aging, 9, 160–170.CrossRefGoogle Scholar
  16. Haug, H., Barmwater, U., Eggers, R., Fischer, D., Kuhl, S., and Sass, N. L. (1983). Anatomical changes in aging brain: Morphometric analysis of the human prosencephalon. In J. Cervos-Navarro and H. I. Sarkander (Eds.), Brain aging: Neuropathology and neuropharmocology (pp. 1–12). New York: Raven Press. Herman, J. L. (1992). Trauma and recovery. New York: Basic Books.Google Scholar
  17. Hirst, W., and Volpe, B. T. (1988). Memory strategies with brain damage. Brain and Cognition, 8, 379–408.PubMedCrossRefGoogle Scholar
  18. Janowsky, J. S., Shimamura, A. P., Kritchevsky, M., and Squire, L. R. (1989). Cognitive impairment following frontal lobe damage and its relevance to human amnesia. Behavioral Neuroscience, 103, 548–560.PubMedCrossRefGoogle Scholar
  19. Janowsky, J. S., Shimamura, A. P., and Squire, L. R. (1989a). Memory and metamemory: Comparisons between patients with frontal lobe lesions and amnesic patients. Psychobiology, 17, 3–11.Google Scholar
  20. Janowsky, J. S., Shimamura, A. P., and Squire, L. R. (1989b). Source memory impairment in patients with frontal lobe lesions. Neuropsychologia, 27, 1043–1056.PubMedCrossRefGoogle Scholar
  21. fetter, W, Poser, U., Freeman, R. B., and Markowitsch, H. J. (1986). A verbal long term memory deficit in frontal lobe damaged patients. Cortex, 22, 229–242.CrossRefGoogle Scholar
  22. Johnson, M. K., Hashtroudi, S., and Lindsay, D. S. (1993). Source monitoring. Psychological Bulletin, 114, 3–28PubMedCrossRefGoogle Scholar
  23. Jonides, J., Smith, E. E., Koeppe, R. A., Awh, E., Minoshima, S., and Mintun, M. A. (1993). Spatial working memory in humans as revealed by PET. Nature, 363, 623–625.PubMedCrossRefGoogle Scholar
  24. Knight, R. T., Scabini, D., and Woods, D. L. (1989). Prefrontal gating of auditory transmission in humans. Brain Research, 504, 338–342.PubMedCrossRefGoogle Scholar
  25. Knowlton, B. J., Ramus, S. J., and Squire, L. R. (1992). Intact artificial grammar learning in amnesia: Dissociation of classification learning and explicit memory for specific instances. Psychological Science, 3, 172–179.CrossRefGoogle Scholar
  26. Knowlton, B. J., and Squire, L. R. (1994). The information acquired during artificial grammar learning. In Journal of Experimental Psychology: Learning, Memory, and Cognition Google Scholar
  27. Kolodny, J. A. (1994). Memory processes in classification learning: An investigation of amnesic performance in categorization of dot patterns and artistic styles. lnPsychological Science Google Scholar
  28. LeDoux, J. E. (1995). Emotion: Clues from the brain. Annual Review of Psychology, 46, 209–235.PubMedCrossRefGoogle Scholar
  29. Lindsay, D. S., and Read, J. D. (1994). Psychotherapy and memories of childhood sexual abuse: A cognitive perspective. Special Issue: Recovery of memories of childhood sexual abuse. Applied Cognitive Psychology, 8, 281–338.CrossRefGoogle Scholar
  30. Loftus, E. F. (1993). The reality of repressed memories. American Psychologist, 48, 518–537.PubMedCrossRefGoogle Scholar
  31. Loftus, E., and Ketcham, K. (1994). The Myth of repressed memories. New York: St. Martin’s Press.Google Scholar
  32. MacLeod, C. (1991). Half a century of research on the Stroop effect: An integrative review. Psychological Bulletin, 109, 163–203.PubMedCrossRefGoogle Scholar
  33. Mangels, J. A., Gershberg, F. B., Shimamura, A. P., and Knight, R. T. (1996). Impaired retrieval from remote memory in patients with frontal lobe damage. Neuropsychology, 10, 32–41.CrossRefGoogle Scholar
  34. Marslen-Wilson, W. D., and Teuber, H.-L. (1975). Memory for remote events in anterograde amnesia: Recognition of public figures from news photographs. Neuropsychologia, 13, 353–364.PubMedCrossRefGoogle Scholar
  35. McGaugh, J. L. (1995). Emotional activation, neuromodulatory systems, and memory. In L. S. Daniel (Ed.), Memory distortions: How minds, brains, and societies reconstruct the past. (pp. 255–273 ). Cambridge, MA: Harvard University Press.Google Scholar
  36. McIntyre, J. S., and Craik, F. I. M. (1987). Age differences in memory for item and source information. Canadian Journal of Psychology, 42, 175–192.CrossRefGoogle Scholar
  37. Metcalfe, J., and Shimamura, A. P. (Eds.). (1994). Metacognition: Knowing about knowing. Cambridge, MA: MIT Press.Google Scholar
  38. Milner, B. (1971). Interhemispheric differences in the localization of psychological processes in man. British Medical Bulletin, 127, 272–277.Google Scholar
  39. Milner, B., Corkin, S., and Teuber, H.-L. (1968). Further analysis of the hippocampal amnesic syndrome: 14-year follow-up study of H. M. Neuropsychologia, 6, 215–234.CrossRefGoogle Scholar
  40. Milner, B., and Petrides, M. (1984). Behavioural effects of frontal-lobe lesions in man. Trends in Neuroscience, 7, 403–407.CrossRefGoogle Scholar
  41. Moscovitch, M. (1995). Models of consciousness and memory. In S. G. Michael (Ed.), The cognitive neurosciences. (pp. 1341–1356 ). MIT Press, Cambridge, MA, US.Google Scholar
  42. Perret, E. (1974). The left frontal lobe of man and the suppression of habitual responses in verbal categorical behavior. Neuropsychologia, 12, 323–330.PubMedCrossRefGoogle Scholar
  43. Petrides, M. (1989). Frontal lobes and memory. In F. Boller and J. Grafman (Eds.), Handbook of Neuropsychology, Vol 3. (pp. 75–90 ). Amsterdam: Elsevier.Google Scholar
  44. Petrides, M., Alivisatos, B., and Evans, A. C. (1995). Functional activation of the human ventrolateral frontal cortex during mnemonic retrieval of verbal information. Proceedings of the National Academy of Sciences, 92, 5803–5807.CrossRefGoogle Scholar
  45. Petrides, M., and Milner, B. (1982). Deficits on subject-ordered tasks after frontal-and temporal-lobe lesions in man. Neuropsychologia, 20, 249–262.PubMedCrossRefGoogle Scholar
  46. Sapolsky, R. M. (1992). Stress, the aging brain, and the mechanisms of neuron death. Cambridge, MA: MIT Press. Schacter, D. L. (1987). Implicit memory: History and current status. Journal of Experimental Psychology: Learning Memory and Cognition, 13, 501–518.Google Scholar
  47. Schacter, D. L., Kaszniak, A. K., Kihistrom, J. F., and Valdiserri, M. (1991). The relation between source memory and aging. Psychology and Aging, 9, 559–568.CrossRefGoogle Scholar
  48. Schacter, D. L., Koutstaal, and Norman, K. A. (1996). Can cognitive neuroscience illuminate the nature of traumatic childhood memories? Current Opinions in Neurobiology, 6, 207–214.CrossRefGoogle Scholar
  49. Schooler, J. W. (1994). Seeking the core: The issues and evidence surrounding recovered accounts of sexual trauma. Special Issue: The recovered memory/false memory debate. Consciousness and Cognition: An International Journal, 3, 452–469.CrossRefGoogle Scholar
  50. Shallice, T. (1982). Specific impairments in planning. Philosophical Transactions of the Royal Society of London B, 298, 199–209.CrossRefGoogle Scholar
  51. Shimamura, A. P. (1986). Priming in amnesia: Evidence for a dissociable memory function. Quarterly Journal of Experimental Psychology, 38, 619–644.PubMedGoogle Scholar
  52. Shimamura, A. P. (1989). Disorders of memory: The cognitive science perspective. In F. Boller and J. Grafman (Eds.), Handbook of neuropsychology (pp. 35–73 ). Amsterdam, The Netherlands: Elsevier Sciences Publishers.Google Scholar
  53. Shimamura, A. P. (1993). Neuropsychological analyses of implicit memory: Recent progress and theoretical interpretations. In R. Graf and M. E. Masson (Eds.), Implicit memory: New directions in cognition, development, and neuropsychology (pp. 265–185 ). Hillsdale, NJ: Erlbaum Associates.Google Scholar
  54. Shimamura, A. R. (1994a). Memory and frontal lobe function. In M. S. Gazzaniga (Ed.), The cognitive neurosciences (pp. 803–813 ). Cambridge, MA: MIT Press.Google Scholar
  55. Shimamura, A. R. (1994b). The neuropsychology of metacognition. In J. Metcalfe and A. R Shimamura (Eds.), Metacognition: Knowing about knowing (pp. 253–276 ). Cambridge, MA: MIT Press.Google Scholar
  56. Shimamura, A. P. (1996). The organization of human memory: A Neuropsychological Analysis. In K. Ishikawa, J. L. McGaugh, and H. Sakata (Eds.), Brain processes and memory (pp. 163–171 ). The Netherlands: Elsevier Science.Google Scholar
  57. Shimamura, A. P., and Gershberg, F. B. (1994). Neuropsychiatric aspects of memory and amnesia. In R. E. H. Stuart C. Yudofsky (Ed.), Synopsis of neuropsychiatry (pp. 261–276 ). American Psychiatric Press, Inc, Washington, DC, US.Google Scholar
  58. Shimamura, A. R, Janowsky, J. S., and Squire, L. R. (1990). Memory for the temporal order of events in patients with frontal lobe lesions and amnesic patients. Neuropsychologia, 28, 803–813.PubMedCrossRefGoogle Scholar
  59. Shimamura, A. P., Jurica, P. J., Mangels, J. A., Gershberg, F. B., and Knight, R. T. (1995). Susceptibility to memory interference effects following frontal lobe damage: Findings from tests of paired-associated learning. Journal of Cognitive Neuroscience, 7, 144–152.PubMedCrossRefGoogle Scholar
  60. Shimamura, A. P., Salmon, D. P., Squire, L. R., and Butters, N. (1987). Memory dysfunction and word priming in dementia and amnesia. Behavioral Neuroscience, 101, 347–351.PubMedCrossRefGoogle Scholar
  61. Shimamura, A. P., and Squire, L. R. (1984). Paired-associate learning and priming effects in amnesia: A neuropsychological study. Journal of Experimental Psychology: General, 113, 556–570.CrossRefGoogle Scholar
  62. Smith, M. L., and Milner, B. (1984). Differential effects of frontal-lobe lesions on cognitive estimation and spatial memory. Neuropsychologia, 22, 697–705.PubMedCrossRefGoogle Scholar
  63. Squire, L. R. (1987). Memory and brain. New York: Oxford University Press.Google Scholar
  64. Squire, L. R. (1992). Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. Psychological Review, 99, 195–231.PubMedCrossRefGoogle Scholar
  65. Squire, L. R., J., O., Miezin, F., Petersen, S., Videen, T., and Raichle, M. (1992). Activation of the hippocampus in normal humans: A functional anatomical study of human memory. Proceedings of the National Academy of Sciences, 89, 1837–184.Google Scholar
  66. Squire, L. R., Amaral, D. G., and Press, G. A. (1990). Magnetic resonance measurements of hippocampal formation and mammillary nuclei distinguishes medial temporal lobe and diencephalic amnesia. Journal of Neuroscience, 10, 3106–3117.Google Scholar
  67. Squire, L. R., Shimamura, A. P., and Amaral, D. G. (1986). Memory and the hippocampus. In J. Byrne and W. Berry (Eds.), Neural Models of Plasticity (pp. 208–239 ). New York: Academic Press.Google Scholar
  68. Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–662.CrossRefGoogle Scholar
  69. Stuss, D. T., Alexander, M. P., Palumbo, C. L., Buckle, L., Sayer, L., and Pogue, J. (I 994a). Organizational strategies of patients with unilateral or bilateral frontal lobe injury in word list learning tasks. Neuropsychology, 8, 355–373.Google Scholar
  70. Stuss, D. T., Eskes, G. A., and Foster, J. K. (I 994b). Experimental neuropsychological studies of frontal lobe functions. In F. Boller and J. Grafman (Eds.), Handbook of Neuropsychology (pp. 149–185). Amsterdam: Elsevier.Google Scholar
  71. Terr, L. (1994). Unchained Memories. New York: Basic Books.Google Scholar
  72. Thomas, G. J. (1984). Memory: Time binding in organisms. In L. R. Squire and N. Butters (Eds.), Neuropsychology of Memory (pp. 374–384 ). New York: Guilford Press.Google Scholar
  73. Warrington, E. K., and Weiskrantz, L. (1968). New method of testing long-term retention with special reference to amnesic patients. Nature, 217, 972–974.PubMedCrossRefGoogle Scholar
  74. Warrington, E. K., and Weiskrantz, L. (1970). The amnesic syndrome: Consolidation or retrieval? Nature, 228, 628–630.PubMedCrossRefGoogle Scholar
  75. Weiskrantz, L., and Warrington, E. K. (1979). Conditioning in amnesic patients. Neuropsychologia, 17, 187–194. Wheeler, M., Stuss, D., and Tulving, E., (1997). Toward a theory of episodic memory: The frontal lobes and autonoetic consciousness. Pshychological Bulletin, 121, 331–354.Google Scholar
  76. Yamaguchi, S., and Knight, R. T. (1990). Gating of somatosensory inputs by human prefrontal cortex. Brain Research, 521, 281–288.PubMedCrossRefGoogle Scholar
  77. Della Sala, S and Logie, R.H. (1993). When working memory does not work: the role of working memory in neuropsychology. In H. Spinnler and F. Boller (eds) Handbook of neuropsychology, vol 8,Elsevier Science Publishers, Amsterdam, pp I-ó2.Google Scholar
  78. De Wied, D. (1984). The importance of vasopressin in memory. Trends in Neuroscience, 7, 62 - 64.CrossRefGoogle Scholar
  79. Kopelman, M.D. (1991). Frontal lobe dysfunction and memory deficits in the alcoholic Korsakoff syndrome and Alzheimer-type dementia. Brain, 114, 117-137.Google Scholar
  80. Kopelman, M.D. (1994). Working memory in the amnesic syndrome and degenerative dementia. Neuropsychology, 8, 555 - 562.CrossRefGoogle Scholar
  81. Kopelman, M.D. (1996). Comments on Mayes and Downes (1996): What do theories of the functional deficit(s) underlying amnesia have to explain? Memory,in press.Google Scholar
  82. Kopelman, M.D. and Lishman, W.A. (1986). Pharmacological treatments of dementia (non-cholinergic). British Medical Bulletin, 42, 101 - 105.PubMedGoogle Scholar
  83. Pribram, K. and Gill, M. (1976). Freud’s “Project” re-assessed, London, Hutchinson.Google Scholar
  84. Stuss, D.T., Eskes, G.A. and Foster, J.K. (1994). Experimental neuropsychological studies of frontal lobe functions.Google Scholar
  85. In F. Boller and J. Grafman (eds) Handbook of neuropsychology, Vol 9,Elsevier Science BV.Google Scholar
  86. Wheeler, M.A., Stuss, D.T., and Tulving, E. (1997). Toward a theory of episodic memory: The frontal lobes and autonoetic consciousness. Pyschological Bulletin, 121, 331 - 354.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Arthur P. Shimamura
    • 1
  • Michael D. Kopelman
    • 2
  1. 1.University of California, BerkeleyBerkeleyUSA
  2. 2.St. Thomas’s HospitalLondonUK

Personalised recommendations