Lipoxygenase Metabolites and Cancer Metastasis

  • Keqin Tang
  • Kenneth V. Honn
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 422)


Cancer metastasis is a complicated process. For a transformed cell to form a successful metastatic colony, it must in general complete all or most of the well-defined steps that comprise the “metastatic cascade”.1–4 The first step is uncontrolled cell proliferation, characteristic of both benign and malignant tumor cells. Intrinsic or acquired genetic instability, together with various epigenetic factors, generate tumor cell variants that acquire unique phenotypic characteristics that dissociate them from the parent tumor population and thus allow these variants to escape from the “social” constraints imposed by the host. This step confers on these “mutated” tumor cells invasive or metastatic capabilities and is generally considered to be the first step leading to site-specific metastasis. In the next step, tumor cells, in response to various chemoattractants and cytokines derived from the host and/or tumor cells, migrate towards neighboring vasculature or intravasate into the vasculature of the tumor and thus enter the hematogenous or lymphatic circulation. Subsequently, tumor cells travel to and arrest in the microcirculation by specific adherence to the endothelial cells of the target organ. Thereafter, tumor cells induce endothelial cell retraction, exit from circulation (extravasation), interact with the organ-specific extracellular matrix (ECM), proliferate in response to local (“soil”) growth factors, and finally form a metastatic colony. Failure at any one of these steps generally will abort the metastatic process. Completion of every step of the metastatic cascade is subject to a multitude of variable influences, an apparent example being the requirement of angiogenesis for the growth of both primary and secondary tumors.5.6


Cancer Metastasis Tumor Cell Adhesion Bioactive Lipid Murine Melanoma Cell Tumor Cell Motility 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Honn, K.V. and Sloane, B.F. Hemostatic Mechanisms and Metastasis. Martinus Nijhoff, Norwell, MA. 1984.Google Scholar
  2. 2.
    Weiss, L., Orr, F.W. and Honn, K.V. Interactions of cancer cells with the microvasculature during metastasis. FASEB J. 2, 12, 1988.Google Scholar
  3. 3.
    Honn, K.V., Powers, W.E., and Sloane, B.F., Mechanisms of Cancer Metastasis: Potential Therapeutic Implications. Martinus Nijhoff, Norwell, MA, 1986.Google Scholar
  4. 4.
    Filder, I.J. and Hart, I.R., Biological diversity in metastatic neoplasms: origins and implications. Science, 217, 998, 1982.CrossRefGoogle Scholar
  5. 5.
    Folkman, J., Watson, K., Ingber, D., and Hanahan, D., Induction of angiogenesis during the transition from hyperplasia to neoplasia, Nature, 339, 58, 1989.CrossRefGoogle Scholar
  6. 6.
    Liotta, L.A., Steeg, P.S., and Stetler-Stevenson, W.G., Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation, Cell, 64, 327, 1991.CrossRefGoogle Scholar
  7. 7.
    Weiss, L., Orr, F.W., and Honn, K.V., Interactions between cancer and the microvasculature: a rate-regulator for metastasis, Clin. Expl. Metastasis, 7, 127, 1989.CrossRefGoogle Scholar
  8. 8.
    Hart, I.R., Goode, N.T., and Wilson. R.E., Molecular aspects of the metastatic cascade, Biochim. Biophys, Acta., 989, 65, 1989.Google Scholar
  9. 9.
    Liotta, L.A., Tumor invasion and metastasis: role of the extracellular matrix, Cancer Res., 46, 1, 1986.CrossRefGoogle Scholar
  10. 10.
    Pauli, B.U. and Lee, C.L. Organ preference of metastasis: the role of organ-specifically modulated endothelial cells. Lab. Invest., 58, 379, 1988.Google Scholar
  11. 11.
    Belloni, P.N. and Tressler, R.J., Microvascular endothelial cell heterogeneity: interactions with leukocytes and tumor cells, Cancer Metastasis Rev., 8, 353, 1990.CrossRefGoogle Scholar
  12. 12.
    Pauli, B.U., Augustin-Voss, H.G., El-Sabban, M.E., Johnson, R.C., and Hammar, D.A., Organ preference of metastasis: the role of endothelial cell adhesion molecules. Cancer Metastasis Rev., 9, 175, 1990.CrossRefGoogle Scholar
  13. 13.
    Nicolson, G.L., Organ specificity of tumor metastasis: role of preferential adhesion, invasion, and of malignant cells at specific secondary sites, Cancer Metastasis Rev., 7, 143, 1988.CrossRefGoogle Scholar
  14. 14.
    Auerbach, R., Pattern of tumor metastasis: organ selectivity in the spread of cancer cells, Lab. Invest., 58, 361, 1988.Google Scholar
  15. 15.
    Nicolson, G.L., Tumor and host molecules important in the organ preference of metastasis. Semin. Cancer Biol., 2, 143, 1991.Google Scholar
  16. 16.
    Honn, K.V., Grossi, I.M., Timar, J., Chopra, H., and Taylor, J.D., Platelets and cancer metastasis, in Micro-circulation in Cancer Metastasis, Orr, F.W., Buchanan, M., and Weiss, L., Eds., CRC Press, Boca Raton, FL, 1991, 93.Google Scholar
  17. 17.
    Honn, K.V., Tang, D.G., and Chen, Y.Q. Platelets and cancer metastasis: more than an epiphenomenon. Semin. Thromb. Hemost., 18, 390, 1992.CrossRefGoogle Scholar
  18. 18.
    Honn, K.V., Tang, D.G., and Crissman, J.D., Platelets and cancer metastasis: a casual relationship? Cancer Metastasis Rev., 11, 325, 1992.CrossRefGoogle Scholar
  19. 19.
    Samuelsson, B., Goldyne, M., Granstrom, E., Hamberg, M., Hammarstrom, S., and Malmstern, C., Prostaglandins and thromboxanes, Annu. Rev. Biochem., 47, 997, 1978.CrossRefGoogle Scholar
  20. 20.
    Needleman, P., Turk, J., Jakschik, B.A., Morrison, A.R., and Lefkowith, J.B., Arachidonic acid metabolism, Annu. Rev. Biochem., 55, 69, 1986.CrossRefGoogle Scholar
  21. 21.
    Piper, P.J. and Samhoun, M.D., Leukotrienes, Br. Med. Bull., 43, 297, 1987.Google Scholar
  22. 22.
    Spector, A.A., Gordon, J.A., and Moore, S.A., Hydroxyeicosatetraenoic acids (HETEs). Prog. Lipid Res., 27, 271, 1988.CrossRefGoogle Scholar
  23. 23.
    Honn, K.V. and Chen, Y.Q., Prostacyclin, hydroxy fatty acids and tumor metastasis, in Prostacyclin: New Perspectives in Basic Research and Novel Therapeutic Indications, Rubanyi, G.M. and Vane, J.R., Eds., Elsevier, Amsterdam, 1995.Google Scholar
  24. 24.
    Chen, Y.Q., Liu, B., Tang, D.G., and Honn, K.V., Fatty acid modulation of tumor cell-platelet-vessel wall interaction, Cancer Metastasis Rev., 1 I, 389, 1992.Google Scholar
  25. 25.
    Chang, W.C., Ning, C.C., Lin, M.T., and Huang, J.D., Epidermal growth factor enhances a microsomal 12lipox,ygenase activity in A431 cells, in Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation and Radiation Injury, Nigam, S., Honn, K.V., Marnett, L.J., and Walter, T., Eds., Kluwer Academic, Norwell, MA, 1992, 463.Google Scholar
  26. 26.
    Glasgow, W.C. and Eling, T.E., Epidermal growth factor regulation of linoleic acid metabolism in Syrian hamster embryo fibroblasts, in Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation and Radiation Injury, Nigam, S., Honn, K.V., Marnett, L.J., and Walden T., Eds., Kluwer Academic, Norwell, MA, 1992, p. 467.Google Scholar
  27. 27.
    Marier, J.A.M., Hla, T., and Maciag, T., Cyclooxygenase is an immediate early gene induced by interleukin-1 in human endothelial cells. J. Biol. Chem., 265, 10805, 1990.Google Scholar
  28. 28.
    Kast, R., Furstenberger, G., and Marks, F., Transforming growth factor alpha stimulated phospholipase A2 activity in mouse keratinocytes, in Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation and Radiation Injury, Nigam, S., Honn, K.V., Marnett, L.J., and Walden, T., Eds., Kluwer Academic, Norwell, MA, 1992, 459.Google Scholar
  29. 29.
    Arita, H., Cytokine-induced phospholipase A2 and its possible relationship to eicosanoid formation, in Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation and Radiation Injury., Nigam S., Honn, K.V., Marnett, L.J., and Walden, T., Eds, Kluwer Academic, Norwell, MA, 1992, p. 491.Google Scholar
  30. 30.
    Spector, A.A., Gordon, J.A., Moore, S.A., Hydroxyeicosatetraenoic acids (HETEs)., Prog. Lipid Res. 27, 271, 1988.CrossRefGoogle Scholar
  31. 31.
    Natarajan, R., Gu J, L., Rossi, J., Gonzales, N., L.nting, L., XU, 1., and Nadler, J., Elevated glucose and angiotensin II increase 12-lipoxygenase activity and expression in porcine aortic smooth muscle cells., Proc. Natl. Acad. Sci. USA, 90, 4947, 1993.Google Scholar
  32. 32.
    Kim, J.A., Gu, J., Natarajian, R., Berliner, J.A., and Nadler, J., Evidence that a leukocyte type of 12lipoxygenase is expressed in normal human vascular and mononuclear cells., Clin. Res., 41, 148A, 1983.Google Scholar
  33. 33.
    Hadjiangapiou, C., and Spector, A.A., 12-hydroxyeicosatetraenoic acid reduces prostacyclin production by endothelial cells., Prostaglandins 31, 1135, 1986.Google Scholar
  34. 34.
    Sekiya, F., Takagi, J., Usui, T., Kawajiri, K., Kobayashi, Y., Sato, F., and Saito, Y., I2-hydroxyeicosatetraenoic acid plays a central role in the regulation of platelet activation. Biochem. Biophys. Res. Commun. 179, 345, 1991.CrossRefGoogle Scholar
  35. 35.
    Hofer, G., Bieglmayer, C.H., Kopp, B., Janish, H., Measurement of eicosanoids in menstrual fluid by the combined use of High pressure chromatography and radio immunoassay., Prostaglandins, 45, 413, 1993.Google Scholar
  36. 36.
    Wetzka, B., Schafer, W., Scheibel, M., Nusing, R., Zahradnik, H.D., Eicosanoid production by intrauterine tissues before and after labor in short-term tissue culture., Prostaglandins, 45, 571, 1993.Google Scholar
  37. 37.
    Chang, W.C., Liu, Y.W., Ning, C.C., Suzuki, H., Yoshimoto, T., Yamamoto, S., Induction of arachidonate 12-lipoxygenase mRNA by epidermal growth factor in A43I cells., J. Biol. Chem., 268, 18734, 1993.Google Scholar
  38. 38.
    Chang, W.C., Ning, C.C, Lin, M.T., Huang, J.D., Epidermal growth factor enhances a microsomal 12lipoxygenase activity in A43I cells., J. Biol. Chem., 267, 3657, 1992.Google Scholar
  39. 39.
    Chen, Y.Q., Duniec, Z.M., Liu, B., Hagmann, W., Gao, X., Shimoji, K., Marnett, L.J., Johnson, C.R., Honn, K.V., Endogenous 12(S)-HETE production by tumor cells and its role in metastasis. Cancer Res., 54, 1574, 1994.Google Scholar
  40. 40.
    Hagmann, W., Kagawa, D., Renaud, C., Honn, K.V., Activity and protein distribution of I 2-lipoxygenase in FIEL cells: Induction of membrane-association by phorbol ester TPA, modulation of activity by glutathione and 13-HPODE, and Ca’.-dependent translocation to membranes., Prostaglandins, 46, 471, 1993.Google Scholar
  41. 41.
    Hagmann, W., Maher, R., Honn, K.V., Intracellular distribution, activity, and Ca’tdependent translocation of 12-lipoxygenase in Lewis lung tumor cells. In: Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation, and Radiation Injury, Honn, K.V., Marnett, L.J., and Nigam S., Eds., Plenum Publishing, in press, 1997.Google Scholar
  42. 42.
    Liu, B., Timar, J., Howlett, J., Diglio, C.A., Honn, K.V., Lipoxygenase metabolites of arachidonic and linoleic acids modulate the adhesion of tumor cells to endothelium via regulation of protein kinase C., Cell Regul. 2, 1045, 1991.Google Scholar
  43. 43.
    Liu, B., Marnett, L.J., Chaudhary, A., Ji, C., Blair, I.A., Johnson, C.R., Diglio, C.A., and Honn, K.V., Biosynthesis of 12(S)-hydroxyeicosatetraenoic acid by BI6 amelanotic melanoma cells is a determinant of their metastatic potential. Lab. Invest., 70, 314, 1994.Google Scholar
  44. 44.
    Honn, K.V., Tang, D.G., Grossi, I., Duniec, Z.M., Timar, J., Renaud, C., Leithauser, M., Blair, I., Johnson, C.R., Diglio C.A., Kimler, V.A., Taylor, J.D., and Marnett, L.J., Tumor cell-derived 12(S)-hydroxyeicosatetraenoic acid induces microvascular endothelial cell retraction., Cancer Res., 54, 565, 1994.Google Scholar
  45. 45.
    Honn, K.V., Nelson, K.K., Renaud, C., Bazaz, R., Diglio, C.A., Timar, J., Fatty acid modulation of tumor cell adhesion to microvessel endothelium and experimental metastasis., Prostaglandins, 44, 413, 1992.Google Scholar
  46. 46.
    Tang, D.G., Honn, K.V., 12-Lipoxygenase, 12(S)-HETE, and cancer metastasis. Annals New York Acad. Sci., 744, 199, 194.Google Scholar
  47. 47.
    Timar, J., Chen, Y.Q., Liu, B, Bazaz, R., Taylor, J.D., Honn, K.V., The lipoxygenase metabolite 12(S)HETE promotes allb133 integrin-mediated tumor cell spreading on fibronectin, Int. J. Cancer, 52, 594, 1992.CrossRefGoogle Scholar
  48. 48.
    Honn, K.V., Tang, D.G., Grossi, I.M., Renaud, C., Duniec, Z.M., Johnson, C.R., Diglio, C.A., Enhanced endothelial cell retraction mediated by 12(S)-HETE: A proposed mechanism for the role of platelets in tumor cell metastasis. Exptl. Cell. Res., 210, 1, 1994.CrossRefGoogle Scholar
  49. 49.
    Liotta, L.A., Mandler, R., Murano, G., Katz, D.A., Gordon, R.K., Chiang, P.K., Schiffman, E., Tumor-cell autocrine motility factor. Proc. Natl. Acad. Sci. USA, 83, 3302, 1986.CrossRefGoogle Scholar
  50. 50.
    Watanabe, H., Carmi, R, Hogan, V., Raz, T., Silletti, S., Nabi, I.R., and Raz, A., Purification of human tumor cell autocrine motility factor and molecular cloning of its receptor., J. Biol. Chem., 226, 13442, 1991.Google Scholar
  51. 51.
    Ruoslahti, E., Giancotti, F.G., Integrins and tumor cell dissemination., Cancer Cells 4, 119, 1989.Google Scholar
  52. 52.
    Singer, I.J., Scott, S., Kawaka, D.W., Kazazis, D.M., Adhesosomes: specific granules containing receptors for laminin, c3bi, fibrinogen, fibronectin and vitronectin in human polymorphonuclear leukocytes and monocytes., J. Cell. Biol. 109, 3169, 1989.CrossRefGoogle Scholar
  53. 53.
    Chopra, H., Timar, J., Chen, Y.Q., Rong, X.H., Grossi, I.M., Fitzgerald, L.A., Taylor, J.D., and Honn, K.V., The lipoxygenase metabolite 12(S)-HETE induces a cytoskeleton-dependent increase in surface expression of integrin allb133 on melanoma cells., Int. J. Cancer, 49, 774, 1991.CrossRefGoogle Scholar
  54. 54.
    Zachary, I., Rozengurt, E., Focal adhesion kinase (p125FAK): A point of convergence in the action of neuropeptides, integrins, and oncogenes., Cell 71, 891, 1992.CrossRefGoogle Scholar
  55. 55.
    Shaller, M.D., Borman, C.A., Cobb, B.S., Vines, R.R., Reynolds, A.B., and Parsons, T.J., pp125F4K, a structurally distinctive protein-tyrosine kinase associated with focal adhesions, Proc. Natl. Acad. Sci. USA, 89, 5192, 1992.CrossRefGoogle Scholar
  56. 56.
    Guan, J.L., and Shalloway, D., Regulation of focal adhesion-as-associated protein tyrosine kinase by both cellular adhesion on oncogenic transformation., Nature, 358, 690, 1992.CrossRefGoogle Scholar
  57. 57.
    Grossi, I.M., Fitzgerald, L.A., Unbarger, L.A., Nelson, K.D., Diglio, C.A., Taylor, J.D., and Honn, K.V., Bi-directional control of membrane expression and/or activation of the tumor cell IRGpIIB/llla receptor and tumor cell adhesion by lipoxygenase products of arachidonic and linoleic acid., Cancer Res. 49, 1029, 1989.Google Scholar
  58. 58.
    Chang, Y.S., Chen, Y.Q., Timar, J., Grossi, I.M., Fitzgerald, L.A., Diglio, C.A., and Honn, K.V., Increased expression of allbß3 integrin in subpopulations of murine melanoma cells with high lung-colonizing ability., Int. J. Cancer, 51, 445, 1992.CrossRefGoogle Scholar
  59. 59.
    Chen, Y.Q., Gao, X., Timar, J., Tang, D.G., Grossi, I.M., Chelladurai, M., Kunicki, T.J., Fligiel, S.E.G., Taylor, J.D., and Bonn, K.V., Identification of the allb133 integrin in murine tumor cells., J. Biol. Chem., 267, 17314, 1992.Google Scholar
  60. 60.
    Chopra, H., Timar, J., Rong, X., Grossi, I.M., Hatfield, J.S., Fligiel, S.E.G., Finch, C.A., Taylor, J.D., and Honn, K.V., Is there a role for the tumor cell integrin atlbf33 and cytoskeleton in tumor cell-platelet interaction?, Clin. Exptl. Metastasis, I0, 125, 1992.CrossRefGoogle Scholar
  61. 61.
    Timar, J., Silletti, S., Bazaz, R., Raz, A., and Honn, K.V., Regulation of melanoma-cell motility by the lipoxygenase metabolite 12(S)-HETE., Int. J. Cancer, 55, 1003, 1993.CrossRefGoogle Scholar
  62. 62.
    Silletti, S., and Raz, A., Autocrine motility factor (AMF) is a growth factor., Biochem. Biophys. Res. Commun., 1994, 446, 1993.Google Scholar
  63. 63.
    Liu, B., Maher, R.J., Hannun, Y.A., Porter, A.T., and Honn, K.V., I2(S)-HETE increases in invasive potential of prostate tumor cells through selective activation of PKCa., J. Natl. Cancer Inst., 86, 1145. 1994.CrossRefGoogle Scholar
  64. 64.
    Honn, K.V., Timar, J., Rozhin, J., Bazaz, R., Sameni, M., Ziegler, G., and Sloane, B.F., A lipoxygenase metabolite, I 2(S)-HETE, stimulates protein kinase C-mediated release of cathespin B from malignant cells., Exptl. Cell. Res., 214, 120, 1994.CrossRefGoogle Scholar
  65. 65.
    Schmitt, M. and Graff, J.H., Tumor-associated proteases., Fibrinolysis, 6, 3, 1992.Google Scholar
  66. 66.
    Sloane, B.F., Moin, K. Sameni, M., Tait, L.R., Rozhin, J., and Ziegler, J., Membrane association of cathepsin B can be induced by transfection of human breast epithelial cells with c-Ha-ras oncogene., J. Cell Sci., 107, 373, 1994.Google Scholar
  67. 67.
    Sloane, B.F., Moin, K., Krepela, E. and Rozhin, J., Cathepsin B and its endogenous inhibitors: the role in tumor cell malignancy., Cancer Metastasis Rev., 9, 333, 1990.CrossRefGoogle Scholar
  68. 68.
    Sloane, B.F., Rozhin, J., Johnson, K., Taylor, J., Crissman, J.D., and Honn, K.V., Cathepsin B: association with plasma membrane in metastatic tumors., Proc. Natl. Acad. Sci. USA, 83, 2483, 1986.CrossRefGoogle Scholar
  69. 69.
    Sloane, B.F., Rozhin, J.R., Gomez, A.P., Grossi, I.M., and Honn, K.V., Effects of I2-hydroxyeicosatetraenoic acid on release of cathepsin B and cysteine proteinase inhibitors from malignant melanoma cells. In: Honn, K.V., Marnett, L.J., Nigam, S., Walden, T.L., Eds., Eicosanoids and Other Bioactive Lipids in Cancer and Radiation Injury., Kluwer, Boston, MA, p. 373, 1991.CrossRefGoogle Scholar
  70. 70.
    Timar, J., Tang, D.G., Bazaz, R., Haddard, M.M., Kimler, V.A., Taylor, J.D., T and Honn, K.V., PKC mediates 12(S)-HETE-induced cytoskeletal rearrangement in BI6a melanoma cells., Cell Motil. Cytoskel., 26, 49, 1993.CrossRefGoogle Scholar
  71. 71.
    Tang, D.G., and Honn, K.V., Role of protein kinase C and phosphatases in I2(S)-HETE-induced tumor cell cytoskeletal reorganization. In: Honn, K.V., Marnett, L.J., Nigam, S., Eds., Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation and Radiation Injury., Kluwer, Boston, MA, in press, 1997.Google Scholar
  72. 72.
    Piomelli, D., Volterra, A., Dale, N., Lipoxygenase metabolites of arachidonic acid as second messengers for presynaptic inhibition of aplysia sensory cells., Nature, 328, 38, 1987.CrossRefGoogle Scholar
  73. 73.
    Nadler, J.L, Natarajan, R., and Stem, N., Specific action of the lipoxygenase pathway in mediating angiotension II-induced aldosterone synthesis in isolated adrenal glomerula cells, J. Clin. Invest., 80, 1763, 1987.CrossRefGoogle Scholar
  74. 74.
    Chan, C.C., Duhamel, L., and Ford-Hutchinson, A., Leukotriene B4 and 12- hydroxyeicosatetraenoic acid stimulate epidermal proliferation in vivo in the guinea pig., J. Invest. Dermatol., 85, 333, 1985.CrossRefGoogle Scholar
  75. 75.
    Antonipillai, I., I2-Lipoxygenase products are potent inhibitors of prostacyclin-induced renin release., Proc. Soc. Exp. Biol. Med., 194, 224, 1990.Google Scholar
  76. 76.
    Etingin, O.R., and Hajjar, D.P., Evidence for cytokine regulation of cholesterol metabolism in herpes viral-infected arterial cells by the lipoxygenase pathway., J. Lipid Res., 31, 299, 1990.Google Scholar
  77. 77.
    Tang, D.G., Diglio, C.A., and Honn, K.V., Transcriptional activation of endothelial cell integrin alpha, by protein kinase C activator 12(S)-HETE., J. Cell. Sci., 108, 2679, 1995.Google Scholar
  78. 78.
    Honn, K.V., Tang, D., Grossi, I.M., Duniec, Z.M., Timar, J., Renaud, C., Leithauser, M., Blair, I., Diglio, C.A., Taylor, J.D., and Mamett, L.J., Tumor cell-derived 12(S)-hydroxyeicosatetraenoic acid induces microvascular endothelial cell retraction., Cancer Res., 54, 565, 1994.Google Scholar
  79. 79.
    O’Brian, C.A., and Ward, N.E., Biology of protein kinase C family., Cancer Metastasis Rev., 8, 199, 1989.CrossRefGoogle Scholar
  80. 80.
    Liu, B., Khan, W.A., Hannun, Y.A., Timar, J., Taylor, J.D., Lundy, S., Butovich, I., and Honn, K.V., 12(S)HETE and 13(S)-HODE regulation of protein kinase Ca in melanoma cells: role of receptor mediated hydrolysis of inositol phospholipids., Proc. Natl. Acad. Sci. USA, 92, 9323, 1995.CrossRefGoogle Scholar
  81. 81.
    Honn, K.V., Tang, D.G., Gao, Z., Butovich, I.A., Liu, B., Timar, J., and Hagmann, W., I2-Lipoxygenases and 12(S)HETE: role in cancer metastasis., Cancer Metastasis Rev., 13, 365, 1994.CrossRefGoogle Scholar
  82. 82.
    Liu, B., Renaud, C., Nelson, K.K., Chen, Y.Q., Bazaz, R., Kowynia, J., Timar, J., Diglio C.A., and Honn, K.V., Protein kinase C inhibitor calphostin C reduces B16 amelanotic melanoma cell adhesion to endothelium and lung colonization., Int. J. Cancer, 52, 147, 1992.CrossRefGoogle Scholar
  83. 83.
    Berridge, M.J. and Irvine, R.F., Inositol phosphates and cell signaling., Nature, 341, 197, 1989.CrossRefGoogle Scholar
  84. 84.
    Cho, Y., and Ziboh, V.A., 13-Hydroxyocatadecaenoic acid reverse epidermal hyperproliferaiton via selective inhibition of protein kinase C-b activity. Biochem. Biophys. Res. Commun., 201, 257, 1994.Google Scholar
  85. 85.
    Gross E., Ruzicka, T., Restorff, B.V., Stolz, W., and Klotz, K.N., High-affinity binding and lack of growth-promoting activity of 12(S)hydroxyeicosatatraenoic acid (12[S]HETE) in a human epidermal cell lines., J. Invest. Dermatol., 94, 446, 1990.CrossRefGoogle Scholar
  86. 86.
    Croset, M., and Lagarde, M., Stereospecific inhibition of PGHZ induced aggregation by lipoxygenase products of eicosaenoic acids., Biochem. Biophys. Res. Commun., 112, 878, 1983.CrossRefGoogle Scholar
  87. 87.
    Fonlupt, P., Croset, M., and Lagarde, M., I2(S)-HETE inhibits the binding of PGH,/TXA, receptor ligands in human platelets, Thromb. Res., 63, 239, 1991.Google Scholar
  88. 88.
    Herbertsson, H. and Hammarstrom, S., High-affinity binding sites for 12(S)hydroxy-5,8,10,14-eicosatetraenoic acid (12(S)HETE) in carcinoma cells, FEBS Lett., 298. 249, 1992.CrossRefGoogle Scholar
  89. 89.
    Herbertsson, H. and Hammarstrom, S., Cytosolic 12(S)hydroxy-5,8,10,14- eicosatetraenoic acid binding sites in carcinoma cells. In: Honn, K.V., Mamett, L.J., Nigam, S., Eds., Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation and Radiation Injury., Kluwer Acad. Publ., Norwell, MA, 1994.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Keqin Tang
    • 1
  • Kenneth V. Honn
    • 1
  1. 1.Department of Radiation OncologyWayne State University School of MedicineDetroitUSA

Personalised recommendations