Advertisement

Regulation of Peroxisomal Fatty Acyl-CoA Oxidase in the Yeast

Saccharomyces cerevisiae
  • Gillian M. Small
  • Igor V. Karpichev
  • Yi Luo
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 422)

Abstract

Peroxisomes are specialized organelles found in most eukaryote cells, where their major functions are in cellular respiration and fatty acid oxidation. Proliferation of this organelle, and induction of peroxisomal enzymes, is a phenomenon that occurs in diverse species, and is stimulated by a number of physiological and pharmacological stimuli. A large number of chemically diverse compounds, including hypolipidemic drugs and industrial plasticizers, have been shown to cause peroxisome proliferation and the induction of peroxisomal enzymes in rodents. Chronic exposure to these compounds produces hepatocellular carcinomas, however, the mechanism by which this tumorigenic event occurs is unknown. In the yeast Saccharomyces cerevisiae peroxisomes are induced when a fatty acid such as oleate is supplied as a carbon source in the growth medium. In addition, many peroxisomal enzymes are induced by growth on oleate; these include enzymes of the peroxisomal ß-oxidation cycle. This regulation occurs at the transcription level, and is controlled by specific trans-acting factors. The research in our laboratory has focused on the mechanisms involved in this regulation, and on the identification and characterization of the proteins involved. Our recent results, and current research directions are summarized.

Keywords

Zellweger Syndrome Peroxisomal Protein Peroxisomal Enzyme Hypolipidemic Drug Current Research Direction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. de Duve and P. Baudhuin. Peroxisomes (microbodies and related particles). Physiol.Rev. 46: 323–357, (1966).Google Scholar
  2. 2.
    H. van den Bosch, R.B.H. Schutgens, R.J.A. Wanders and J.M. Tager. Biochemistry of peroxisomes. Annu.RevBjochem. 61: 157–197, (1992).Google Scholar
  3. 3.
    Lazarow, P.B. and Moser, H.W. Disorders of peroxisomal biogenesis. In: “The Metabolic Basis of Inherited Diseases”, edited by Scriver, C.R., Beaudet, A.L., Sly, W.S. and Valle, D. New York: McGraw-Hill Co., p. 1479–1509. (1989).Google Scholar
  4. 4.
    S. Goldfischer, C.L. Moore, A.B. Johnson, A.J. Spiro, M.P. Valsamis, H.K. Wisniewski, R.H. Ritch, W.T. Norton, I. Rapin and L.M. Gartner. Peroxisomal and mitochondrial defects in the cerebro-hepato-renal syndrome. Science 182: 62–64, (1973).CrossRefGoogle Scholar
  5. 5.
    E.A. Lock, A.M. Mitchell and C.R. Elcombe. Biochemical mechanisms of induction of hepatic peroxisome proliferation. Annu.RevPharmacol.Toxicol. 29: 145 - I63, (1989).CrossRefGoogle Scholar
  6. 6.
    C.E. Neat, M.S. Thomassen and H. Osmundsen. Induction of peroxisomal B-oxidation in rat liver by high fat diets. Biochem.J. 186: 369–371, (1980).Google Scholar
  7. 7.
    C.E. Neat, M.S. Thomassen and H. Osmundsen. Effects of high-fat diets on hepatic fatty acid oxidation in the rat. Isolation of rat liver peroxisomes by vertical-rotor, iso-osmotic, Percoll gradient. Biochem.J. 196: 149–159, (1981).Google Scholar
  8. 8.
    H. Ishii, S. Horie and T. Suga. Physiological role of peroxisomal 0-oxidation in liver of fasted rats. J.Biochem. 87: 1855–1858, (1980).Google Scholar
  9. 9.
    J.K. Reddy and N.D. Lalwani. Carcinogenesis by hepatic peroxisome proliferators: Evaluation of the risk of hypolipidemic drugs and industrial plasticizers to humans. Crit.Rev.Toxicol. 12: 1–58, (1983).CrossRefGoogle Scholar
  10. 10.
    M.S. Rao and J.K. Reddy. Peroxisome proliferation and hepatocarcinogenesis. Carcinogenesis 8: 631–636, (1987).CrossRefGoogle Scholar
  11. 11.
    Popp, J.A. and Cattley, R.C. Peroxisome proliferators as initiators and promoters of rodent hepatocarcinogenesis. In: “Peroxisomes: Biology and importance in toxicology and medicine”, edited by Gibson, G. and Lake, B. London: Taylor and Francis, p. 653–665. (1993).Google Scholar
  12. 12.
    J.K. Reddy, N.D. Lalwani, M.K. Reddy and S.A. Qureshi. Excessive accumulation of autofluorescent lipofuscin in the liver during hepatocarcinogenesis by methyl clofenepate and other hypolipidemic peroxisome proliferators. Cancer Res. 42: 259–266, (1982).Google Scholar
  13. 13.
    J.K. Reddy and M.S. Rao. Oxidative DNA damage caused by persistent peroxisome proliferation: its role in hepatocarcinogenesis. Mutation Research 214: 63–68, (1989).CrossRefGoogle Scholar
  14. 14.
    M.S. Rao and J.K. Reddy. An overview of peroxisome proliferator-induced hepatocarcinogenesis. Environ.Health Perspect. 93: 205–209, (1991).CrossRefGoogle Scholar
  15. 15.
    R.C. Cattley and J.A. Popp. Differences between the promoting activities of the peroxisome proliferator WY-14,643 and phenobarbital in rat liver. Cancer Res. 49: 3246–3251, (1989).Google Scholar
  16. 16.
    Issemann and S. Green. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347: 645–6650, (1990).CrossRefGoogle Scholar
  17. 17.
    S.A. Kliewer, B.M. Forman, B. Blumberg, E.S. Ong, U. Borgmeyer, D.J. Mangelsdorf, K. Umesong and R.M. Evans. Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc.Natl.Acad.Sci.USA 91: 7355–7359, (1996).CrossRefGoogle Scholar
  18. 18.
    C. Dreyer, G. Krey, H. Keller, F. Givel, G. Helftenbein and W. Wahli. Control of the peroxisomal 0-oxidation pathway by a novel family of nuclear hormone receptors. Cell 68: 879–887, (1992).CrossRefGoogle Scholar
  19. 19.
    M. Gottlicher, E. Widmark, Q. Li and J-A. Gustafsson. Fatty acids activate a chimera of the clofibrate acid-activated receptor and the glucocorticoid receptor. Proc.Natl.Acad.Sci. USA 89: 4653–4657, (1992).CrossRefGoogle Scholar
  20. 20.
    J.D. Tugwood, L Issemann, R.G. Anderson, K.R. Bundell, W.L. McPheat and S. Green. The mouse peroxisome proliferator activated receptor recognizes a response element in the 5’ flanking sequence of the rat acyl CoA oxidase gene. EMBO J. 11: 433–439, (1992).Google Scholar
  21. 21.
    S.A. Kliewer, K. Umesono, D.J. Noonan, R.A. Heyman and R.M. Evans. Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature 358: 771–774, (1992).CrossRefGoogle Scholar
  22. 22.
    M. Veenhuis, M. Mateblowski, W.H. Kunau and W. Harder. Proliferation of microbodies in Saccharomyces cerevisiae. Yeast 3: 77–84, (1987).CrossRefGoogle Scholar
  23. 23.
    A. Dmochowska, D. Dignard, R. Maleszka and D.Y. Thomas. Structure and transcriptional control of the Saccharomyces cerevisiae PDX/ gene encoding acyl-coenzyme A oxidase. Gene 88: 247–252, (1990).CrossRefGoogle Scholar
  24. 24.
    T.W. Wang, A.S. Lewin and G.M. Small. A negative regulating element controlling transcription of the gene encoding acyl-CoA oxidase in Saccharomyces cerevisiae. Nucleic Acids Res. 20: 3495–3500, (1992).CrossRefGoogle Scholar
  25. 25.
    T. Wang, Y. Luo and G.M. Small. The PDX1 gene encoding peroxisomal acyl-CoA oxidase in Saccharomyces cerevisiae is under the control of multiple regulatory elements. J.Biol.Chem. 269: 24480–24485, (1994).Google Scholar
  26. 26.
    A.W.C. Einerhand, T.M. Voorn-Brouwer, R. Erdmann, W-H. Kunau and H.F. Tabak. Regulation of transcription of the gene coding for peroxisomal 3-oxoacyl-CoA thiolase of Saccharomyces cerevisiae. Eur.J. Biochem. 200: 113–122, (1991).CrossRefGoogle Scholar
  27. 27.
    A.W.0 Einerhand, W.T. Kos, B. Distel and H.F. Tabak. Characterization of a transcriptional control element involved in proliferation of peroxisomes in yeast in response to oleate. Eur:J.Biochem. 314: 323–331, (1993).CrossRefGoogle Scholar
  28. 28.
    W. Kos, A.J. Kat, S. van Wilpe and H.F. Tabak. Expression of genes encoding peroxisomal proteins in Saccharomyces cerevisiae is regulated by different circuits of transcriptional control. Biochim.Biophvs.Acta 1264: 79–86, (1995).CrossRefGoogle Scholar
  29. 29.
    Y. Luo, I.V. Karpichev, R.A. Kohanski and G.M. Small. Purification, identification and properties of a Saccharomyces cerevisiae oleate-activated upstream activating sequence-binding protein that is involved in the activation of PDX1. J.Biol.Chem. 271: 12068–12075, (1996).CrossRefGoogle Scholar
  30. 30.
    J.W. Zhang, Y. Han and P.B. Lazarow. Novel peroxisome clustering mutants and peroxisome biogenesis mutants of Saccharomyces cerevisiae. J.Cell Biol. 123: 1133–1147, (1993).CrossRefGoogle Scholar
  31. 31.
    R. Erdmann, M. Veenhuis, D. Mertens and W-I-I. Kunau. Isolation of peroxisome-deficient mutants of Saccharomyces cerevisiae. Proc.Natl.Acad.Sci. USA 86: 5419–5423, (1989).CrossRefGoogle Scholar
  32. 32.
    R.J. Reece and M. Ptashne. Determinants of binding-site specificity among yeast C6 zinc cluster proteins. Science 261: 909–911, (1993).CrossRefGoogle Scholar
  33. 33.
    W.H. Landschulz, P.F. Johnson and S.L. McKnight. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240: 1759–1764, (1988).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Gillian M. Small
    • 1
  • Igor V. Karpichev
    • 1
  • Yi Luo
    • 1
  1. 1.Department of Cell Biology and AnatomyMount Sinai Medical CenterNew YorkUSA

Personalised recommendations