On Stable Sets of Equilibria

  • A. J. Vermeulen
  • J. A. M. Potters
  • M. J. M. Jansen
Part of the Theory and Decision Library book series (TDLC, volume 18)


A new kind of perturbations of normal form games is introduced and the stability concept related to these perturbations is investigated. The CQ-sets obtained in this way satisfy the properties of the Kohlberg-Mertens program except Invariance. In order to overcome this problem our solution concept is modified in such a way that all properties formulated by Kohlberg and Mertens are satisfied.


Payoff Function Pure Strategy Good Reply Strategy Profile Strategy Space 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hillas, J. (1990) On the definition of the strategic stability of equilibria, Econometrica 58, 1365–1391.CrossRefGoogle Scholar
  2. 2.
    Kohlberg, E. and J.F. Mertens (1986) On strategic stability of equilibria, Econometrica 54, 1003–1037.CrossRefGoogle Scholar
  3. 3.
    Mertens, J.F. (1987) Ordinality in noncooperative games, Core Discussion Paper 8728, CORE Louvain de la Neuve, Belgium.Google Scholar
  4. 4.
    Mertens, J.F. (1989) Stable equilibria — a reformulation. Part I: Deinitions and basic properties, Math. Oper. Res. 14, 575–625.CrossRefGoogle Scholar
  5. 5.
    Mertens, J.F. (1991) Stable equilibria — a reformulation. Part II: Discussion of the definition and futher results, Math. Oper. Res. 16, 694–753.CrossRefGoogle Scholar
  6. 6.
    Myerson, R.B. (1978) Refinements of the Nash equilibrium concept, Internat. J. Game Theory 7, 73–80.CrossRefGoogle Scholar
  7. 7.
    Nash, J.F. (1950) Equilibrium points in n-person games, Proc. Nat. Acad. Sci. U.S.A. 36, 48–49.CrossRefGoogle Scholar
  8. 8.
    Selten, R. (1975) Reexamination of the perfectness concept for equilibrium points in extensive games, Internat. J. Game Theory 4, 25–55.CrossRefGoogle Scholar
  9. 9.
    Schrijver, A. (1986) Theory of linear and integer programming, John Wiley & Sons, New York.Google Scholar
  10. 10.
    Shapley, L.S. (1971) Cores of convex games, Int. J. Game Theory 1, 11—26.CrossRefGoogle Scholar
  11. 11.
    Vermeulen, A.J., Jansen, M.J.M. and J.A.M. Potters (1995) Making solutions invariant, Report 9519, Department of Mathematics, University of Nijmegen, The Netherlands.Google Scholar
  12. 12.
    Wilson, R. (1992). Computing simply stable equilibria, Econometrica 60, 1039–1070.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • A. J. Vermeulen
    • 1
  • J. A. M. Potters
    • 2
  • M. J. M. Jansen
    • 3
  1. 1.Faculty of EconomicsUniversity of MaastrichtMD MaastrichtThe Netherlands
  2. 2.Department of MathematicsUniversity of NijmegenED NijmegenThe Netherlands
  3. 3.University of MaastrichtMD MaastrichtThe Netherlands

Personalised recommendations