Advertisement

Molecular Drug Design and Dopamine Receptors

  • Richard B. Mailman
  • David E. Nichols
  • Alexander Tropsha
Part of the The Receptors book series (REC)

Abstract

The purpose of this chapter is to discuss the approaches we and others have used for the rational design of novel ligands for dopamine receptors. It is impossible in one chapter to provide both a detailed review of the technologies used for molecular drug design and their application to dopamine receptor drug design. Our goal, therefore, is to communicate a summary of the general strategies that are used for molecular drug design, a summary of current issues in the field and their development, and some examples from our own research with dopamine receptors that highlight the application of such methods.

Keywords

Dopamine Receptor Drug Design Receptor Binding Site Receptor Model Dopamine Receptor Agonist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boyd, D. B. (1990) Successes of computer-assisted molecular design, in Reviews in Computational Chemistry, vol. 1 ( Lipkowitz, K. B. and Boyd, D. B., eds.), VCH Publishers, New York, pp. 355–371.Google Scholar
  2. 2.
    Marshall, G. R., Barry, C. D., Bosshard, H. E., Dammkoehler, R. A., and Dunn, D. A. (1979) The conformational parameter in drug design: the active analog approach. ACS Symposium Series 112, 205–226.CrossRefGoogle Scholar
  3. 3.
    Cramer, R. D., III, Patterson, D. E., and Bunce, J. D. (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc. 110, 5959–5967.PubMedCrossRefGoogle Scholar
  4. 4.
    Clement-Cormier, Y. C., Kebabian, J. W., Petzold, G. L., and Greengard, P. (1974) Dopamine-sensitive adenylate cyclase in mammalian brain: a possible site of action of antipsychotic drugs. Proc. Natl. Acad. Sci. USA 71, 1113–1117.PubMedCrossRefGoogle Scholar
  5. 5.
    Kebabian, J. W. and Calne, D. B. (1979) Multiple receptors for dopamine. Nature 277, 93–96.PubMedCrossRefGoogle Scholar
  6. 6.
    Garau, L., Govoni, S., Stefanini, E., Trabucchi, M., and Spano, P. F. (1978) Dopamine receptors: pharmacological and anatomical evidence indicate two distinct dopamine receptor populations are present in rat striatum. Life Sci. 23, 1745–1750.PubMedCrossRefGoogle Scholar
  7. 7.
    Cannon, J. G. (1975) Chemistry of dopaminergic agonists, in Advances in Neurology, vol. 9 ( Calne, D. B., Chase, T. N., and Barbeau, A., eds.), Raven, New York, pp. 177–183.Google Scholar
  8. 8.
    McDermed, J. D., Freeman, H. S., and Ferris, R. M. (1979) Enantioselectivity in the binding of (+)- and (—)-2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronaphthalene and related agonists to dopamine receptors, in Catecholamines: Basic and Clinical Frontiers, vol. I ( Usdin, E., Kopin, I., and Barchas, J., eds.), Pergamon, New York, pp. 568–570.Google Scholar
  9. 9.
    Goldberg, L. I., Kohli, J. D., Kotake, A. N., and Volkman, P. H. (1978) Characteristics of the vascular dopamine receptor: comparison with other receptors. Fed. Proc. 37, 2396–2402.PubMedGoogle Scholar
  10. 10.
    Setler, P. E., Sarau, H. M., Zirkle, C. L., and Saunders, H. L. (1978) The central effects of a novel dopamine agonist. Eur. J. Pharmacol. 50, 419–430.PubMedCrossRefGoogle Scholar
  11. 11.
    Christensen, A. V., Arnt, J., Hyttel, J., Larsen, J. J., and Svendsen, O. (1984) Pharmacological effects of a specific dopamine D-1 antagonist SCH23390 in comparison with neuroleptics. Life Sci. 34, 1529–1540.PubMedCrossRefGoogle Scholar
  12. 12.
    Clark, D. and White, F. J. (1987) Review: D, dopamine receptor—the search for a function: a critical evaluation of the D1/D, dopamine receptor classification and its functional implications. Synapse 1, 347–388.PubMedCrossRefGoogle Scholar
  13. 13.
    Mailman, R. B., Schulz, D. W., Lewis, M. H., Staples, L., Rollema, H., and DeHaven, D. L. (1984) SCH-23390: a selective D, dopamine antagonist with potent D, behavioral actions. Eur. J. Pharmacol. 101, 159, 160.Google Scholar
  14. 14.
    Iorio, L. C., Barnett, A., Leitz, F. H., Houser, V. P., and Korduba, C. A. (1983) SCH23390, a potential benzazepine antipsychotic with unique interactions on dopaminergic systems. J. Pharmacol. Exp. Ther. 226, 462–468.PubMedGoogle Scholar
  15. 15.
    Lovenberg, T. W., Brewster, W. K., Mottola, D. M., Lee, R. C., Riggs, R. M., Nichols, D. E., Lewis, M. H., and Mailman, R. B. (1989) Dihydrexidine, a novel selective high potency full D dopamine receptor agonist. Eur. J. Pharmacol. 166, 111–113.PubMedCrossRefGoogle Scholar
  16. 16.
    Andersen, P. H., Nielsen, E. B., Scheel-Kruger, J., Jansen, J. A., and Hohlweg, R. (1987) Thienopyridine derivatives identified as the first selective, full efficacy, dopamine D receptor agonists. Eur. J. Pharmacol. 137, 291, 292.Google Scholar
  17. 17.
    Truex, L. L., Foreman, M. M., Riggs, R. M., and Nichols, D. E. (1985) Effects of modifications of the 4-(3,4-dihydroxyphenyl)-1,2,3,4-tetrahydroisoquinoline structure on dopamine sensitive rat retinal adenylate cyclase activity. Soc. Neurosci. Abstr. 11, 315.Google Scholar
  18. 18.
    Nichols, D. E. (1983) The development of novel dopamine agonists. ACS Symposium 224, 201–218.CrossRefGoogle Scholar
  19. 19.
    Charifson, P. S., Bowen, J. P., Wyrick, S. D., Hoffman, A. J., Cory, M., McPhail, A. T., and Mailman, R. B. (1989) Conformational analysis and molecular modeling of 1-phenyl-, 4-phenyl-, and 1-benzyl-1,2,3,4-tetrahydroisoquinolines as D, dopamine receptor ligands. J. Med. Chem. 32, 2050–2058.PubMedCrossRefGoogle Scholar
  20. 20.
    Chothia, C. and Lesk, A. M. (1986) The relation between the divergence of sequence and structure in proteins. EMBO J. 5, 823–826.PubMedGoogle Scholar
  21. 21.
    Brewster, W. K., Nichols, D. E., Riggs, R. M., Mottola, D. M., Lovenberg, T. W., Lewis, M. H., and Mailman, R. B. (1990) Trans-10,1 I-dihydroxy-5,6,6a,7,8,12bhexahydrobenzo[a]phen-anthridine: a highly potent selective dopamine D, full agonist. J. Med. Chem. 33, 1756–1764.PubMedCrossRefGoogle Scholar
  22. 22.
    Gilmore, J. H., Watts, V. J., Lawler, C. P., Noll, E. P., Nichols, D. E., and Mailman, R. B. (1995) “Full” dopamine Di agonists in human caudate: biochemical properties and therapeutic implications. Neuropharmacology 34, 481–488.Google Scholar
  23. 23.
    Lovenberg, T. W., Roth, R. H., Nichols, D. E., and Mailman, R. B. (1991) D, dopamine receptors of NS20Y neuroblastoma cells are functionally similar to rat striatal D, receptors. J. Neurochem. 57, 1563–1569.PubMedCrossRefGoogle Scholar
  24. 24.
    Watts, V. J., Lawler, C. P., Gilmore, J. H., Southerland, S. B, Nichols, D. E., and Mailman, R. B. (1993) Efficacy at D, dopamine receptors in primates and rodents: comparison of full (dihydrexidine) and partial (SKF38393) efficacy dopamine agonists. Eur. J. Pharmacol. 242, 165–172.PubMedCrossRefGoogle Scholar
  25. 25.
    Watts, V. J., Lawler, C. P., Gonzales, A. J., Zhou, Q.-Y., Civelli, 0., Nichols, D. E., and Mailman, R. B. (1995) Efficacy of Di dopamine receptor agonists: the role of spare receptors. Synapse 21, 177–187.Google Scholar
  26. 26.
    Arnsten, A. F., Cai, J. X., Murphy, B. L., and Goldman-Rakic, P. S. (1994) Dopamine Di receptor mechanisms in the cognitive performance ofyoung adult and aged monkeys. Psychopharmacology (Berl.) 116, 143–151.CrossRefGoogle Scholar
  27. 27.
    Schneider, J. S., Sun, Z.-Q., and Roeltgen, D. P. (1994) Effects of dihydrexidine, a full dopamine D-1 receptor agonist, on delayed response performance in chronic low dose MPTP-treated monkeys. Brain Res. 663, 140–144.PubMedCrossRefGoogle Scholar
  28. 28.
    Taylor, J. R., Lawrence, M. S., Redmond, D. E., Jr., Elsworth, J. D., Roth, R. H., Nichols, D. E., and Mailman, R. B. (1991) Dihydrexidine, a full dopamine DI agonist, reduces MPTP-induced Parkinsonism in African green monkeys. Eur. J. Pharmacol. 199, 387, 388.Google Scholar
  29. 29.
    Mottola, D. M., Laiter, S., Watts, V. J., Tropsha, A., Wyrick, S. D., Nichols, D. E., and Mailman, R. B. (1996) Conformational analysis of DI dopamine receptor agonists: pharmacophore assessment and receptor mapping. J. Med. Chem. 39, 285–296.PubMedCrossRefGoogle Scholar
  30. 30.
    Knoerzer, T. A., Nichols, D. E., Brewster, W. K., Watts, V. J., Mottola, D. M., and Mailman, R. B. (1994) Dopaminergic benzo[a]phenanthridines: resolution and pharmacological evaluation of the enantiomers of dihydrexidine, the full efficacy DI dopamine receptor agonist. J. Med. Chem. 37, 2453–2460.PubMedCrossRefGoogle Scholar
  31. 31.
    Anfinsen, C. B. (1973) Principles that govern the folding of protein chains. Science 181, 223–230.PubMedCrossRefGoogle Scholar
  32. 32.
    Tembe, T. L. and McCammon, J. A. (1984) Ligand—receptor interactions. Comput. Chem. 8, 281–283.CrossRefGoogle Scholar
  33. 33.
    Hirono, S. and Kollman, P. A. (1990) Calculation of the relative binding free energy of 2’-GMP and 2’-AMP to ribonuclease T1 using molecUar dynamics/free energy perturbation approaches. J. Mol. Biol. 212, 197–209.PubMedCrossRefGoogle Scholar
  34. 34.
    Tropsha, A. and Hermans, J. (1992) Application of free energy simulations to the binding of a transition-state-analogue inhibitor to HIV protease. Protein Engineering 51, 29–31.Google Scholar
  35. 35.
    Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckman, E., and Downing, K. H. (1990) Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. Mol. Biol. 213, 899–929.PubMedCrossRefGoogle Scholar
  36. 36.
    Hibert, M. F., Trumpp-Kallmeyer, S., Bruinvels, A., and Hoflack, J. (1991) Three-dimensional models of neurotransmitter G-binding protein-coupled receptors. Mol. Pharmacol. 40, 8–15.PubMedGoogle Scholar
  37. 37.
    Donnelly, D. and Findlay, J. B. C. (1994) Seven-helix receptors: structure and modeling. Curr. Opinion Struct. Biol. 4, 582–589.CrossRefGoogle Scholar
  38. 38.
    Hutchins, C. (1994) Three-dimensional models of the D, and D2 dopamine receptors. Endocrine J. 2, 7–23.Google Scholar
  39. 39.
    Livingstone, C. D., Strange, P. G., and Naylor, L. H. (1992) Molecular modeling of D2-like dopamine receptors. Biochem. J. 287, 277–282.PubMedGoogle Scholar
  40. 40.
    Malmberg, A., Nordvall, G., Johansson, A. M., Mohell, N., and Hacksell, U. (1994) Molecular basis for the binding of 2-aminotetralins to human dopamine D2A and D3 receptors. Mol. Pharmacol. 46, 299–312.PubMedGoogle Scholar
  41. 41.
    Teeter, M. M., Froimowitz, M., Stec, B., and DuRand, C. J. (1994) Homology modeling of the dopamine D2 receptor and its testing by docking of agonists and tricyclic antagonists. J. Med. Chem. 37, 2874–2888.PubMedCrossRefGoogle Scholar
  42. 42.
    Trumpp-Kallmeyer, S., Hoflack, J., Bruinvels, A., and Hibert, M. (1992) Modeling of G-protein-coupled receptors application to dopamine, adrenaline, serotonin, acetylcholine, and mammalian opsin receptors. J. Med. Chem. 35, 3448–3462.PubMedCrossRefGoogle Scholar
  43. 43.
    Pardo, L., Ballesteros, J. A., Osman, R., and Weinstein, H. (1992) On the use of the transmembrane domain of bacteriorhodopsin as a template for modeling the three dimensional structure of guanine nucleotide binding of regulatory protein-coupled receptors. Proc. Natl. Acad. Sci. USA 89, 4009–4012.PubMedCrossRefGoogle Scholar
  44. 44.
    Maloney Huss, K. and Lybrand, T. P. (1992) Three-dimensional structure for the beta2 adrenergic receptor protein based on computer modeling studies. J. Mol. Biol. 225, 859–871.CrossRefGoogle Scholar
  45. 45.
    Schertler, G. F. X., Villa, C., and Henderson, R. (1993) Projection structure of rhodopsin. Nature 362, 770–772.PubMedCrossRefGoogle Scholar
  46. 46.
    Dahl, S. G., Edvardsen, 0., and Sylte, I. (1991) Molecular dynamics of dopamine at the D2 receptor. Proc. Natl. Acad. Sci. USA 88, 8111–8115.CrossRefGoogle Scholar
  47. 47.
    Baldwin, J. M. (1993) The probable arrangement of the helices in G protein-coupled receptors. EMBO J. 12, 1693–1703.PubMedGoogle Scholar
  48. 48.
    Jones, D. T., Taylor, W. R., and Thornton, J. M. (1994) A model recognition approach to the prediction of a-helical membrane protein structure and topology. Biochemistry 33, 3038–3049.PubMedCrossRefGoogle Scholar
  49. 49.
    Jones, D. T., Taylor, W. R., and Thornton, J. M. (1994) A mutation data matrix for transmembrane proteins. FEBS Lett. 139, 269–275.CrossRefGoogle Scholar
  50. 50.
    Nordvall, G. and Hacksell, U. (1993) Binding site modeling of the muscarinic mi receptor: a combination of homology based and indirect approaches. J. Med. Chem. 36, 967–976.PubMedCrossRefGoogle Scholar
  51. 51.
    Watts, V. J., Lawler, C. P., Knoerzer, T., Mayleben, M. A., Neve, K. A., Nichols, D. E., and Mailman, R. B. (1993) Hexahydrobenzo[a]phenanthridines: ligands with high affinity and selectivity for D3 dopamine receptors. Eur. J. Pharmacol. 239, 271–273.PubMedCrossRefGoogle Scholar
  52. 52.
    Javitch, J. A., Fu, D., Chen, J., and Karlin, A. (1995) Mapping the binding site crevice of the dopamine D2 receptor by the substituted-cysteine accessibility method. Neuron 14, 825–831.PubMedCrossRefGoogle Scholar
  53. 53.
    Javitch, J. A., Li, X., Kaback, J., and Karlin, A. (1994) A cysteine residue in the third membrane-spanning segment of the human D2 dopamine receptor is exposed in the binding-site crevice. Proc. Natl. Acad. Sci. USA 91, 10,355–10, 359.Google Scholar
  54. 54.
    DeNinno, M. P., Schoenleber, R., Perrier, R. J., Lijewski, L., Asin, K. E., Britton, D. R., MacKenzie, R., and Kebabian, J. W. (1991) Synthesis and dopaminergic activity of 3-substituted 1-(aminomethyl)-3,4-dihydro-5,6-dihydroxy-1H-2benzopyrans: characterization of an auxiliary binding region in the D, receptor. J. Med. Chem. 34, 2561–2569.CrossRefGoogle Scholar
  55. 55.
    Lévesque, D., Diaz, J., Pilon, C., Martres, M.-P., Giros, B., Souil, E., Schott, D., Morgat, J.-L., Schwartz, J.-C., and Sokoloff, P. (1992) Identification, characterization, and localization of the dopamine D3 receptor in rat brain using 7-[3H]hydroxyN,N-di-n-propyl-2-aminotetralin. Proc. Natl. Acad. Sci. USA 89, 8155–8159.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Richard B. Mailman
  • David E. Nichols
  • Alexander Tropsha

There are no affiliations available

Personalised recommendations