Advertisement

Dopamine Receptors and Cognitive Function in Nonhuman Primates

  • Patricia S. Goldman-Rakic
  • Clare Bergson
  • Ladislav Mrzljak
  • Graham V. Williams
Part of the The Receptors book series (REC)

Abstract

The long-range goal of relating the neurotransmitter dopamine (DA) to specific receptors and specified cognitive processes could barely have been considered even a few years ago. The cloning of five distinct DA receptors, the development of receptor-specific ligands, the anatomical precision of immunohistochemistry and in situ hybridization, and not least, the development of sophisticated behavioral paradigms, are among the major advances that have made understanding DA’s role in cognition a reasonable goal. All of these approaches have been applied to the analysis of the anatomical and functional architecture of the DA innervation of the prefrontal cortex in macaque monkeys. The prefrontal cortex as a model system has been a focus of study because of its evolutionary expansion and differentiation in humans and its ample DA innervation in primates in general. Experimental studies in animal models, along with a plethora of neuropsychological studies in clinical populations, suggest that specifiable cognitive processes are impaired when DA transmission is altered in the prefrontal cortex. This chapter primarily reviews findings on the anatomical and receptor mechanisms that could underlie this association in nonhuman primates. New findings indicate that a major action of DA in the prefrontal association cortex is to modulate directly excitatory neurotransmission in pyramidal neurons and regulate their ability to integrate their high level sensory input. As is described in this chapter, these effects appear to be mediated in part via D1* receptors in axospinous synapses on pyramidal neurons that are engaged in maintaining information in short-term or working memory. To the extent that the neuronal architecture of prefrontal cortex is repeated in other regions of the cerebral cortex, the mechanisms elucidated may reveal general principles of receptor function in cortical circuits.

Keywords

Prefrontal Cortex Dopamine Receptor Pyramidal Neuron Dendritic Spine Nonpyramidal Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Willner, P. and Scheel-Kruger, J. (1991) The Mesolimbic Dopamine System: From Motivation to Action. Wiley, New York.Google Scholar
  2. 2.
    Anden, N.-E., Dahlstrom, A., Fuxe, K., Larsson, K., Olson, L., and Ungerstedt, U. (1966) Ascending monoamine neurons to the telencephalon and diencephalon. Acta Physiol. Scand. 67, 313–326.CrossRefGoogle Scholar
  3. 3.
    Grace, A. A. (1991) Phasic vs. tonic dopamine release and modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41, 1–24.PubMedCrossRefGoogle Scholar
  4. 4.
    Robbins, T. W. (1990) The frontostriatal dysfunction in schizophrenia. Schizophrenia Bull. 6, 391–402.CrossRefGoogle Scholar
  5. 5.
    Weinberger, D. R., Berman, K. F., and Illowsky, B. P. (1988) Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia iii. A new cohort and evidence for a monoaminergic mechanism. Arch. Gen. Psychiatry 49, 609–615.CrossRefGoogle Scholar
  6. 6.
    Thierry, A. M., Tassin, J. P., Blanc, G., Stinus, L., Scatton, B., and Glowinski, J. (1977) Discovery of the mesocortical dopaminergic system: some pharmacological and functional characteristics, in Advances in Biochemical Psychopharmacology, Vol. 16 ( Costa, E. and Gessa, G. L., eds.), Raven, New York, pp. 5–12.Google Scholar
  7. 7.
    Lidow, M. S., Goldman-Rakic, P. S., Gallager, D. W., and Rakic, P. (1991) Distribution of dopaminergic receptors in the primate cerebral cortex: quantitative auto-radiographic analysis using [3H]raclopride, [3H]spiperone and [3H]SCH23390. Neuroscience 40, 657–671.PubMedCrossRefGoogle Scholar
  8. 8.
    Goldman-Rakic, P. S., Lidow, M. S., and Gallager, D. W. (1990) Overlap of dopaminergic, adrenergic, and serotoninergic receptors and complementarity of their subtypes in primate prefrontal cortex. J. Neurosci. 10, 2125–2138.PubMedGoogle Scholar
  9. 9.
    Williams, S. M. and Goldman-Rakic, P. S. (1993) Characterization of the dopaminergic innervation of the primate frontal cortex using a dopamine-specific antibody. Cereb. Cortex 3, 199–222.PubMedCrossRefGoogle Scholar
  10. 9a.
    Goldman-Rakic, P. S. (1992) Dopamine-mediated mechanisms of the prefrontal cortex. Sem. Neurosci. 4, 149–159.CrossRefGoogle Scholar
  11. 10.
    Smiley, J. F., Williams, S. M., Szigeti, K., and Goldman-Rakic, P. S. (1992) Light and electron microscopic characterization of dopamine-immunoreactive processes in human cerebral cortex. J. Comp. Neurol. 321, 325–335.PubMedCrossRefGoogle Scholar
  12. 11.
    Goldman-Rakic, P. S., Leranth, C., Williams, M. S., Mons, N., and Geffard, M. (1989) Dopamine synaptic complex with pyramidal neurons in primate cerebral cortex. Proc. Natl. Acad. Sci. USA 86, 9015–9019.PubMedCrossRefGoogle Scholar
  13. 12.
    Seguela, P., Watkins, K. C., and Descarries, L. (1988) Ultrastructural features of dopamine axon terminals in the anteromedial and suprarhinal cortex of adult rat. Brain Res. 442, 11–22.PubMedCrossRefGoogle Scholar
  14. 13.
    Van Eden, C. G., Hoorneman, E. M. D., Buijs, R. M., Matthissen, M. A. H., Geffard, M., and Uylings, H. B. M. (1987) Immunocytochemical localization of dopamine in the prefrontal cortex of the rat at the light and electron microscopical level. Neuroscience 22, 849–862.PubMedCrossRefGoogle Scholar
  15. 14.
    Verney, C., Alvarez, C., Geffard, M., and Berger, B. (1990) Ultrastructural double-labelling study of dopamine terminals and GABA-containing neurons in rat anteromedial cerebral cortex. Eur. J. Neurosci. 2, 960–972.PubMedCrossRefGoogle Scholar
  16. 15.
    Smiley, J. F. and Goldman-Rakic, P. S. (1993) Heterogeneous targets of dopamine synapses in monkey prefrontal cortex demonstrated by serial section electron microscopy: a laminar analysis using the silver-enhanced diaminobenzidine sulfide (SEDS) immunolabeling technique. Cereb. Cortex 3, 223–238.PubMedCrossRefGoogle Scholar
  17. 16.
    Smiley, J. F., Levey, A. I., Ciliax, B. J., and Goldman-Rakic, P. S. (1994) D1 dopamine receptor immunoreactivity in human and monkey cerebral cortex: predominant and extrasynaptic localization in dendritic spines. Proc. Natl. Acad. Sci. USA 91, 5720–5724.PubMedCrossRefGoogle Scholar
  18. 17.
    Freund, T. F., Powell, J. F., and Smith, A. D. (1984) Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines. Neuroscience 13, 1189–1215.PubMedCrossRefGoogle Scholar
  19. 18.
    Bergson, C., Mrzljak, L., Smiley, J. F., Pappy, M., Levenson, R., and GoldmanRakic, P. S. Regional, cellular, and subcellular variations in the distribution of DI and D5 dopamine receptors in primate brain. J. Neurosci. 15, 7821–7836.Google Scholar
  20. 19.
    Lidow, M. S., Goldman-Rakic, P. S., Rakic, P., and Innis, R. (1989) Dopamine DZ receptors in the cerebral cortex: distribution and pharmacological characterization with [3H]raclopride. Proc. Natl. Acad. Sci. USA 86, 6412–6416.PubMedCrossRefGoogle Scholar
  21. 20.
    Gingrich, J. A. and Caron, M. G. (1993) Recent advances in the molecular biology of dopamine receptors. Annu. Rev. Neurosci. 16, 299–321.PubMedCrossRefGoogle Scholar
  22. 21.
    Bergson, C., Mrzljak, L., Lidow, M. S., Goldman-Rakic, P. S., and Levenson, R. (1995) Characterization of subtype-specific antibodies to the human D5 dopamine receptor: studies in primate brain and transfected mammalian cells. Proc. Natl. Acad. Sci. USA 92, 3468–3472.PubMedCrossRefGoogle Scholar
  23. 22.
    Huang, Q., Zhou, D., Chase, K., Gusella, J. F., Aronin, N., and DiFiglia, M. (1992) Immunohistochemical localization of the D1 dopamine receptor in rat brain reveals its axonal transport, pre-and postsynaptic localization, and prevalence in the basal ganglia, limbic system, and thalamic reticular nucleus. Proc. Natl. Acad. Sci. USA 89, 11,988–11, 992.Google Scholar
  24. 23.
    Levey, A. I., Hersch, S. M., Rye, D. B., Sunahara, R., Niznik, H. B., Kitt, C. A., Price, D. L., Maggio, R., Brann, M. R., and Ciliax, B. J. (1993) Localization of D1 and D2 dopamine receptors in brain with subtype-specific antibodies. Proc. Natl. Acad. Sci. USA 90, 8861–8865.PubMedCrossRefGoogle Scholar
  25. 24.
    Mrzljak, L., Bergson, C., Pappy, M., Levenson, R., and Goldman-Rakic, P. S. (1996) Characterization of the human D4 dopamine receptor and its localization in the primate brain. Nature, 381, 245–248.PubMedCrossRefGoogle Scholar
  26. 25.
    Liu, K., Bergson, C., Levenson, R., and Schmauss, C. (1994) On the origin of mRNA encoding the truncated D3-type receptor D3nf and detection of D3nf like immunoreactivity in human brain. J. Biol. Chem. 269, 29,220–29, 226.Google Scholar
  27. 26.
    Sesack, S. R., Aoki, C., and Pickel, V. M. (1994) Ultrastructural localization of DZ receptor-like immunoreactivity in midbrain dopamine neurons and their striatal targets. J. Neurosci. 14, 88–106.PubMedGoogle Scholar
  28. 27.
    Laurier, L., O’Dowd, B. F., and George, S. R. (1994) Heterogeneous tissue-specific transcription of dopamine receptor subtype messenger RNA in rat brain. Mol. Brain Res. 25, 344–350.PubMedCrossRefGoogle Scholar
  29. 28.
    Berger, B., Gaspar, P., and Verney, C. (1991) Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. TINS 14, 21–27.PubMedGoogle Scholar
  30. 29.
    Schmauss, C., Haroutunian, V., Davis, K. L., and Davidson, M. (1993) Selective loss of dopamine D3-type receptor mRNA expression in parietal and motor cortices of patients with chronic schizophrenia Proc. Natl. Acad. Sci. USA 90, 8942–8946.PubMedCrossRefGoogle Scholar
  31. 30.
    Chen, J., Makino, C. L., Peachey, N. S., Baylor, D. A., and Simon, M. I. (1995) Mechanisms of rhodopsin inactivation in vivo as revealed by a COOH-terminal truncation mutant. Science 267, 374–377.PubMedCrossRefGoogle Scholar
  32. 31.
    Dahl, S., Edvardsen, O., and Sylte, I. (1991) Molecular dynamics of dopamine at the D2 receptor. Proc. Natl. Acad. Sci. USA 88, 8111–8115.PubMedCrossRefGoogle Scholar
  33. 32.
    Wess, J. (1993) Molecular basis of muscarinic acetylcholine receptor function. Trends Pharmacol. Sci. 14, 308–313.PubMedCrossRefGoogle Scholar
  34. 33.
    Lee, M. A., Thompson, P. A., and Meltzer, H. Y. (1994) Effects of clozapine on cognitive function in schizophrenia. J. Clin. Psychiatry 55 (Suppl. B), 82–87.PubMedGoogle Scholar
  35. 34.
    Fuxe, K. and Agnati, L. F. (1991) Volume Transmission in the Brain: Novel Mechanisms for Neuronal Transmission. Raven, New York.Google Scholar
  36. 35.
    Bradley, V. A., Welch, J. L., and Dick, D. J. (1989) Visuospatial working memory in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 52, 1228–1235.PubMedCrossRefGoogle Scholar
  37. 36.
    Brown, R. G. and Marsden, C. D. (1988) Internal versus external cues and the control of attention in Parkinson’s Disease. Brain 111, 323–345.PubMedCrossRefGoogle Scholar
  38. 37.
    Lange, K. W., Robbins, T. W., Marsden, C. D., James, M., Owen, A. M., and Paul, G. M. (1992) L-dopa withdrawal in Parkinson’s disease selectively impairs cognitive performance in tests sensitive to frontal lobe dysfunction. Psychopharmacology 107, 394–404.PubMedCrossRefGoogle Scholar
  39. 38.
    Andreasen, N. C., Rezai, K., Alliger, R., Swayze, V. W., II, Flaum, M., Kirchner, P., Cohen, G., and O’Leary, D. S. (1992) Hypofrontality in neuroleptic-naive patients and in patients with chronic schizophrenia: assessment with xenon 133 single-photon emission computed tomography and the Tower of London. Arch. Gen. Psychiatry 49, 943–958.PubMedCrossRefGoogle Scholar
  40. 39.
    Park, S. and Holzman, P. S. (1992) Schizophrenics show spatial working memory deficits. Arch. Gen. Psychiatry 49, 975–982.PubMedCrossRefGoogle Scholar
  41. 40.
    Schooler, C., Neumann, E., Caplan, L., and Roberts, B. R. (1996) A time course analysis of Stroop interference and facilitation: comparing normal and schizophrenic individuals. J. Exp. Psychol. in press.Google Scholar
  42. 41.
    Milner, B. (1964) Some effects of frontal lobectomy in man, in The Frontal Granular Cortex and Behavior ( Warren, J. M. and Akert, K., eds.), McGraw-Hill, New York, pp. 313–334.Google Scholar
  43. 42.
    Stuss, D. T. and Benson, D. F. (1986) The Frontal Lobes. New York, Raven.Google Scholar
  44. 43.
    Fuster, J. M. (1989) The Prefrontal Cortex, 2nd ed., Raven, New York.Google Scholar
  45. 44.
    Goldman-Rakic, P. S. (1987) Circuitry of primate prefrontal cortex and regulation of behavior by representational memory, in Handbook of Physiology, The Nervous System, Higher Functions of the Brain ( Plum, F., ed.), American Physiological Society, Bethesda, MD, pp. 373–417.Google Scholar
  46. 45.
    Brozoski, T., Brown, R. M., Rosvold, H. E., and Goldman, P. S. (1979) Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science 205, 929–932.PubMedCrossRefGoogle Scholar
  47. 46.
    Baddeley, A. D. (1986) Working Memory. Oxford University Press, London.Google Scholar
  48. 47.
    Carpenter, P. A. and Just, M. A. (1989) The role of working memory in language comprehension, in Complex Information Processing: The Impact of Herbert A. Simon ( Klahr, D. and Kotovsky, K., eds.), Erlbaum, Hillsdale, NJ, pp. 31–68.Google Scholar
  49. 48.
    Goldman-Rakic, P. S. (1995) Cellular basis of working memory. Neuron 14, 477–485.PubMedCrossRefGoogle Scholar
  50. 49.
    Creese, I. and Fraser, C. M. (1987) Dopamine Receptors. Liss, New York.Google Scholar
  51. 50.
    Ogren, S. O. and Hogberg, T. (1988) Novel dopamine D2 antagonists for the treatment of schizophrenia. 151 Atlas of Science Pharmacology 2, 141–147.Google Scholar
  52. 51.
    Seeman, P. and Van Tol, H. H. M. (1994) Dopamine receptor pharmacology. Trends Pharmacol. Sci. 15, 264–270.PubMedCrossRefGoogle Scholar
  53. 52.
    Funahashi, S., Bruce, C. J., and Goldman-Rakic, P. S. (1989) Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J. Neurophysiol. 61, 331–349.PubMedGoogle Scholar
  54. 53.
    Fuster, J. M. (1973) Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory. J. Neurophysiol. 36, 61–78.PubMedGoogle Scholar
  55. 54.
    Goldman-Rakic, P. S., Funahashi, S., and Bruce, C. J. (1990) Neocortical memory circuits. Q. J. Quant. Biol. 55, 1025–1038.CrossRefGoogle Scholar
  56. 55.
    Williams, G. V. and Goldman-Rakic, P. S. (1995) Blockade of dopamine D1 receptors enhances memory fields of prefrontal neurons in primate cerebral cortex. Nature 376, 572–575.PubMedCrossRefGoogle Scholar
  57. 56.
    Chipkin, R. E., brio, L. C., Coffin, V. L., McQuade, R. D., Berger, J. G., and Barnett, A. (1988) Pharmacological profile of SCH39166: a dopamine D1 selective benzonaphthazepine with potential antipsychotic activity. J. Pharmacol. Exp. Ther. 247, 1093–1102.PubMedGoogle Scholar
  58. 57.
    Taylor, J. R., Sladek, J. R., Jr., Roth, R. H., and Redmond, D. E. (1990) Cognitive and motor deficits in the performance of an object retrieval task with a barrier detour in monkeys (cercopithecus aethiops sabeus) treated with MPTP: long-term performance and effect of transparency of the barrier. Behavioral Neuorsci. 104, 564–576.CrossRefGoogle Scholar
  59. 58.
    Bunney, B. S. and Agajanian, G. K. (1976) Dopamine and norepinephrine innervated cells in the rat prefrontal cortex: pharmacological differentiation using microiontophoretic techniques. Life Sci. 19, 1783–1792.PubMedCrossRefGoogle Scholar
  60. 59.
    Ferron, A., Thierry, A. M., Le Douarin, C., and Glowinski, J. (1984) Inhibitory influence of the mesocortical dopaminergic system on spontaneous activity or excitatory response induced from the thalamic mediodorsal nucleus in the rat medial prefrontal cortex. Brain Res. 302, 257–265.PubMedCrossRefGoogle Scholar
  61. 60.
    Law-Tho, D., Hirsch, J. C., and Crepel, F. (1994) Dopamine modulation of synaptic transmission in rat prefrontal cortex: an in vitro electrophysiological study. Neurosci. Res. 21, 151–160.PubMedCrossRefGoogle Scholar
  62. 61.
    Muller, W. and Connor, J. A. (1991) Dendritic spines as individual neuronal compartments for synaptic Cat+ responses. Nature 354, 73–76.PubMedCrossRefGoogle Scholar
  63. 62.
    Koch, C. and Zador, A. (1993) The function of dendritic spines: devices subserving biochemical rather than electrical compartmentalization. J. Neurosci. 13, 413–422.PubMedGoogle Scholar
  64. 63.
    Arnsten, A. F. T., Cai, J. X., Murphy, B. L., and Goldman-Rakic, P. S. (1994) Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. Psychopharmacology 116, 143–151.PubMedCrossRefGoogle Scholar
  65. 64.
    Sawaguchi, T. and Goldman-Rakic, P. S. (1991) D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science 251, 947–950.PubMedCrossRefGoogle Scholar
  66. 65.
    Ruzicka, E., Roth, J., Spackova, N., Mecir, P., and Jech, R. (1994) Apomorphine induced cognitive changes in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 57, 998–1001.PubMedCrossRefGoogle Scholar
  67. 66.
    Murphy, B. L., Arnsten, A. F. T., Goldman-Rakic, P. S., and Roth, R. H. (1996) Increased dopamine turnover in the prefrontal cortex impairs spatial working memory performance. Proc. Natl. Acad. Sci. USA 93, 1325–1329.PubMedCrossRefGoogle Scholar
  68. 67.
    Mantz, J., Milla, C., Glowinski, J., and Thierry, A. M. (1988) Differential effects of ascending neurons containing dopamine and noradrenaline in the control of spontaneous and evoked responses in the rat prefrontal cortex. Neuroscience 27, 517–526.PubMedCrossRefGoogle Scholar
  69. 68.
    Penit-Soria, J., Audinat, E., and Crepel, F. (1987) Excitation of rat prefrontal cortical neurons by dopamine: an in vitro electrophysiological study. Brain Res. 425, 263–274.PubMedCrossRefGoogle Scholar
  70. 69.
    Pirot, S., Godbout, R. Mantz, J., Tassin, J. P., Glowinski, J., and Thierry, A. M. (1992) Inhibitory effect of ventral tegmental area stimulation on the activity of prefrontal cortical neurons: evidence for the involvement of both dopaminergic and GABAergic components. Neuroscience 49, 857–865.PubMedCrossRefGoogle Scholar
  71. 70.
    Pralong, E. and Jones, R. S. G. (1993) Interactions of dopamine with glutamate-and GABA-mediated synaptic transmission in the rat entorhinal cortex in vitro. Eur. J. Neurosci. 5, 760–767.CrossRefGoogle Scholar
  72. 71.
    Calabresi, P., Mercuri, N., Stanzione, P., Stefani, A., and Bernardi, G. (1987) Intracellular studies on the dopamine-induced firing inhibition of neostriatal neurons in vitro: evidence for D1 receptor involvement. Neuroscience 20, 757–771.PubMedCrossRefGoogle Scholar
  73. 72.
    Cepeda, C., Radisavljevic, Z., Peacock, W., Levine, M. S., and Buchwald, N. A. (1992) Differential modulation by dopamine of responses evoked by excitatory amino acids in human cortex. Synapse 11, 330–341.PubMedCrossRefGoogle Scholar
  74. 73.
    Rutherford, A., Garcia-Munoz, M., and Arbuthnott, G. W. (1988) An afterhyperpolarization recorded in striatal cells “in vitro”: effect of dopamine administration. Expl. Brain Res. 71, 399–405.CrossRefGoogle Scholar
  75. 74.
    Mrzljak, L., Pappy, M., Leranth, C., and Goldman-Rakic, P. S. (1995) Cholinergie synaptic circuitry in the macaque prefrontal cortex. J. Comp. Neurol. 357, 603–617.PubMedCrossRefGoogle Scholar
  76. 75.
    Servan-Schreiber, D., Printz, H., and Cohen, J. D. (1990) A network model of catecholamine effects: gain, signal-to-noise ratio, and behavior. Science 249, 892–895.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Patricia S. Goldman-Rakic
  • Clare Bergson
  • Ladislav Mrzljak
  • Graham V. Williams

There are no affiliations available

Personalised recommendations