Regulation of Motor Behavior by Dopamine Receptor Subtypes

An Antisense Knockout Approach
  • Ming Zhang
  • Abdel-Mouttalib Ouagazzal
  • Bao-Cun Sun
  • Ian Creese
Part of the The Receptors book series (REC)


The neurotransmitter dopamine mediates various behavioral functions in the central nervous system (CNS). The major dopamine pathway involved in motor function is the nigrostriatal pathway, which originates from the substantia nigra and is the primary source of dopaminergic innervation of the dorsal striatal neurons (1–4). It plays an important role in regulating motor behavior and its deterioration is the major cause for the motor symptoms of Parkinson’s disease (5, 6). The mesolimbic pathway, which originates from neurons of the ventral tegmental area (VTA), innervates the ventral striatum, nucleus accumbens, olfactory tubercle, and parts of the limbic system, and is most probably involved in emotional and motivational aspects of behavior (7, 8). It may well contribute to the etiology of schizophrenia and serve as the substrate for neuroleptic drug actions (9, 10) along with the mesocortical pathway, which also originates in VTA and projects most densely to the prefrontal cortex (11). This terminal area may be involved in certain aspects of learning and memory (12, 13). Dopamine agonists have been used to ameliorate the major symptoms of Parkinson’s disease, whereas dopamine antagonists, the standard therapy for schizophrenia, often produce motor side effects; reminiscent of Parkinson’s disease. Through its action in these different neural pathways in the CNS, dopamine activates a broad range of motor behaviors.


Locomotor Activity Receptor Subtype Dopamine Receptor Nucleus Accumbens Spontaneous Locomotor Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dahlstrom, A. and Fuxe, K. (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol. Scand. 232 (Suppl.), 1–55.Google Scholar
  2. 2.
    Ferger, B., Kropf, W., and Kuschinsky, K. (1994) Studies on electroencephalogram (EEG) in rats suggest that moderate doses of cocaine or d-amphetamine activate D1 rather than D2 receptors. Psychopharmacology 114, 297–308.PubMedCrossRefGoogle Scholar
  3. 3.
    Graybiel, A. M. and Ragadale, C. W. (1983) Biochemical anatomy of the striatum, in Chemical Neuroanatomy ( Emson, P. C., ed.), Raven, New York, pp. 427–504.Google Scholar
  4. 4.
    Lindvall, O. and Bjorklund, A. (1983) Dopamine and norephinephrine-containing neuron systems: their anatomy in the rat brain, in Chemical Neuroanatomy ( Emson, P. C., ed.), Raven, New York, pp. 229–255.Google Scholar
  5. 5.
    Hornykiewicz, O. (1966) Dopamine and brain function. Pharmacol. Res. 18, 925–964.Google Scholar
  6. 6.
    Marsden, C. D. (1992) Dopamine and basal ganglia in human. Semin. Neurosci. 4, 171–178.CrossRefGoogle Scholar
  7. 7.
    Koob, G. F. (1992) Dopamine, addition and reward. Semin. Neurosci. 4, 139–148.CrossRefGoogle Scholar
  8. 8.
    Koob, G. F. and Bloom, F. E. (1988) Cellular and molecular mechanisms of drug dependence. Science 242, 715–723.PubMedCrossRefGoogle Scholar
  9. 9.
    Carlsson, A. (1988) The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1, 179–186.PubMedCrossRefGoogle Scholar
  10. 10.
    Davis, K. L., Kahn, R. S., Ko, G., and Davidson, M. (1991) Dopamine in schizophrenia: a review and reconceptualization. Am. J. Psychiatry 148, 1474–1486.PubMedGoogle Scholar
  11. 11.
    Bjorklund, A. and Lindvall, O. (1964) Dopamine-containing systems in the CNS, in Classical Transmitters in the CNS. Handbook of Chemical Neuroanatomy ( Bjorklund, A. and Hokfelt, T., eds.), Elsevier, Amsterdam, pp. 55–122.Google Scholar
  12. 12.
    Beninger, R. J. (1993) Role of D1 and D2 receptors in learning, in D1:D2 Dopamine Receptor Interaction ( Waddington, J., ed.), Academic, London, pp. 115–158.Google Scholar
  13. 13.
    Le Moal, M. and Simon, H. (1991) Mesocorticolimbic dopaminergic network: functional and regulatory roles. Physiol. Rev. 71, 155–234.PubMedGoogle Scholar
  14. 14.
    Kebabian, J. W. and Calne, D. B. (1979) Multiple receptors for dopamine. Nature 277, 93–96.PubMedCrossRefGoogle Scholar
  15. 15.
    Kebabian, J. W., Petzold, G. L., and Greengard, P. (1972) Dopamine-sensitive adenylate cyclase in caudate nucleus of rat brain, and its similarity to the “dopamine receptor.” Proc. Natl. Acad. Sci. USA 69, 2145–2149.PubMedCrossRefGoogle Scholar
  16. 16.
    Stoof, J. C. and Kebabian, J. (1984) Two dopamine receptors: biochemistry, physiology, and pharmacology. Life Sci. 35, 2281–2296.PubMedCrossRefGoogle Scholar
  17. 17.
    Creese, I., Burt, D. R., and Snyder, S. H. (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192, 481–483.PubMedCrossRefGoogle Scholar
  18. 18.
    Seeman, P., Lee, T., Chau-Wang, M., and Wang, K. (1976) Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature 261, 717–719.PubMedCrossRefGoogle Scholar
  19. 19.
    Verma, A. and Kulkarni, S. K. (1993) On the D1 and D2 dopamine receptor participation in learning and memory in mice. Methods Exp. Clin. Pharmacol. 15, 597–607.Google Scholar
  20. 20.
    Waddington, J. (ed.) (1993) D1:D2 dopamine receptor interaction. Academic, London.Google Scholar
  21. 21.
    Civelli, O., Bunzow, J. R., and Grandy, D. K. (1993) Molecular diversity of the dopamine receptors. Annu. Rev. Pharmacol. Toxicol. 32, 281–307.CrossRefGoogle Scholar
  22. 22.
    Sibley, D. R. and Monsma, F. J. (1992) Molecular biology of dopamine receptors. Trends Pharmacol. 131, 61–69.CrossRefGoogle Scholar
  23. 23.
    Bunzow, J. R., Van Tol, H. H. M., Grandy, D. K., Albert, P., Salon, J., Chisre, M., Machida, C. A., Neve, K. A., and Civelli, O. (1988) Cloning and expression of a rat D2 dopamine receptor cDNA. Nature 336, 783–787.PubMedCrossRefGoogle Scholar
  24. 24.
    Sokoloff, P., Giros, B., Martres, M.-P., Bouthenet, M.-L., and Schwartz, J.-C. (1990) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347, 146–151.PubMedCrossRefGoogle Scholar
  25. 25.
    Van Tol, H. H. M., Bunzow, J. R., Guan, H.-C., Sunahara, R. K., Seeman, P., Niznik, H. B., and Civelli, O. (1991) Cloning of a human dopamine D4 receptor gene with high affinity for the antipsychotic clozapine. Nature 350, 614–619.Google Scholar
  26. 26.
    Grandy, D. K., Zhang, Y., Bouvier, C., Zhou, Q.-Y., Johnson, R. A., Allen, L., Buck, K., Bunzow, J. R., Salon, J., Civelli, O. (1991) Multiple human D5 dopamine receptor genes: a functional receptor and two pseudogenes. Proc. Natl. Acad. Sci. USA 89, 9175–9179.Google Scholar
  27. 27.
    Zhou, Q.-Y., Grandy, D. K., Thambi, L., Kushner, J. A., Van Tol, H. H. M., Cone, R., Pribnow, D., Salon, J., Bunzow, J. R., and Civelli, O. (1991) Cloning and expression of human and rat Di dopamine receptors. Nature 347, 76–80.CrossRefGoogle Scholar
  28. 28.
    Silvia, C. P., King, G. R., Lee, T. H., Xue, Z.-Y., Caron, M. G., and Ellinwood, E. H. (1994) Intranigral administration of D2 dopamine receptor antisense oligodeoxynucleotides establishes a role for nigrostriatal D2 autoreceptors in the motor actions of cocaine. Mol. Pharmacol. 46, 51–57.PubMedGoogle Scholar
  29. 29.
    Zhang, M. and Creese, I. (1993) Antisense oligodeoxynucleotide reduces brain dopamine D2 receptors: behavioral correlates. Neurosci. Lett. 161, 223–226.PubMedCrossRefGoogle Scholar
  30. 30.
    Zhang, M., Tarazi, F., and Creese, I. (1994) Antisense knockout of ratCNS dopamine D3 receptors and its behavioral effects. Soc. Neurosci. Abst. 20, 909.Google Scholar
  31. 31.
    Zhang, S.-P., Zhou, L.-W., and Weiss, B. (1994) Oligodeoxynucleotide antisense to the DI dopamine receptor mRNA inhibits DI dopamine receptor-mediated behaviors in normal mice and in mice lesioned with 6-hydroxydopamine. J. Pharmacol. Exp. Ther. 271, 1462–1470.PubMedGoogle Scholar
  32. 32.
    Zamecnik, P. C. (1996) History of antisense oligonucleotides, in Methods in Molecular Medicine: Antisense Therapeutics ( Agrawal, S., ed.), Humana Press, Totowa, NJ, pp. 1–11.Google Scholar
  33. 33.
    Chiasson, B. J., Hooper, M. L., Murphy, P. R., and Robertson, H. A. (1992) Antisense oligonucleotide eliminates in vivo expression of c-fos in mammalian brain. Eur. J. Pharmacol. 227, 451–453.PubMedCrossRefGoogle Scholar
  34. 34.
    Wahlestedt, C., Golanov, E., Yamamoto, S., Yee, F., Ericson, H., Yoo, H., Inturrisi, C. E., and Reis, D. J. (1993) Antisense oligodeoxynucleotides to NMDA-R1 receptor channel protect cortical neurons from excitotoxicity and reduce focal ischaemic infarctions. Nature 363, 260–263.PubMedCrossRefGoogle Scholar
  35. 35.
    Wahlestedt, C., Pich, M., Koob, G. F., Yee, F., and Heilig, M. (1993) Modulation of anxiety and neuropeptide Y—Y1 receptors by antisense oligodeoxynucleotides. Science 259, 528–531.PubMedCrossRefGoogle Scholar
  36. 36.
    Hoagland, M. B., Zamecnik, P. C., and Stephenson, M. L. (1959) A hypothesis concerning the roles of particulate and soluble ribonucleic acids in protein synthesis, in A Symposium on Molecular Biology, University of Chicago Press, Chicago, pp. 105–114.Google Scholar
  37. 37.
    Cohen, J. (1991) Oligonucleotides as therapeutic agents. Pharmac. Ther. 52, 211–225.CrossRefGoogle Scholar
  38. 38.
    Loke, S. L., Stein, C. A., Zhang, X. H., Mori, K., Nakanishi, M., Subasinghe, C., Cohen, J. S, and Neckers, L. M. (1989) Characterization of oligonucleotide transport into living cells. Proc. Natl. Acad. Sci. USA 86, 3474–3478.PubMedCrossRefGoogle Scholar
  39. 39.
    Yakubov, L. A., Deeva, E. A., Zarytova, V. F., Ivanova, E. M., Ryrte, S., Yurchenk, L. V., and Vlassov, V. V. (1989) Mechanism of oligonucleotide uptake by cells: involvement of specific receptors? Proc. Natl. Acad. Sci. USA 86, 6454–6458.PubMedCrossRefGoogle Scholar
  40. 40.
    Agrawal, S., Temsamani, J., and Tang, J. Y. (1991) Pharmacokinetics, biodistribution, and stability of oligodeoxynucleotide phosphorothioates in mice. Proc. Natl. Acad. Sci. USA 88, 7595–7599.PubMedCrossRefGoogle Scholar
  41. 41.
    Campbell, J. M., Bacon, T. A., and Wickstrom, E. (1990) Oligo-deoxynucleotide phosphorothioate stability in subcellular extracts, culture media, sera and cerbrospinal fluid. J. Biochem. Biophys. Methods 20, 259–269.PubMedCrossRefGoogle Scholar
  42. 42.
    Whitesell, L., Geselowitz, D., Chavany, C., Fahmy, B., Walbridge, S., Alger, J. R., and Neckers, L. M. (1993) Stability, clearance, and disposition of intraventricularly administered oligodeoxynucleotides: implications for therapeutic application within the central nervous system. Proc. Natl. Acad. Sci. USA 90, 4665–4669.PubMedCrossRefGoogle Scholar
  43. 43.
    Norman, A. B., Battaglia, G., and Creese, I. (1987) Differential recovery rates of rat D2 dopamine receptors as a function of aging and chronic reserpine treatment following irreversible modification: a key to receptor regulatory mechanisms. J. Neurosci. 7, 1484–1491.Google Scholar
  44. 44.
    Hamblin, M. and Creese, I. (1983) Behavioral and radioligand binding evidence for irreversible dopamine receptor blockade by EEDQ. Life Sci. 32, 2247–2255.Google Scholar
  45. 45.
    Meller, E., Bordi, F., and Bohmaker, K. (1989) Behavioral recovery after irreversible inactivation of D-1 and D-2 dopamine receptors. Life Sci. 44, 1019–1026.PubMedCrossRefGoogle Scholar
  46. 46.
    Neve, K. A., Loeschen, S., and Marshall, J. F. (1985) Denervation accelerates the reappearance ofneostriatal D-2 receptors after irreversible receptor blockade. Brain Res. 329, 225–231.PubMedCrossRefGoogle Scholar
  47. 47.
    Saller, C. F., Kreamer, L. D., Adamovage, L. A., and Salama, A. I. (1989) Dopamine receptor occupancy in vivo: measurement using N-ethoxycarbonyl-2ethoxy1,2-dihydroquinoline (EEDQ). Life Sci. 45, 917–929.PubMedCrossRefGoogle Scholar
  48. 48.
    Yaswen, P., Stampfer, M., and Ghosh, K. (1992) Effects of sequence of thioated oligonucleotides on cultured human mammary epithelial cells. Antisense Res. Dev. 3, 67–77.Google Scholar
  49. 49.
    Weiner, D. M., Levey, A. I., and Brann, M. R. (1990) Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia. Proc. Natl. Acad. Sci. USA 87, 7050–7054.PubMedCrossRefGoogle Scholar
  50. 50.
    Worms, P., Broekkamp, C. L. E., and Lloyd, K. G. (1983) Behavioral effects of neuroleptics, in Neuroleptics: Neurochemical, Behavioral, and Clinical Perspectives ( Coyle, J. T. and Enna, S. J., eds.), Raven, New York, 93–118.Google Scholar
  51. 51.
    Creese, I. and Iversen, S. D. (1975) The pharmacological and anatomical substrates of the amphetamine response in the rat. Psychopharmacologium 39, 345–357.CrossRefGoogle Scholar
  52. 52.
    Kelly, P. H., Seviour, P. W., and Iversen, S. D. (1975) Amphetamine and apomophine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum. Brain Res. 94, 507–522.PubMedCrossRefGoogle Scholar
  53. 53.
    Kelley, A. E., Lang, C. G., and Gauthier, A. M. (1988) Induction of oral stereotypy following amphetamine microinjection into a discrete subregion of the striatum. Psychopharmacology 95, 556–559.PubMedCrossRefGoogle Scholar
  54. 54.
    Seiden, L. S., Sabol, K. E., and Ricaurte, G. T. (1993) Amphetamine: effects on catecholamine systems and behavior. Annu. Rev. Pharmacol. Toxicol. 32, 639–677.CrossRefGoogle Scholar
  55. 55.
    Robbins, T. W. and Everitt, B. J. (1982) Functional studies of the central catecholamines. Int. Rev. Neurobiol. 23, 303–365.PubMedCrossRefGoogle Scholar
  56. 56.
    Amalric, M., Ouagazzal, A., Baunez, C., and Nieoullon, A. (1994) Functional interaction between glutamate and dopamine in the rat striatum. Neurochem. Int. 25, 123–131.PubMedCrossRefGoogle Scholar
  57. 57.
    Ouagazzal, A., Nieoullon, A., and Amalric, M. (1994) Locomotor activation induced by MK-801 in the rat: postsynaptic interaction with dopamine receptors in the ventral striatum. Eur. J. Pharmacol. 251, 229–236.PubMedCrossRefGoogle Scholar
  58. 58.
    Pijnenburg, A. J. J., Honig, W. M. M., and Van Rossum, J. M. (1975) Inhibition of D-amphetamine-induced locomotor activity by injection of haloperidol into the nucleus accumbens of the rat. Psychopharmacology 41, 87–95.CrossRefGoogle Scholar
  59. 59.
    Amalric, M., Koob, G., Ouagazzal, A., and Nieoullon, A. (1991) Low doses of SCH 23390 differentially modulate behaviors mediated by mesolimbic or nigrostriatal dopaminergic activation, in the rat. Eleventh European Winter Conference (EWBCR), Crans-Mantana, Switzerland.Google Scholar
  60. 60.
    Ouagazzal, A., Nieoullon, A., and Amalric, M. (1993) Effects of dopamine D1 and D2 receptor blockade on MK-801-induced hyperlocomotion in rats. Psychopharmacology 111, 427–434.PubMedCrossRefGoogle Scholar
  61. 61.
    Morelli, M. and Di Chiara, G. (1985) Catalepsy induced by SCH 23390 in rats. Eur. J. Pharmacol. 117, 179–185.PubMedCrossRefGoogle Scholar
  62. 62.
    Cabib, S., Castellano, C., Cestari, V., Filibeck, U., and Puglisi-Allegrs, S. (1991) D1 and D2 receptor antagonists differently affect cocaine-induced locomotor hyperactivity in the mouse. Psychopharmacology 105, 335–339.PubMedCrossRefGoogle Scholar
  63. 63.
    Jackson, D. M., Johansson, C., Lindgren, L.-M., and Bengtsson, A. (1994) Dopamine receptor antagonists block amphetamine and phencyclidine-induced motor stimulation in rats. Pharmacol. Biochem. Behay. 48, 465–471.CrossRefGoogle Scholar
  64. 64.
    Amalric, M. and Koob, G. (1993) Functionally selective neurochemical afferents and efferents of the mesocorticolimbic and nigrostriatal dopamine system. Prog. Brain Res. 99, 209–226.PubMedCrossRefGoogle Scholar
  65. 65.
    Xu, M., Hu, X.-T., Cooper, D. C., Moratalla, R., and Graybiel, A. M. (1994) Elimination of cocaine-induced hyperactivity and dopamine-mediated neurophysiological effects in dopamine DI receptor mutant mice. Cell 79, 945–955.PubMedCrossRefGoogle Scholar
  66. 66.
    Xu, M., Moratalla, R., Gold, L. H., Hiroi, N., Koob, G. F., Graybiel, A. M., and Tonegawa, S. (1994) Dopamine DI receptor mutant mice are deficient in striatal expression of dynorphin and in dopamine-mediated behavioral responses. Cell 79, 729–742.Google Scholar
  67. 67.
    Clark, D. and White, J. F. (1987) Review: D1 dopamine receptor—the search for a function: a critical evaluation of the Dl/D2 dopamine receptor classification and its functional implications. Synapse 1, 347–388.PubMedCrossRefGoogle Scholar
  68. 68.
    Phillips, G. D., Howes, S. R., Whitelaw, R. B., Robbins, T. W., and Everitt, B. J. (1995) Analysis of the effects of intra-accumbens SKF-38393 and LY-171555 upon the behavioural satiety sequence. Psychopharmacology 117, 82–90.PubMedCrossRefGoogle Scholar
  69. 69.
    Weiss, B., Zhou, L.-W., Zhang, S.-P., and Qin, Z.-H. (1993) Antisense oligodeoxynucleotide inhibits D2 dopamine receptor-mediated behavior and D2 messenger RNA. Neuroscience 55, 607–612.PubMedCrossRefGoogle Scholar
  70. 70.
    Zhou, L.-W., Zhang, S.-P., Qin, Z.-H., and Weiss, B. (1994) In vivo administration of an oligodeoxynucleotide antisense to the D2 dopamine receptor messenger RNA inhibits D2 dopamine receptor-mediated behavior and the expression of D2 dopamine receptors in mouse striatum. J. Pharmacol. Exp. Ther. 268, 1015–1023.Google Scholar
  71. 71.
    Iversen, S. D. (1977) Brain dopamine system and behavior, in Handbook of Psychopharmacology (Iversen, L. L., Iversen, S. D., and Snyder, S. H., eds.), Plenum, New York, pp. 334–384.Google Scholar
  72. 72.
    Joyce, E. M., Stinus, L., and Iversen, S. D. (1983) Effect of injections of 6-OHDA into either nucleus accumbens septi or frontal cortex on spontaneous and drug-induced activity. Neuropharmacology 22, 1141–1145.PubMedCrossRefGoogle Scholar
  73. 73.
    Taghzouti, K., Louilot, A., Herman, J. P., Le Moat, M., and Simon, H. (1985) Alternation behavior, spatial discrimination, and reversal disturbances following 6-hydroxydopamine lesions in the nucleus accumbens of the rat. Behay. Neural Biol. 44, 354–363.Google Scholar
  74. 74.
    Hoffman, D. C. and Beninger, R. J. (1985) The D1 dopamine receptor antagonist, SCH 23390 reduces locomotor activity and rearing in rats. Pharmacol. Biochem. Behay. 22, 341, 342.Google Scholar
  75. 75.
    Boss, R., Cools, A. R., and Ogren, S. (1988) Differential effects of the selective D2-antagonist raclopride in the nucleus accumbens of the rat on spontaneous and d-amphetamine-induced activity. Psychopharmacology 95, 447–451.PubMedCrossRefGoogle Scholar
  76. 76.
    Plaznik, A., Stefanski, R., and Kostowski, W. (1989) Interaction between accumbens D1 and D2 receptors regulating rat locomotor activity. Psychopharmacology 99, 558–562.PubMedCrossRefGoogle Scholar
  77. 77.
    Drago, J., Gerfen, C. R., Lachowicz, J. E., Steiner, H., Hollon, T. R., Love, P. E., Ooi, G. T., Grinberg, A., Lee, E. J., Huang, S. P., Bartlett, P. F., Jose, P. A., Sibley, D. R., and Westphal, H. (1994) Altered striatal function in a mutant mouse lacking DIA dopamine receptors. Proc. Natl. Acad. Sci. USA 91, 12,564–12, 568.Google Scholar
  78. 78.
    Stahle, L. (1992) Do autoreceptors mediate dopamine agonist-induced yawning and suppression of exploration? A critical review. Psychopharmacology 106, 1–13.PubMedCrossRefGoogle Scholar
  79. 79.
    Svensson, K., Carlsson, A., Huff, R. M., Kling-Petersen, T., and Waters, N. (1994) Behavioral and neurochemical data suggest functional differences between dopamine D2 and D3 receptors. Eur. J. Pharmacol. 263, 235–243.PubMedCrossRefGoogle Scholar
  80. 80.
    Svensson, K., Carlsson, A., and Waters, N. (1994) Locomotor inhibition by the D3 ligand R-(+)-7-OH-DPAT is independent of changes in dopamine release. J. Neural Transm. 95, 71–74.Google Scholar
  81. 81.
    Ahlenius, S. and Salmi, P. (1994) Behavioral and biochemical effects of dopamine D3 receptor-selective ligand, 7-OH-DPAT, in normal and reserpined-treated rat. Eur. J. Pharmacol. 260, 177–181.PubMedCrossRefGoogle Scholar
  82. 82.
    Liu, J.-C., Cox, R. F., Greif, G. J., Freedman, J. E., and Waszczak, B. L. (1994) The putative dopamine D3 receptor agonist 7-OH-DPAT: lack of mesolimbic selectivity. Eur. J. Pharmacol. 264, 269–278.PubMedCrossRefGoogle Scholar
  83. 83.
    Waters, N., Lofberg, L., Haadsma-Svensson, S. R., Svensson, K., Sonesson, C, and Carlsson, A. (1994) Differential effects of dopamine D2 and D3 receptor antagonists in regard to dopamine release, in vivo receptor displacement and behaviour. J. Neural. Transm. 98, 39–55.CrossRefGoogle Scholar
  84. 84.
    Waters, N., Svensson, K., Haadsma-Svensson, S. R., Smith, M. W., and Carlsson, A. (1993) The dopamine D3-receptor: a postsynaptic receptor inhibitory on rat locomotor activity. J. Neural Transm. 94, 11–19.CrossRefGoogle Scholar
  85. 85.
    Hillegaart, V. and Ahlenius, S. (1987) Effect of raclopride on exploratory locomotor activity, treadmill locomotion, conditioned avoidance behaviour and catalepsy in rats: behavioural profile comparisons between raclopride, haloperidol and preclamol. Pharmacol. Toxicol. 60, 350–354.PubMedCrossRefGoogle Scholar
  86. 86.
    Mogenson, G. J. and Yang, C. R. (1991) The contribution of basal forebrain to limbic-motor integration and the mediation ofmotivation to action. Adv. Exp. Med. Biol. 295, 267–290.PubMedCrossRefGoogle Scholar
  87. 87.
    Fletcher, G. H. and Starr, M. S. (1988) Intracerebral SCH 23390 and catalepsy in the rat. Eur. J. Pharmacol. 149, 175.PubMedCrossRefGoogle Scholar
  88. 88.
    Meller, E., Kuga, S., Fiedhoff, A. J., and Golstein, M. (1985) Selective D2 dopamine receptor agonists prevent catalepsy induced by SCH 23390, a selective Dl antagonist. Life Sci. 36, 1857–1864.PubMedCrossRefGoogle Scholar
  89. 89.
    Ossowska, K., Karcz, M., Wardas, J., and Wolfarth, S. (1990) Striatal and nucleus accumbens D 1 /D2 dopamine receptors in neuroleptic catalepsy. Eur. J. Pharmacol. 182, 327–334.PubMedCrossRefGoogle Scholar
  90. 90.
    Miller, R. J. and Hiley, C. R. (1974) Anti-muscarinic properties of neuroleptics and drug-induced Parkinsonism. Nature 248, 596, 597.Google Scholar
  91. 91.
    Starke, K., Gothert, I., and Kilbinger, H. (1989) Modulation of neurotransmitter release by presynaptic autoreceptors. Physiol. Rev. 69, 864–989.PubMedGoogle Scholar
  92. 92.
    Burt, D. R., Creese, I., and Snyder, S. H. (1977) Antischizophrenic drugs: chronic treatment elevates dopamine receptor binding in brain. Science 196, 326–328.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Ming Zhang
  • Abdel-Mouttalib Ouagazzal
  • Bao-Cun Sun
  • Ian Creese

There are no affiliations available

Personalised recommendations