Advertisement

Pharmacology of Mammalian GABAB Receptors

  • Norman G. Bowery
Part of the The Receptors book series (REC)

Abstract

At the time of publication of the first edition of The GABA Receptors in 1983, the concept of GABA receptor subtypes had only just emerged. Designation of the terms GABAA and GABAB to describe bicuculline-sensitive Cl-dependent and novel bicuculline-insensitive Cl-independent receptors, respectively, was introduced less than two years earlier (Hill and Bowery, 1981). There was no evidence for a physiological role for the novel GABAB site at that time and the molecular structure of fast channel-linked GABAA receptors was unknown. We now know that GABAB receptors have not only a physiological role in synaptic transmission (Dutar and Nicoll, 1988a), but may also be important in pathological conditions associated with pain and epilepsy. In addition, we now have information for the structural sequences of the GABAA receptor (see Chapter 2 of this volume), with evidence for marked heterogeneity (e.g., Olsen and Tobin, 1990). Evidence is also accruing for a potential subclassification of GABAB receptors based on pharmacological characteristics (see Section 3.4.). Thus, in little more than a decade we have gone from a single GABA receptor to a multiplicity of GABA sites, with at least two distinct classes of receptors namely GABAA and GABAB. A third class GABAC, associated with fast Cl-channels, has also been suggested (Johnston, 1995; see also Chapter 11 of this volume). This chapter summarizes the pharmacological properties of the GABAB receptor(s), making reference to its potential significance as a therapeutic target.

Keywords

Spinal Cord Dorsal Horn Gaba Receptor Pertussis Toxin GABAB Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albright, A. L., Cervi, A., and Singletary, J. (1991) Intrathecal baclofen for spasticity in cerebral palsy. J. Am. Med. Assoc. 265, 1418–1422.CrossRefGoogle Scholar
  2. Aley, K. O. and Kulkarni, S. K. (1991) Baclofen analgesia in mice: a GABAB-mediated response. Methods Find. Exp. Clin. Pharmacol. 13, 681–686.PubMedGoogle Scholar
  3. Alford, S. and Grillner, S. (1991) The involvement of GABAB receptors and coupled G-proteins in spinal GABAergic presynaptic inhibition. J. Neurosci. 11, 3718–3726.PubMedGoogle Scholar
  4. Alger, B. E. and Nicoll, R. A. (1982) Pharmacological evidence for two kinds of GABA receptor on rat hippocampal pyramidal cells studied in vitro. J. Physiol. 328, 125–141.PubMedGoogle Scholar
  5. Amano, M. and Kubo, T. (1993) Involvement of both GABAA and GABAB receptors in tonic inhibitory control of blood pressure at the rostral ventrolateral medulla of the rat. Naunyn Schmiedebergs Arch. Pharmacol. 348, 146–153.PubMedCrossRefGoogle Scholar
  6. Andrade, R., Malenka, R. C., and Nicoll, R. A. (1986) A G protein couples serotonin and GABAB receptors to the same channels in hippocampus. Science 234, 1261–1265.PubMedCrossRefGoogle Scholar
  7. Arenas, E., Marsal, J., and Alberch, J. (1990) GABAA and GABAB antagonists prevent the opioid inhibition of endogenous acetylcholine release evoked by glutamate from rat neostriatal slices. Neurosci. Lett. 120, 201–204.PubMedCrossRefGoogle Scholar
  8. Azouvi,P.,Roby-Brami, A., Biraber, A., Thiebaut, J. B., Thurel, C., and Bussel, B. (1993) Effects of intrathecal baclofen on the monosynaptic reflex in humans: evidence for a postsynaptic action. J. Neurol. Neurosurg. Psychiatry 56, 515-519.Google Scholar
  9. Bein, H. J. (1972) Pharmacological differentiation of muscle relaxants, in Spasticity A Topical Survey (Birkmayer, W., ed.), Huber, Vienna, pp. 76-82.Google Scholar
  10. Benardo, L. S. (1994) Separate activation of fast and slow inhibitory post-synaptic potentials in rat neocortex in vitro. J. Physiol. (Lond.) 476, 203–215.Google Scholar
  11. Benoliel, J. J., Bourgoin, S., Mauborgne, A., Pohl, M., Legrand, J.C., Hamon, M., and Cesselin, F. (1992) GABA, acting at both GABAA and GABAB receptors, inhibits the release of cholecystokinin-like material from the rat spinal cord in vitro. Brain Res. 590, 255–262.CrossRefGoogle Scholar
  12. Bernasconi, R., Lauber, J., Marescaux, C., Vergnes, M., Markin, P., Rubic, V., Leonchardt, T., Reymann, N., and Bittiger, H. (1992) Experimental absence seizures: potential role of gamma-hydroxybutyric acid and GABAB receptors. J Neurol. Trans. 35 (Suppl.), 155–177.Google Scholar
  13. Bernasconi, R., Mathivet, P., Marescaux, C., Leonhardt, T., Martin, P., Mickel, S., and Froestl., W. (1994) NMDA receptors and No synthase (Nos) are involved in the increase of cerebral cGMP induced by the GABAB antagonists. Br. J. Pharmacol. 112, 7 P.Google Scholar
  14. Bolser, D. C., Blythin, D. J., Chapman, R. W., Egan, R. W., Hey, J. A., Rizzo, C., Kuo, S.-C., and Kreutner, W. (1995) The pharmacology of SCH 50911 a novel: orally-active GABA-B receptor antagonist. J. Pharmacol. Exp. Ther. 274, 1393–1398.Google Scholar
  15. Bonanno, G. and Raiteri, M. (1993) Multiple GABAB receptors. Trends Pharmacol. Sci. 14, 259–261.PubMedCrossRefGoogle Scholar
  16. Bowery, N. G. (1993) GABAB receptor pharmacology. Annu. Rev. Pharmacol. Toxicol. 33, 109–147.PubMedCrossRefGoogle Scholar
  17. Bowery, N. G., Doble, A., Hill, D. R., Hudson, A. L., Shaw, J. S., Turnbull, M. J., and Warrington, R. (1981) Bicuculline-insensitive GABA receptors on peripheral autonomic nerve terminals. Eur. J. Pharmacol. 71, 53–70.PubMedCrossRefGoogle Scholar
  18. Bowery, N. G., Hill, D. R., Hudson, A. L. Doble, A. Middlemiss, D. N., Shaw, J., and Turnbull, M. (1980) (—)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature 283, 92–94.Google Scholar
  19. Bowery, N. G., Hudson, A. L., and Price G. W. (1987) GABAA and GABAB receptor site distribution in the rat central nervous system. Neuroscience 20, 365–383.PubMedCrossRefGoogle Scholar
  20. Burgard, E. C. and Sarvey, J. M. (1991) Long-lasting potentiation and epilepti-form activity produced by GABAB receptor activation in the dentate gyrus of rat hippocampal slice. Neuroscience 11, 1198–209.PubMedGoogle Scholar
  21. Carletti, R., Libri, V., and Bowery N. G. (1993) The GABAB antagonist CGP36742 enhances spatial learning performance and antagonises baclofen-induced amnesia in mice. Br. J. Pharmacol. 109, 74 p.Google Scholar
  22. Castellano, C., Brioni, J. D., Nagahara, A. H., and McGaugh, J. L. (1989) Post-training systemic and intra-amygdala administration of the GABAB agonist baclofen impairs retention. Behan Neural Biol. 52, 170–179.Google Scholar
  23. Castro-Lopes, J. M., Tavares, I., Tolle, T. R., Coito, A., and Coimbra, A. (1992) Increase in GABAergic cells and GABA levels in the spinal cord in unilateral inflammation of the hindlimb of the rat. Eur. J. Neurosci. 4, 296–301.Google Scholar
  24. Chapman, R. W., Hey, J. A., Rizzo, C. A. and Bolser, D. C. (1993) GABAB receptors in the lung. Trends Pharmacol. Sci. 14, 26–29.PubMedCrossRefGoogle Scholar
  25. Chu, D. C. M., Albin, R. L., Young, A. B., and Penney, J. B. (1990) Distribution and kinetics of GABAB binding sites in rat central nervous system: a quantitative autoradiographic study. Neuroscience 34, 341–357.PubMedCrossRefGoogle Scholar
  26. Colmers, W. F. and Williams, J. T. (1988) Pertussis toxin pretreatment discriminates between pre-and postsynaptic actions of baclofen in rat dorsal raphe nucleus in vitro. Neurosci. Lett. 93, 300–306.PubMedCrossRefGoogle Scholar
  27. Crunelli, V. and Leresche, N. (1991) A role for GABAB receptors in excitation and inhibition of thalamocortical cells. Trends Neurosci. 14, 16–21.PubMedCrossRefGoogle Scholar
  28. Curtis, D. R., Gynther, B. D., Beattie, D. T., Kerr, D. I. B., and Prager, R. H. (1988) Baclofen antagonism by 2-hydroxy-saclofen in the cat spinal cord. Neurosci. Lett. 92, 97–101.Google Scholar
  29. Cutting, D. A. and Jordan, C. C. (1975) Alternative approaches to analgesia: baclofen as a model compound. Br. J. Pharmacol. 54, 171–179.PubMedCrossRefGoogle Scholar
  30. Davies, C. H., Davies, S. N., and Collingridge, G. L. (1990) Paired-pulse depression of monosynaptic GABA-mediated inhibitory postsynaptic responses in rat hippocampus. J. Physiol. 424, 513–531.Google Scholar
  31. Davies, J. (1981) Selective depression of synaptic excitation in cat spinal neurones by baclofen: an iontophoretic study. Br. J. Pharmacol. 72, 373–384.PubMedCrossRefGoogle Scholar
  32. Deisz, R., Billard, J. M., Zieglgänsberger, W. (1992) Evidence for two types of GABAB receptors located pre-and postsynaptically in the rat neocortical slice in vitro. J. Physiol. 446, 514 P.Google Scholar
  33. Deisz, R. A., Billard, J. M., and Zieglgänsberger, W. (1993) Pre and postsynaptic GABAB receptors of rat neocortical neurons differ in their pharmacological properties. Neurosci. Lett. 154, 209–212.PubMedCrossRefGoogle Scholar
  34. Desarmenien, M., Feltz, P., Occhipinti, G., Santangelo, F., and Schlichter, R. (1984) Coexistence of GABAA and GABAB receptors on A and C primary afferents. Br. J. Pharmacol. 81, 327–333.PubMedCrossRefGoogle Scholar
  35. DeSousa, N. J. Beninger, R., Jhamandas, K., and Boegman, R. J. (1994) Stimulation of GABAB receptors in the basal forebrain selectivity impairs working memory of rats in the double Y-maze. Brain Res. 641, 29–38.Google Scholar
  36. Dickenson, H. W, Allan, R. D., Ong, J., and Johnston, G. A. R. (1988) GABAB receptor antagonist and GABAA receptor agonist properties of a S-aminovaleric acid derivative, Z-5-aminopent-2-enoic acid. Neurosci. Lett. 86, 351-355.Google Scholar
  37. Dolphin, A. C. (1990) G protein modulation of calcium current in neurons. Annu. Rev. Physiol. 52, 243–255.PubMedCrossRefGoogle Scholar
  38. Dunlap, K. (1981) Two types of y-aminobutyric acid receptor on embryonic sensory neurons. Br. J. Pharmacol. 74, 579–585.PubMedCrossRefGoogle Scholar
  39. Dutar, P. and Nicoll, R. A. (1988a) A physiological role for GABAB receptors in the central nervous system. Nature 332, 156–158.PubMedCrossRefGoogle Scholar
  40. Dutar, P. and Nicoll, R. A. (1988b) Pre-and postsynaptic GABAB receptors in the hippocampus have different pharmacological properties. Neuron 1, 585–598.PubMedCrossRefGoogle Scholar
  41. Engberg, G. and Wissbrandt, H. (1993) Gamma-hydroxybutyric acid (GHBA) induces pacemaker activity and inhibition of substantia nigra dopamine neurons by activating GABAB receptors. Naunyn Schmiedebergs Arch. Pharmacol. 348, 491–497.PubMedCrossRefGoogle Scholar
  42. Erdö, S. L. and Bowery, N. G., eds. (1986) GABAergic Mechanisms in the Mammalian Periphery, Raven, New York.Google Scholar
  43. Erdö, S. L. (1986) GABAergic mechanisms and their possible role in the oviduct and the uterus, in GABAergic Mechanisms in the Mammalian Periphery ( Erdö, S. L. and Bowery, N. G., eds.), Raven, New York, pp. 205–222.Google Scholar
  44. Fodstad, H. and Nilsson, S. (1993) Intractable singultus: a diagnostic and therapeutic challenge. Brit. J. Neurosurg. 7, 255–260.CrossRefGoogle Scholar
  45. Fox, S., Krnjevic, K., Morris, M. E., Puil, E., and Werman, P. (1978) Action of baclofen on mammalian synaptic transmission. Neuroscience 3, 445–515.CrossRefGoogle Scholar
  46. Fraser, D. D., Mudrick-Donnan, L. A., and MacVicar, B. A. (1994) Astrocytic GABA receptors. Glia 11, 83–93.PubMedCrossRefGoogle Scholar
  47. Froestl, W., Mickel, S. J., Hall, R. G., von Sprecher, G., Strub, D., Baumann, P. A., Brugger, F., Gentsch, C., Jaekel, J., Olpe, H.-R., Rihs, G., Vassout, A., Waldmeier, P. C., and Bittiger, H. (1995a) A phosphinic acid analogues of GABA. 1. New potent and selective GABAB agonists. J. Med. Chem. 38, 3297–3312.PubMedCrossRefGoogle Scholar
  48. Froestl, W., Mickel, S. J., von Sprecher, G., Diel, P., Hall, R. G., Maier, L., Strub, D., Melillo, V., Baumann, P. A., Bernasconi, R., Gentsch, C., Hauser, K., Jaekel, J., Karlsson, G., Klebs, K., Maitre, L., Marescaux, C., Pozza, M. F., Schmutz, M., Steinmann, M. W., van Riezen, H., Vassout, A., Mondadori, C., Olpe, H.-R., Waldmeier, P. C., and Bittiger, H. (1995b) Phosphinic acid analogues of GABA. 2. Selective, orally active GABAB antagonists. J. Med. Chem. 38, 3313–3331.PubMedCrossRefGoogle Scholar
  49. Fromm, G. H. (1992) Therapeutic applications of baclofen. Pharmacol. Commun. 2, 132–137.Google Scholar
  50. Fromm, G. G., Shibuya, T., Nakata, M., and Terrence, C.F. (1990) Effects of d-baclofen and 1-baclofen on the trigeminal nucleus. Neuropharmacology 29, 249–254.PubMedCrossRefGoogle Scholar
  51. Fromm, G. H. and Terence, C. F. (1987) Comparison of L-baclofen and racemic baclofen in trigeminal neuralgia. Neurology 37, 1725–1728.PubMedCrossRefGoogle Scholar
  52. Frydenvang, K., Frolund, B., Kristiansen, U., and Krogsgaard-Larsen, P. (1996) Stereospecific GABAB receptor antagonism, in GABA: Receptors, Transporters and Metabolism ( Tanaka, C. and Bowery, N. G., eds.), Birkhauser, Basel, pp. 243–253.CrossRefGoogle Scholar
  53. Gähwiler, B. H. and Brown, D. A. (1985) GABAB-receptor-activated K* current in voltage-clamped CA3 pyramidal cells in hippocampal cultures. Proc. Natl. Acad. Sci. USA 82, 1558–1562.PubMedCrossRefGoogle Scholar
  54. Gallagher, J. P., Stevens, D. R., and Shinnick-Gallagher, P. (1984) Actions of GABA and baclofen on neurons of the dorsolateral septal nucleus (DLSN) in vitro. Neuro-pharmacology 23, 825, 826.Google Scholar
  55. Gemignani, A., Paudice, P., Bonanno, G., and Raiteri, M. (1994) Pharmacological discrimination between y-aminobutyric acid Type B receptors regulating cholecystokinin and somatostatin release from rat neocortex synaptosomes. Mol. Pharmacol. 45, 558–562.Google Scholar
  56. Giotti, A., Luzzi, S., Spagnesi, S., and Zilletti, L. (1983a) GABAA and GABAB receptor-mediated effects in guinea-pig ileum. Br. J. Pharmacol. 78, 469–478.PubMedCrossRefGoogle Scholar
  57. Giotti, A., Luzzi, S., Spagnesi, S., and Zilletti, L. (1983b) Homotaurine: a GABAB antagonist in guinea-pig ileum. Br. J. Pharmacol. 79, 855–862.PubMedCrossRefGoogle Scholar
  58. Giotti, A., Luzzi, S., Maggi, C. A., Spagnesi, S., and Zilletti, L. (1985) Modulatory activity of GABAB receptors on cholinergic tone in guinea-pig distal colon. Br. J. Pharmacol. 84, 883–895.PubMedCrossRefGoogle Scholar
  59. Gray, J. and Green, A. R. (1987) GABAB receptor-mediated inhibition of potassium-evoked release of endogenous 5-hydroxytryptamine from mouse frontal cortex. Br. J. Pharmacol. 91, 517–522.PubMedCrossRefGoogle Scholar
  60. Harrison, N. L. (1990) On the presynaptic action of baclofen at inhibitory synapses between cultured rat hippocampal neurones. J. Physiol. 422, 433–446.PubMedGoogle Scholar
  61. Harrison, N. L., Lange, G. D., and Barker, J. L. (1988) (—) Baclofen activates presynaptic GABAB receptors on GABAergic inhibitor neurons from embryonic rat hippocampus. Neurosci. Lett. 85, 105–109.Google Scholar
  62. Henry, J. L. (1982) Effects of intravenously administered enantiomers of baclofen on functionally identified units in lumbar dorsal horn of the spinal cat. Neuropharmacology 21, 1073–1083.PubMedCrossRefGoogle Scholar
  63. Hill, D. R. (1985) GABAB receptor modulation of adenylate cyclase activity in rat brain slices. Br. J. Pharmacol. 84, 249–257.PubMedGoogle Scholar
  64. Hill, D. R. and Bowery, N. G. (1981) 3H-Baclofen and 3H-GABA bind to bicucullineinsensitive GABAB sites in rat brain. Nature 290, 149–152.Google Scholar
  65. Hill, D. R., Bowery, N. G., and Hudson, A. L. (1984) Inhibition of GABAB receptor binding by guanyl nucleotides. J. Neurochem. 42, 652–657.PubMedCrossRefGoogle Scholar
  66. Hosford, D. A., Clark, S., Cao, Z., Wilson, W. A., Lin, F.-H., Morrisett, R. A., and Huin, A. (1992) The role of GABAB receptor activation in absence seizures of lethargic (111/ 1h) mice. Science 257, 398–401.PubMedCrossRefGoogle Scholar
  67. Hosford, D. A., Wang, Y., Liu, C. C., and Snead, O. C. (1995) Characterization of the antiabsence effects of SCH 50911, a GABAB receptor antagonist, in the lethargic mouse, y-hydroxybutyrate, and pentylenetetrazole models. J. Pharmacol. Exp. Ther. 274, 1399–1403.PubMedGoogle Scholar
  68. Hosli, L., Hosli, E., Redle, S., Rojas, J., and Schramek, H. (1990) Action of baclofen, GABA and antagonists on the membrane potential of cultured astrocytes of rat spinal cord. Neurosci. Lett. 117, 307–312.PubMedCrossRefGoogle Scholar
  69. Howson, W., Mistry, J., Broekman, M., and Hills, J. M. (1993) Biological activity of 3aminopropyl(methyl) phosphinic acid, a potent and selective GABAB agonist with CNS activity. Bioorganic Med. Chem. Lett. 3, 515–518.CrossRefGoogle Scholar
  70. Humenuik, R. E., Ong,J., Kerr, D. I. B., and White, J. M. (1993) The role of GABAB antagonists in mediating the effects of ethanol in mice. Psychopharmacology III,219-224.Google Scholar
  71. Isaacson, J. S., Solis, J. M., and Nicoll, R. A. (1993) Local and diffuse synaptic actions of GABA in the hippocampus. Neuron 10, 165–175.PubMedCrossRefGoogle Scholar
  72. Ito, Y., Ishige, K., Zaitsu, E., Anzai, K., and Fukuda, H. (1995) y-Hydroxybutyric acid increases intracellular Ca2+ concentration and nuclear cyclic AMP-responsive element-and activator protein 1 DNA-binding activities through GABAB receptor in cultured cerebellar granule cells. J. Neurochem. 65, 75–83.Google Scholar
  73. Jarolimek, W., Bijak, M., and Misgeld, U. (P992) GABA and baclofen activate K* conductance of central neurons through different receptors. Pharmacol. Commun. 2, 49.Google Scholar
  74. Jessen, K. R. (1990) GABAergic neurons in the myenteric plexus, in GABA Outside the CNS ( Erdö, S. L., ed.), Springer-Verlag, New York, pp. 19–27.Google Scholar
  75. Jessen, K. R., Mirsky, R., Dennison, M. E., and Burnstock, G. (1979) GABA may be a neurotransmitter in the vertebrate peripheral nervous system. Nature 281, 71–74.PubMedCrossRefGoogle Scholar
  76. Johnston, G. A. R. (1995) GABA receptor pharmacology, in Pharmacological Sciences: Perspectives for Research and Therapy in the Late 1990s ( Cuello, A. C. and Collier, B., eds.), Birkhauser Verlag, Basel, pp. 11–16.CrossRefGoogle Scholar
  77. Kangra, I., Minchun, J., and Randic, M. (1991) Actions of (-) baclofen on rat dorsal horn neurons. Brain Res. 562, 265–75.CrossRefGoogle Scholar
  78. Karbon, E. W., Duman, R. S., and Enna, S. J. (1984) GABAB receptors and norepinephrinestimuated cAMP production in rat brain cortex. Brain Res. 306, 327–332.PubMedCrossRefGoogle Scholar
  79. Karlsson, G., Pozza, M., and Olpe, H.-R. (1988) Phaclofen: a GABAB blocker reduces long-duration inhibition in the neocortex. Eur. J. Pharmacol. 148, 485, 486.Google Scholar
  80. Kawai, K. and Unger, R. H. (1983) Effects of y-aminobutyric acid on insulin, glucagon and somatostatin release from isolated perfused dog pancreas. Endocrinology 113, 111–113.PubMedCrossRefGoogle Scholar
  81. Keberle, H. and Faigle, J. W. (1972) Synthesis and structure-activity relationships of the y-aminobutyric acid derivatives, in Spasticity—A Topical Survey ( Birkmayer, J. W., ed.), Hans Huber, Vienna, pp. 90–93.Google Scholar
  82. Kerr, D. I. B. and Ong, J. (1995) GABAB receptors. Pharmacol. Ther. 67, 187–246.PubMedCrossRefGoogle Scholar
  83. Kerr, D. I. B., Ong, J., and Prager, R. H. (1986) Antagonism of peripheral GABAB recep-ors by phaclofen, the phosphono-analogue of baclofen, in the guinea-pig isolated ileum. Proc. Aust. Physiol. Pharmacol. Soc. 17, 114 P.Google Scholar
  84. Kerr, D. I. B., Ong, J., and Prager, R. H. (1990) Antagonism of GABAB receptor-mediated responses in the guinea-pig isolated ileum and vas deferens by phosphono-analogues of GABA. Br. J. Pharmacol. 99, 422–426.PubMedCrossRefGoogle Scholar
  85. Kerr, D. I. B., Ong, J., Prager, R. H., Gynther, B. D., and Curtis, D. R. (1987) Phaclofen: a peripheral and central baclofen antagonist. Brain Res. 405, 150–154.Google Scholar
  86. Kimura, T., Saunders, P. A., Kim, H. S., Rheu, H. M., Oh, K. W., and Ho, I. K. (1994) Interactions of ginsenosides with ligand binding of GABA, and GABAB receptors. Gen. Pharmacol. 25, 193–199.Google Scholar
  87. Kleinrok, A. and Kilbinger, H. (1983) y-Aminobutyric acid and cholinergic transmission in the guinea-pig ileum. Naunyn Schmiedebergs Arch. Pharmacol. 322, 216–220.Google Scholar
  88. Knight, A. R. and Bowery, N. G. (1992) GABA receptors in rats with spontaneous generalized non-convulsive epilepsy. J. Neural Transm. 35 (Suppl.), 189–196.Google Scholar
  89. Knott, C., Maguire, J. J., and Bowery, N. G. (1993) Age-related regional sensitivity to pertussis toxin-mediated reduction in GABAB receptor binding in rat brain. Mol. Brain Res. 18, 353–357.PubMedCrossRefGoogle Scholar
  90. Krahn, A. and Penner, S. B. (1994) Use of baclofen for intractable hiccups in uremia. Am. J. Med. 96, 391.PubMedCrossRefGoogle Scholar
  91. Lacey, M. G., Mercuri, N. B., and North, R. A. (1988) On the potassium conductance increase activated by GABAB and dopamine D2 receptors in rat substantia nigra neurones. J. Physiol. 401, 437–453.PubMedGoogle Scholar
  92. Lalley, P. M. (1983) Biphasic effects of baclofen on phrenic motoneurons: possible involvement of two types of y-aminobutyric acid (GABA) receptors. J. Pharmacol. Exp. Ther. 226, 616–624.PubMedGoogle Scholar
  93. Lambert, N. A., Harrison, N. L., Kerr, D. I. B., Ong, J., Prager, R. H., and Teyler, T. J. (1989) Blockade of the late IPSP in rat CAI hippocampal neurons by 2-hydroxysaclofen. Neurosci. Lett. 107, 125–128.PubMedCrossRefGoogle Scholar
  94. Lambert, N. A. and Wilson, W. A. (1993) Discrimination of post and presynaptic GABAB receptor mediated responses by tetrahydroaminoacridine in area CA3 of the rat hippocampus. J. Neurophysiol. 69, 630–635.PubMedGoogle Scholar
  95. Lanza, M., Fassio, A., Gemignani, A., Bonanno, G., and Raiteri, M. (1993) CGP 52432: a novel potent and selective GABAB autoreceptor antagonist in rat cerebral cortex. Eur. J. Pharmacol. 237, 191–195.PubMedCrossRefGoogle Scholar
  96. Levy, R. A. and Proudfit, H. K. (1977) The analgesic action of baclofen [-(4-chlorophenyl)-y-aminobutyric acid]. J. Pharmacol. Exp. Ther. 202, 437–445.PubMedGoogle Scholar
  97. Libri, V., Constanti, A., and Bowery, N. G. (1995) GABAB receptor down-regulation facilitates muscarinic or metabotropic agonist-dependent burst firing in rat olfactory cortical neurones, in vitro. Br. J. Pharmacol. 116, 332 P.Google Scholar
  98. Lin, F.-H., Cao, Z., and Hosford, D. A. (1993) Increased number of GABAB receptors in the lethargic (1h/lh) mouse model of absence epilepsy. Brain Res. 608, 101–106.PubMedCrossRefGoogle Scholar
  99. Liu, Z., Vergnes, M., Depaulis, A., and Marescaux, C. (1991) Evidence for a critical role of GABAergic transmission within the thalamus in the genesis and control of absence seizures in the rat. Brain Res. 545, 1–7.PubMedCrossRefGoogle Scholar
  100. Liu, Z., Vergnes, M., Depaulis, A., and Marescaux, C. (1992) Involvement of intrathalamic GABAB transmission in the control of absence seizures in the rat. Neuroscience 48, 87–93.PubMedCrossRefGoogle Scholar
  101. Malcangio, M. and Bowery, N. G. (1993a) GABAB receptor-mediated inhibition of forskolin-stimuated cyclic AMP accumulation in rat spinal cord. Neurosci. Lett. 158, 189–192.PubMedCrossRefGoogle Scholar
  102. Malcangio, M. and Bowery, N. G. (1993b) Gamma-aminobutyric acidB but not gamma-amino butyric and acid A receptor activation inhibits electrically evoked substance P-like immunoreactivity release from the rat spinal cord in vitro. J. Pharmacol. Exp. Ther. 266, 1490–1496.PubMedGoogle Scholar
  103. Malcangio, M. and Bowery, N. G. (1994) Spinal cord SP release and hyperalgesia in monoarthritic rats: involvement of the GABAB receptor system. Br. J. Pharmacol. 113, 1561–1566.PubMedCrossRefGoogle Scholar
  104. Malcangio, M. and Bowery, N.G. (1996) Calcitonin gene-related peptide content, basal outflow and electrically evoked release from monoarthritic rat spinal cord in vitro. Pain (in press).Google Scholar
  105. Malcangio, M., DaSilva, H., and Bowery, N. G. (1993) Plasticity of GABAB receptor in rat spinal cord detected by autoradiography. Eur. J. Pharmacol. 250, 153–156.PubMedCrossRefGoogle Scholar
  106. Malcangio, M., Libri, V., Teoh, H., Constanti, A., and Bowery, N. G. (1995) Chronic (—)baclofen or CGP 36742 alters GABAB receptor sensitivity in rat brain and spinal cord. Neuroreport 6, 339–403.Google Scholar
  107. Marescaux, C., Vergnes, M., and Bernasconi, R. (1992) GABAB receptor antagonists: potential new anti-absence drugs. J. Neural Transm. (35) Suppl, 347–369.Google Scholar
  108. Mondadori, C., Preiswerk, G., and Jaekel, J. (1992) Treatment with a GABAB receptor blocker improves the cognitive performance of mice, rats and rhesus monkeys. Pharmacol. Commun. 2, 93–97.Google Scholar
  109. Mott, D. D. and Lewis, D. L. (1994) The pharmacology and function of GABAB receptors. Int. Rev. Neurobiol. 36, 97–223.Google Scholar
  110. Mott, D. D. and Lewis, D. V. (1991) Facilitation of the induction of long term potentiation by GABAB receptors. Science 252, 1718–1720.PubMedCrossRefGoogle Scholar
  111. Muhyaddin, M., Roberts, P. J., and Woodruff, G. N. (1982) Presynaptic y-aminobutyric acid receptors in the rat anococcygeus muscle and their antagonism by 5-aminovaleric acid. Br. J. Pharmacol. 77, 163–168.PubMedCrossRefGoogle Scholar
  112. Nakayasu, H., Nishikawa, M., Mizutani, H., Kimura, H., and Kuriyama, K. (1993) Immunoaffinity purification and characterization of y-aminobutyric acid (GABA)B receptor from bovine cerebral crotex. J. Biol. Chem. 268, 8658–8664.PubMedGoogle Scholar
  113. Newberry, N. R. and Nicoll, R. A. (1984) Direct hyperpolarizing action of baclofen on hippocampal pyramidal cells. Nature 308, 450–452.PubMedCrossRefGoogle Scholar
  114. Olpe, H.-R. and Karlsson, G. (1990) The effects of baclofen and two GABAB receptor antagonists on long term potentiation. Naunyn Schmiedebergs Arch. Pharmakol. 342, 194–197.CrossRefGoogle Scholar
  115. Olpe, H.-R., Karlsson, G., Pozza, M. F., Brugger, F., Steinmann, M., Van Riezen, H., Fagg, G., Hall, R. G., Froestl, W., and Bittiger, H. (1990) CGP 35348: a centrally active blocker of GABAB receptors. Eur. J. Pharmacol. 187, 27–38.PubMedCrossRefGoogle Scholar
  116. Olpe, H.-R., Steinmann, M. W., Ferrat, T., Pozza, M. F., Greiner, K., Brugger, F., Froestl, W., Mickel, S. J., and Bittiger, H. (1993) The actions of orally active GABAB receptor antagonists on GABAergic transmission in vivo and in vitro. Eur. J. Pharmacol. 233, 179–186.PubMedCrossRefGoogle Scholar
  117. Olsen, R. W. and Tobin, A. J. (1990) Molecular biology of GABAA receptors. FASEB J. 4, 1469–1480.Google Scholar
  118. Ong, J. and Kerr, D. I. (1994) Suppression of GABAB receptor function in rat neocortical slices by amiloride. Eur. J. Pharmacol. 260, 73–77.PubMedCrossRefGoogle Scholar
  119. Ong, J. and Kerr, D. I. B. (1983) GABAA- and GABAB-receptor-mediated modification of intestinal motility. Eur. J. Pharmacol. 86, 9–17.Google Scholar
  120. Ong, J. and Kerr, D. I. B. (1987) Comparison of GABA-induced responses in various segments of the guinea-pig intestine. Eur. J. Pharmacol. 134, 349–353.PubMedCrossRefGoogle Scholar
  121. Ong, J. and Kerr, D. I. B. (1990) GABA receptors in peripheral tissues. Life Sci. 46, 1489–1501.PubMedCrossRefGoogle Scholar
  122. Otis, T. S., De Koninck, Y., and Mody, I. (1993) Characterization of synaptically elicited GABAB responses using patch-clamp recordings in rat hippocampal slices. J. Physiol. 463, 391–407.Google Scholar
  123. Parkman, H. P., Stapelfeldt, W. H., Williams, C. L., Lennon, V. A,. and Szurszewski, J. H. (1993) Enteric GABA-containing nerves projecting to the guinea-pig inferior mesenteric ganglion modulate acetylcholine release. J. Physiol. 471, 191–207.Google Scholar
  124. Parry, K. P., Drinkenburg, W. H. I. M., and Bowery, N. G. (1996) Lack of alteration of GABAB receptor binding in the absence epileptic WAG/Rij strain of rat. Br. J. Pharmacol. (in press).Google Scholar
  125. Penn, R. D. and Mangieri, E. A. (1993) Stiff-man syndrome treated with intrathecal baclofen. Neurology 43, 2412.PubMedCrossRefGoogle Scholar
  126. Penn, R. D., Savoy, S. M., Corcos, D., Latash, M., Gottlieb, G., et al. (1989) Intrathecal baclofen for severe spinal spasticity. N. Engl. J. Med. 320, 1517–1521.PubMedCrossRefGoogle Scholar
  127. Pfrieger, F. W., Gottmann, K., and Lux, H. D. (1994) Kinetics of GABAB receptor-mediated inhibition of calcium currents and excitatory synaptic transmission in hippocampal neurons in vitro. Neuron 12, 97–107.PubMedCrossRefGoogle Scholar
  128. Pittaluga, A., Asaro, D., Pettegrinni, G., and Raiteri, M. (1987) Studies of 3H-GABA and endogenous GABA release in rat cerebral cortex suggest the presence of autoreceptors of the GABAB type. Eur. J. Pharmacol. 144, 45–52.Google Scholar
  129. Potashner, S. J. (1978) Baclofen: effect on amino acid release. Can. J. Physiol. Pharmacol. 56, 150–154.PubMedCrossRefGoogle Scholar
  130. Potashner, S. J. (1979) Baclofen: effects on amino acid release and metabolism in slices of guinea-pig cerebral cortex. J. Neurochem. 32, 103–109.PubMedCrossRefGoogle Scholar
  131. Potier, B. and Dutar, P. (1993) Presynaptic inhibitory effect of baclofen on hippocampal inhibitory synaptic transmission involves a pertussis toxin-sensitive G-protein. Eur. J. Pharmacol. 231, 427–433.PubMedCrossRefGoogle Scholar
  132. Premkumar, L. S. and Gage, P. W. (1994) Potassium channels activated by GABAB agonists and serotonin in cultured hippocampal neurons. J. Neurophysiol. 71, 2570–2575.PubMedGoogle Scholar
  133. Price, G. W., Blackburn, T. P., Hudson, A. L., and Bowery, N. G. (1984) Presynaptic GABAB sites in the interpeduncular nucleus. Neuropharmacology 23, 861–862.CrossRefGoogle Scholar
  134. Price, G. W., Kelly, J. S., and Bowery, N. G. (1987) The location of GABAB receptor binding sites in mammalian spinal cord. Synapse 1, 530–538.PubMedCrossRefGoogle Scholar
  135. Raiteri, M. (1992) Subtypes of GABAB receptor regulating the release of central neurotransmitters. Pharmacol. Commun. 2, 1–3.Google Scholar
  136. Raiteri, M., Giralt, M. T., Bonanno, G., Pittaluga, A., Fedele, E., and Fontana, G (1990) Release-regulating GABA autoreceptors in human and rat central nervous system, in GABA B Receptors in Mammalian Function ( Bowery, N. G., Bittiger, H., and Olpe H.-R., eds.), Wiley, Chichester, UK, pp. 81–98.Google Scholar
  137. Ray, N. J., Jones, A. J., and Keen, P. (1991) GABAB receptor modulation of the release of substance P from capsaicin-sensitive neurons in the rat trachea in vitro. Br. J. Pharmacol. 102, 801–804.CrossRefGoogle Scholar
  138. Rosenstein, R. E., Chuluyan, H. E., and Cardinali, D. P. (1990) Presynaptic effects of gamma-aminobutyric acid on norepinephrine release and uptake in rat pineal gland. J. Neural Transm. 82, 131–140.CrossRefGoogle Scholar
  139. Reimann, W., Zwimstein, D., and Starke, K. (1982) y-Aminobutyric acid can both inhibit and facilitate dopamine release in the cauclate nucleus of the rabbit. J. Neurochem. 39, 961–969.Google Scholar
  140. Richards, D. A., Lemos, T., Whitton, P. S., and Bowery N. G. (1995) Extracellular GABA in the ventrolateral thalamus of rats exhibiting spontaneous absence epilepsy: a microdialysis study. J. Neurochem. 65, 1674–1680.PubMedCrossRefGoogle Scholar
  141. Robertson, B. and Taylor, R. (1986) Effects of y-aminobutyric acid and (—) baclofen on calcium and potassium currents in cat dorsal root ganglion neurones in vitro. Br. J. Pharmacol. 89, 661–672.PubMedCrossRefGoogle Scholar
  142. Saint, D. A., Thomas, T., and Gage, P. W. (1990) GABAB agonists modulate a transient potassium current in cultured mammalian hippocampal neurons. Neurosci. Lett. 188, 9–13.CrossRefGoogle Scholar
  143. Santos, A. E., Carvalho, C. M., Macedo, T. A., and Carvalho, A. P. (1995) Regulation of intracellular [Ca2+] and GABA release by presynaptic GABAB receptors in rat cerebrocortical synaptosomes. Neurochem. Int. 27.Google Scholar
  144. Sawynok. J. (1989) GABAergic agents as analgesics, in GABA: Basic Research and Clinical Applications ( Bowery, N. G. and Nistico, G., eds.), Pythagora, Rome, pp. 383–399.Google Scholar
  145. Scherer, R. W., Ferkany, J. W. Enna, S. J. (1988) Evidence for pharmacologically distinct subsets of GABAB receptors. Brain Res. Bull. 21, 439–443.Google Scholar
  146. Schlicker, E., Classen, K., and Gothert, M. (1984) GABAB receptor-mediated inhibition of serotonin release in the rat brain. Naunyn Schmeidebergs Arch. Pharmacol. 326, 99–105.CrossRefGoogle Scholar
  147. Schmid, K., Bohmer, G., and Gebauer, K. (1989) GABAB receptor mediated effects on central respiratory system and their antagonism by phaclofen. Neurosci. Lett. 99, 305–310.PubMedCrossRefGoogle Scholar
  148. Scott, R. H., Wootton, J. F., and Dolphin, A. C. (1990) Modulaltion of neuronal T type calcium channel currents by photoactivation of intracellular guanosine 5-0(3-thio) triphosphate. Neuroscience 38, 285–294.PubMedCrossRefGoogle Scholar
  149. Seabrook, G. R., Howson, W., and Lacey, M. G. (1990) Electrophysiological characterization of potent agonìsts and antagonists at pre-and postsynaptic GABAB receptors on neurones in rat brain slices. Br. J. Pharmacol. 101, 949–957.PubMedCrossRefGoogle Scholar
  150. Sekiguchi, M., Sakuta, H., Okamoto, K., and Sakai, Y. (1990) GABAB receptors expressed in Xenopus oocytes by guinea pig cerebral mRNA are functionally coupled with Cat+ dependent Cl-channels and with K+ channels, through GTP-binding proteins. Mol. Brain Res. 8, 301–309.PubMedCrossRefGoogle Scholar
  151. Shirakawa, J., Taniyama, K., and Tanaka, C. (1987) Gamma-aminobutyric acid-induced modulation of acetylcholine release from the guinea pig lung. J. Pharmacol. Exp. Ther. 243, 364–369.PubMedGoogle Scholar
  152. Snead, O. C. (1991) The y-hydroxybutyrate model of absence seizures; correlation of regional brain levels of y-hydroxybutyric acid and y-butyrolactone with spike wave discharges. Neuropharmacology 30, 161–67.PubMedCrossRefGoogle Scholar
  153. Snead, O. C. (1995) Basic mechanisms of generalized absence epilepsy. Ann. Neurol. 37, 146–157.PubMedCrossRefGoogle Scholar
  154. Soltesz, I., Haby, M., Leresche, N., and Crunelli, V. (1988) The GABAB antagonist phaclofen inhibits the late K+-dependent IPSP in cat and rat thalamic and hippocampal neurones. Brain Res. 448, 351–354.PubMedCrossRefGoogle Scholar
  155. Stackman, R. W. and Walsh, T. J. (1994) Baclofen produces dose related working memory impairments after intraseptal injection. Behan Neural Biol. 61, 181–185.CrossRefGoogle Scholar
  156. Stefanski, R., Plaznik, A. Palejko, W., and Kostowski, W. (1990) Myorelaxant effect of baclofen injected to the nucleus accumbens septi. J. Neural Transm. Parkinsons Dis. Dementia Sect. 2, 179–191.CrossRefGoogle Scholar
  157. Stuart, G. J. and Redman, S. J. (1992) The role of GABAA and GABAB receptors in presynaptic inhibition of 1 a EPSPs in cat spinal motoneurones. J. Physiol. (Lond.) 447, 675–692.Google Scholar
  158. Swartzwelder, H. S., Lewis, D. V., Anderson, W. W., Wilson, W. A. (1987) Seizure-like events in brain slices: suppression by interictal activity. Brain Res. 410, 362–366.PubMedCrossRefGoogle Scholar
  159. Taniyama, K., Takeda, K., Ando, H., Kuno, T., and Tanaka, C. (1991a). Expression of the GABAB receptor in Xenopus oocytes and inhibition of the response by activation of protein kinase C. FEBS Lett. 278, 222–224.PubMedCrossRefGoogle Scholar
  160. Taniyama, K., Takeda, R., Ando, H., and Tanaka, C. (199 l b). Expression or the GABAB receptor in Xenopus oocytes and desensitization by activation of protein kinase C. Adv. Exp. Med. Biol. 287, 413–420.Google Scholar
  161. Tareilus, E., Schoch, J., and Breer, H. (1994) GABAB-receptor-mediated inhibition of calcium signals in isolated nerve terminals. Neurochem. Int. 24, 349–361.PubMedCrossRefGoogle Scholar
  162. Teoh, H., Malcangio, M., and Bowery, N. G. (1996a) The effects of novel GABAB antagonists on the release of amino acids from spinal cord of the rat. Br. J. Pharmacol. 118, 1153–1160.PubMedCrossRefGoogle Scholar
  163. Teoh, H., Malcangio, M., Fowler, L.J., and Bowery, N. G. (1996b) Evidence for release of glutamic acid, aspartic acid and substance P but not y-aminobutyric acid from primary afferent fibres in rat spinal cord. Eur. J. Pharmacol. (in press).Google Scholar
  164. Terence, C. F., Fromm, G. H., and Tenicela, R. (1985) Baclofen as an analgesic in chronic peripheral nerve disease. Eur. Neurol. 24, 380–385.CrossRefGoogle Scholar
  165. Thalmann, R. H (1987) Pertussis toxin blocks a late inhibitory synaptic potential in hippocampal CA3 neurons. Neurosci. Lett. 82, 41–46.PubMedCrossRefGoogle Scholar
  166. Thalmann, R. H. (1988) Evidence that guanosine triphosphate (GTP)-binding proteins control a synaptic response in brain: effect of pertussis toxin and GTP S on the lateGoogle Scholar
  167. inhibitory postsynaptic potential of hippocampal CA3 neurons. J. Neurosci. 8, 4589-4602.Google Scholar
  168. Thompson, S. M. and Gahwiler, B. H. (1992) Comparison of the actions of baclofen at pre-and postsynaptic receptors in the rat hippocampus in vitro. J. Physiol. 451, 329–345.PubMedGoogle Scholar
  169. Turgeon, S. M. and Albin, R. L. (1993) Pharmacology, distribution, cellular localization, and development of GABAB binding in rodent cerebellum. Neuroscience 55, 31 1323.Google Scholar
  170. Turski, L., Klockgether, T., Schwarz, M., Turski, W. A., and Sontag, K. H. (1990) Sub- stantia nigra: a site of action of muscle relaxant drugs. Ann. Neurol. 28, 341–348.PubMedCrossRefGoogle Scholar
  171. Vasko, M. R. and Harris, V. (1990) Gamma-aminobutyric acid inhibits the potassium-stimulated release of somatostatin from rat spinal cord slices. Brain Res. 507, 129–137.PubMedCrossRefGoogle Scholar
  172. Vergnes, M., Marescaux, C., Micheletti, G., Reis, J., Depaulis, A., Rumbach, L., and Warter, J. M. (1982) Spontaneous paroxysmal electro-clinical patterns in a rat: a model of generalized non-convulsive epilepsy. Neurosi. Lett. 33, 97–101.CrossRefGoogle Scholar
  173. Wada, T. and Fukuda, N. (1991) Pharmacologic profile of a new anxiolytic, DN-2327: effect of Ro 15-1788 and interaction with diazepam in rodents. Psychopharmacology 103, 314–322.PubMedCrossRefGoogle Scholar
  174. Wagner, R. G. and Dekin, M. S. (1993) GABAB receptors are coupled to a barium-insenstive outward rectifying potassium conductance in premotor respiratory neurons. J. Neurophysiol. 69, 286–289.PubMedGoogle Scholar
  175. Waldmeier, P. C., Wicki, P., Feldtrauer, J.-J., Mickel, S. J., Bittiger, H., and Baumann, P. A. (1994) GABA and glutamate release affected by GABAB receptor antagonists with similar potency: no evidence for pharmacologically different presynaptic receptors. Br. J. Pharmacol. 113, 151, 152.Google Scholar
  176. Wall, M. J. and Dale, N. (1994) GABAB receptors modulate an omega-conotoxin-sensitive calcium current that is required for synaptic transmission in the Xenopus embryo spinal cord. J. Neuroscience 14, 6248–6255.Google Scholar
  177. Williams, S. R., Turner, J. P., and Crunelli, V. (1995) Gamma-hydroxybutyrate promotes oscillatory activity of rat and cat thalamocortical neurons by a tonic GABAB receptor mediated hyperpolarization. Neuroscience 66, 133–141.Google Scholar
  178. Wilson, P. R. and Yaksh, T. L. (1978) Baclofen is antinociceptive in the spinal intrathecal space of animals. Eur. J. Pharmacol. 51, 323–330.PubMedCrossRefGoogle Scholar
  179. Woodward, R. M. and Miledi, R. (1992) Sensitivity of Xenopus oocytes to changes in extracellular pH: possible relevance to proposed expression of atypical mammalian GABAB receptors. Brain Res. 43, 603–625.Google Scholar
  180. Wullner, U., Klockgether, T., Sontag, K.-H. (1989) Phaclofen antagonizes the depressant effect of baclofen on spinal reflex transmission in rats. Brain Res. 596, 341–344.CrossRefGoogle Scholar
  181. Xie, X. and Smart, T. G. (1992) y-Hydroxybutyrate hyperpolarizes hippocampal neurons by activating GABAB receptors. Eur. J. Pharmacol. 212, 291–294.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Norman G. Bowery

There are no affiliations available

Personalised recommendations