Electrophysiology of GABAB Receptors

  • Rudolf A. Deisz
Part of the The Receptors book series (REC)


The last decade has seen a tremendous increase in the understanding of the cellular and molecular mechanisms of synaptic transmission. This gain in knowledge is also reflected in the number of excellent reviews concerning synaptic transmission in general (Mayer and Westbrook, 1987; Siggins and Gruol, 1986; Nicoll et al., 1990), and on specific aspects of synaptic functioning. Synaptic inhibition in the visual cortex was reviewed by Connors (1992) and the ionic mechanisms of inhibition received an in-depth treatment by Kaila (1995). Thompson (1994) presented a complete survey of the modulation of synaptic inhibition in the hippocampus. The modulation of calcium channels by neurotransmitters (reviewed by Anwyl [1991] and Dolphin [1991]) is of particular interest in the present context. Most relevant to the issue addressed here are previous reviews covering the physiology and pharmacology of GABAB receptors by Bowery (1993), Mott and Lewis (1994), and Misgeld et al. (1995).


Pertussis Toxin Potassium Conductance Neocortical Neuron Inhibitory Postsynaptic Potential Inhibitory Terminal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alger, B. E. (1984) Characteristics of a slow hyperpolarizing synaptic potential in rat hippocampal pyramidal cells in vitro. J. Neurophysiol. 52, 892–910.Google Scholar
  2. Andrade, R., Malenka, R. C., and Nicoll, R. A. (1986) A G protein couples serotonin and GABAB receptors to the same channels in hippocampus. Science 234, 1261–1265.PubMedCrossRefGoogle Scholar
  3. Anwyl, R. (1991) Modulation of vertebrate neuronal calcium channels by transmitters. Brain Res. Rev. 16, 265–281.PubMedCrossRefGoogle Scholar
  4. Asano, T., Ui, M., and Ogasawara, N. (1985) Prevention of the agonist binding to y-aminobutyric acid B receptors by guanine nucleotides and islet-activating protein, pertussis toxin in bovine cerebral cortex. J. Biol. Chem. 260, 12,653–12, 658.Google Scholar
  5. Bean, B. P. (1989) Neurotransmitter inhibition of neuronal calcium currents by changes in channel voltage dependence. Nature 340, 153–156.PubMedCrossRefGoogle Scholar
  6. Bear, M. F., Press, W. A., and Connors, B. W. (1992) Long-term potentiation in slices of kitten visual cortex and the effects of NMDA receptor blockade. J. Neurphysiol. 67, 841–851.Google Scholar
  7. Ben-Ari, Y., Kmjevic, K., and Reinhardt, W. (1979) Hippocampal seizures and failure of inhibition. Can. J. Physiol. Pharmacol. 57, 1462–1466.CrossRefGoogle Scholar
  8. Billard, J. M., Lamour, Y, and Dutar, P. (1995) Decreased monosynaptic GABAB-mediated inhibitory postsynaptic potentials in hippocampal CA1 pyramidal cells in the aged rat: pharmacological characterization and possible mechanisms. J. Neurophysiol. 74, 539–546.PubMedGoogle Scholar
  9. Bliss, T. V. P. and Collingridge, G. L. (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39.PubMedCrossRefGoogle Scholar
  10. Bowery, N. G. (1993) GABAB receptor pharmacology. Ann. Rev. Pharmacol. Toxicol. 33, 109–147.CrossRefGoogle Scholar
  11. Bowery, N. G., Hill, D. R., and Hudson, A. L. (1983) Characterisation of GABAB receptor binding sites on rat whole brain synaptic membranes. Br. J. Pharmacol. 78, 191–206.PubMedCrossRefGoogle Scholar
  12. Bowery, N. G., Hill, D. R., Hudson, A. L., Doble, A., Middlemiss, D. N., Shaw, J., and Turnbull, M. (1980) Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature 283, 92–94.PubMedCrossRefGoogle Scholar
  13. Bowery, N. G. and Williams, L. C. (1986) GABAB receptor activation inhibits the increase in nerve terminal Ca* induced by depolarization. Br. J. Pharmacol. 86, 37 P.Google Scholar
  14. Calabresi, P., Mercuri, N. B., DeMurtas, M., and Bernardi, G. (1991) Involvement of GABA systems in feedback regulation of glutamate-and GABA-mediated synaptic potentials in rat neostriatum. J. Physiol. 440, 581–599.PubMedGoogle Scholar
  15. Carbone, E. and Lux, H. D. (1984) A low voltage-activated fully inactivating Ca channel in vertebrate sensory neurones. Nature 310, 501, 502.Google Scholar
  16. Christie, M. J. and North, R. A. (1988) Agonists at t-opioid, M2-muscarinic and GABABreceptors increase the same potassium conductance in rat lateral parabrachial neurones. Br. J. Pharmacol. 95, 896–902.PubMedCrossRefGoogle Scholar
  17. Colmers, W. F. and Pittman, Q. J. (1989) Presynaptic inhibition by neuropeptide Y and baclofen in hippocampus: insensitivity to pertussis toxin treatment. Brain Res. 498, 99–104.PubMedCrossRefGoogle Scholar
  18. Connors, B. W. (1992) GABAA-and GABAB-mediated processes in visual cortex, in Progress in Brain Research, vol. 90 ( Mize, R. R., Marc, R. E., and Sillito, A. M., eds. ), Elsevier Science, pp. 335–348.Google Scholar
  19. Connors, B. W., Malenka, R. C., and Silva, L. R. (1988) Two inhibitory postsynaptic potentials and GABA, and GABAB receptor-mediated responses in neocortex of rat and cat. J. Physiol. 406, 443–468.PubMedGoogle Scholar
  20. Cross, J. A. and Horton, R. W. (1987) Are increases in GABAB receptors consistent findings following chronic antidepressant administration? Eur. J. Pharmacol. 141, 159–162.PubMedCrossRefGoogle Scholar
  21. Crunelli, V. and Leresche, N. (1991) A role for GABAB receptors in excitation and inhibition of thalamocortical cells. Trends Neurosci. 14, 16–21.PubMedCrossRefGoogle Scholar
  22. Curtis, D. R., Game, C. J. A., Johnston, G. A. R., and McCulloch, R. M. (1974) Central effects of (3-(p-chlorophenyl)-y-aminobutyric acid. Brain Res. 70, 493–499.PubMedCrossRefGoogle Scholar
  23. Davies, C. H. and Collingridge, G. L. (1993) The physiological regulation of synaptic inhibition by GABAB autoreceptors in rat hippocampus. J. Physiol. 472, 245–265.PubMedGoogle Scholar
  24. Davies, C. H., Davies, S. N., and Collingridge, G. L. (1990) Paired-pulse depression of monosynaptic GABA-mediated inhibitory postsynaptic responses in rat hippocampus. J. Physiol. 424, 513–531.PubMedGoogle Scholar
  25. Davies, C. H., Starkey, S. J., Pozza, M. F., and Collingridge, G. L. (1991) GABAB autoreceptors regulate the induction of LTP. Nature 349, 609–611.PubMedCrossRefGoogle Scholar
  26. Davies, J. and Watkins, J. C. (1974) The action of 13-phenyl-GABA derivatives on neurones of the cat cerebral cortex. Brain Res. 70, 501–505.PubMedCrossRefGoogle Scholar
  27. Deisz, R. A. (1996) GABAB receptors of inhibitory interneurons mediate the frequency- dependent depression inhibition of rat neocortex in vitro. J. Physiol. 491, 139, 140.Google Scholar
  28. Deisz, R. A., Billard, J. M., and Zieglgänsberger, W. (1992) Evidence for two types of GABAB receptors located pre-and postsynaptically in the neocortical slice in vitro. J. Physiol. 446, 514 P.Google Scholar
  29. Deisz, R. A., Billard, J. M., and Zieglgänsberger, W. (1993) Pre-and postsynaptic GABAB receptors of rat neocortical neurons differ in their pharmacological properties. Neurosci. Lett. 154, 209–212.PubMedCrossRefGoogle Scholar
  30. Deisz, R. A., Billard, J. M., and Zieglgänsberger, W. (1996) Presynaptic and postsynaptic GABAB receptors of neocortical neurones of the rat in vitro: differences in pharmacology and ionic mechanisms. Synapse (in press).Google Scholar
  31. Deisz, R. A., Dose, M., and Lux, H. D. (1984) The time course of GABA action on the crayfish stretch receptor: evidence for a saturable GABA uptake. Neurosci. Lett. 47, 245–250.PubMedCrossRefGoogle Scholar
  32. Deisz, R. A., Fortin, G., and Zieglgänsberger, W. (1991) Voltage dependence of excitatory postsynaptic potentials of rat neocortical. neurons. J. Neurophysiol. 65, 371–382.PubMedGoogle Scholar
  33. Deisz, R. A. and Lux, H. D. (1985) y-Aminobutyric acid-induced depression of calcium currents of chick sensory neurons. Neurosci. Lett. 56, 205–210.Google Scholar
  34. Deisz, R. A. and Lux, H. D. (1986) Depression of calcium currents of chick sensory neurons by gamma-aminobutyric acid persists after elimination of other net currents, in Calcium Electrogenesis and Neuronal Functioning ( Heinemann, U., Klee, M., Neher, E. and Singer, W., eds.), Springer-Verlag, Berlin, pp. 229–235.CrossRefGoogle Scholar
  35. Deisz, R. A. and Prince, D. A. (1986) Presynaptic GABA feedback causes frequency-dependent depression of IPSPs in neocortical neurons. Soc. Neurosci. 12, 19.Google Scholar
  36. Deisz, R. A. and Prince, D. A. (1989) Frequency-dependent depression of inhibition in guinea-pig neocortex in vitro by GABAB receptor feedback on GABA release. J. Physiol. 412, 513–541.PubMedGoogle Scholar
  37. Deisz, R. A. and Zieglgänsberger, W. (1992) Distinguishing pre-and postsynaptic GABAB receptors in the neocortical slice in vitro. Pharmacol. Commun. 2, 38–40.Google Scholar
  38. Désarmenien, M., Feltz, P., Occhipinti, G., Santangelo, F., and Schlichter, R. (1984) Coexistence of GABA, and GABAB receptors on AS and C primary afferents. Br. J. Pharmacol. 81, 327–333.PubMedCrossRefGoogle Scholar
  39. Diversé-Pierluissi, M. and Dunlap, K. (1995) Interaction of convergent pathways that inhibit N-type calcium currents in sensory neurons. Neuroscience 65, 477–483.PubMedCrossRefGoogle Scholar
  40. Dolphin, A. C. (1991) Regulation of calcium channel activity by GTP binding proteins and second messengers. Biochem. Biophys. Acta 1091, 68–80.PubMedCrossRefGoogle Scholar
  41. Dolphin, A. C., McGuirk, S. M., and Scott, R. H. (1989) An investigation into the mechanisms of inhibition of calcium channel currents in cultured sensory neurones of the rat by guanine nucleotide analogues and baclofen. Br. J. Pharmacol. 97, 263–273.PubMedCrossRefGoogle Scholar
  42. Dolphin, A. C. and Scott, R. H. (1986) Inhibition of calcium currents in cultured rat dorsal root ganglion neurones by (—)baclofen. Br. J. Pharmacol. 88, 213–220.PubMedCrossRefGoogle Scholar
  43. Doroshenko, P. and Neher, E. (1991) Pertussis-toxin sensitive inhibition by (—)baclofen of Ca signals in bovine chromaffin cells. Pflügers Archiv. 419, 444–449.PubMedCrossRefGoogle Scholar
  44. Dunlap, K. (1981) Two types of y-aminobutyric acid receptor on embryonic sensory neurones. Br. J. Pharmacol. 74, 579–585.PubMedCrossRefGoogle Scholar
  45. Dunlap, K. and Fischbach, G. D. (1981) Neurotransmitters decrease the calcium conductance activated by depolarization of embryonic chick sensory neurones. J. Physiol. 317, 519–535.PubMedGoogle Scholar
  46. Dutar, P. and Nicoll, R. A. (1988a) A physiological role for GABAB receptors in the central nervous system. Nature 332, 156–158.PubMedCrossRefGoogle Scholar
  47. Dutar, P. and Nicoll, R. A. (1988b) Pre-and postsynaptic GABAB receptors in the hippo-campus have different pharmacological properties. Neuron 1, 585–591.PubMedCrossRefGoogle Scholar
  48. Fox, A. P., Nowycky, M. C., and Tsien, R. W. (1987) Kinetic and pharmacological properties distinguishing three types of calcium currents in chick sensory neurones. J. Physiol. 394, 149–172.PubMedGoogle Scholar
  49. Froestl, W., Mickel, S. J., von Sprecher, G., Bittiger, H., and Olpe, H.-R. (1992) Chemistry of new GABAB antagonists. Pharmacol. Comm. 2, 52–56.Google Scholar
  50. Fukuda, A., Mody, I., and Prince, D. A. (1993) Differential ontogenesis of presynaptic and postsynaptic GABAB inhibition in rat somatosensory cortex. J. Neurophysiol. 70, 448–452.PubMedGoogle Scholar
  51. Gähwiler, B. H. and Brown, D. A. (1985) GABAB-receptor-activated K* current in voltage-clamped CA3 pyramidal cells in hippocampal cultures. Proc. Natl. Acad. Sci. USA 82, 1558–1562.PubMedCrossRefGoogle Scholar
  52. Gaiarsa, J.-L., Tseeb, V., and Ben-Ari, Y. (1995) Postnatal development of pre-and postsynaptic GABAB-mediated inhibition in the CA3 hippocampal region of the rat. J. Neurophysiol. 73, 246–255.PubMedGoogle Scholar
  53. Gerber, U. and Gähwiler, B. H. (1994) GABAB and adenosine receptors mediate enhancement of the K+ current, IAHP, by reducing adenylyl cyclase activity in rat CA3 hippocampal neurons. J. Neurophysiol. 72, 2360–2367.PubMedGoogle Scholar
  54. Gutnick, M. J., Connors, B. W., and Prince, D. A. (1982) Mechanism of neocortical epileptogenesis in vitro. J. Neurophysiol. 48, 1321–1335.Google Scholar
  55. Guyon, A. and Leresche, N. (1995) Modulation by different GABAB receptor types of voltage activated calcium currents in rat thalamocortical neurones. J. Physiol. 485, 29–42.PubMedGoogle Scholar
  56. Hablitz, J. J. and Lebeda, F. J. (1985) Role of uptake in y-aminobutyric acid (GABA)mediated responses in guinea pig hippocampal neurons. Cell. Mol. Neurobiol. 5, 353–371.PubMedCrossRefGoogle Scholar
  57. Hablitz, J. J. and Thalmann, R. H. (1987) Conductance changes underlying a late synaptic hyperpolarization in hippocampal CA3 neurons. J. Neurophysiol. 58, 160–179.PubMedGoogle Scholar
  58. Musser, M. A. and Yung, W. H. (1994) Inhibitory synaptic potentials in guinea-pig substantia nigra dopamine neurones in vitro. J. Physiol. 479, 401–422.Google Scholar
  59. Hendry, S. H. C., Jones, E. G., Emson, P. C., Lawson, D. E. M., Heizmann, C. W., and Streit, P. (1989) Two classes of cortical GABA neurons defined by differential calcium binding protein immunoreactivities. Exp. Brain Res. 76, 467–472.PubMedCrossRefGoogle Scholar
  60. Hescheler, J., Rosenthal, W., Trautwein, W., and Schultz, G. (1987) The GTP-binding protein, Go, regulates neuronal calcium channels. Nature 325, 445–447.PubMedCrossRefGoogle Scholar
  61. Hill, D. R., Bowery, N. G., and Hudson, A. L. (1984) Inhibition of GABAB receptor binding by guanyl nucleotides. J. Neurochem. 42, 652–657.PubMedCrossRefGoogle Scholar
  62. Holopainen, I. and Wojcik, W. J. (1993) A specific antisense oligodeoxynucleotide to mRNAs encoding receptors with seven transmembrane spanning regions decreases muscarinic m2 and y-aminobutyric acid B receptors in rat cerebellar granule cells. J. Pharmacol. Exp. Ther. 264, 423–430.PubMedGoogle Scholar
  63. Holz, G. G., Rane, S. G., and Dunlap, K. (1986) GTP-binding proteins mediate transmitter inhibition of voltage-dependent calcium channels. Nature 319, 670–672.PubMedCrossRefGoogle Scholar
  64. Hösli, L., Hösli, E., Redle, S., Rojas, J., and Schramek, H. (1990) Action of baclofen, GABA and antagonists on the membrane potential of cultures astrocytes of rat spinal cord. Neurosci. Lett. 117, 307–312.PubMedCrossRefGoogle Scholar
  65. Howe, J. R., Sutor, B., and Zieglgänsberger, W. (1987a) Baclofen reduces post-synaptic potentials of rat cortical neurones by an action other than its hyperpolarizing action. J. Physiol. 384, 539–569.PubMedGoogle Scholar
  66. Howe, J. R., Sutor, B., and Zieglgänsberger, W. (1987b) Characteristics of long-duration inhibitory postsynaptic potentials in rat neocortical neurones in vitro. Cell. Mol. Neurobiol. 7, 1–18.CrossRefGoogle Scholar
  67. Huguenard, J. R. and Prince, D. A. (1994) Intrathalamic rhythmicity studied in vitro: nominal T-current modulation causes robust antioscillatory effects. J. Neurosci. 14, 5485–5502.PubMedGoogle Scholar
  68. Innis, R. B. and Aghajanian, G. K. (1987a) Pertussis toxin blocks autoreceptor-mediated inhibition of dopaminergic neurons in rat substantia nigra. Brain Res. 411, 139–143.PubMedCrossRefGoogle Scholar
  69. Innis, R. B. and Aghajanian, G. K. (1987b) Pertussis toxin blocks 5-HT,, and GABAB receptor-mediated inhibition of serotonergic neurons. Eur. J. Pharmacol. 143, 195–204.PubMedCrossRefGoogle Scholar
  70. Innis, R. B., Nestler, E. J., and Aghajanian, G. K. (1988) Evidence for G protein mediation of serotonin-and GABAB-induced hyperpolarization of rat dorsal raphe neurons. Brain Res. 459, 27–36.PubMedCrossRefGoogle Scholar
  71. Isaacson, J. S., Solis, J. M., and Nicoll, R. A. (1993) Local and diffuse synaptic actions of GABA in the hippocampus. Neuron 10, 165–175.PubMedCrossRefGoogle Scholar
  72. Jahnsen, H. and Llinâs, R. (1984a) Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. J Physiol. 349, 205–226.PubMedGoogle Scholar
  73. Jahnsen, H. and Llinâs, R. (1984b) Ionic basis for the electroresponsiveness and oscilla- tory properties of guinea-pig thalamic neurones in vitro. J. Physiol. 349, 227–247.Google Scholar
  74. Jarolimek, W., Bijak, M., and Misgeld, U. (1994) Differences in the Cs block of baclofen and 4-aminopyridine induced potassium currents of guinea pig CA3 neurons in vitro. Synapse 18, 169–177.PubMedCrossRefGoogle Scholar
  75. Jiang, Z.-G., Allen, C. N., and North, R. A. (1995) Presynaptic inhibition by baclofen of retino-hypothalamic excitatory synaptic transmission in rat suprachiasmatic nucleus. Neuroscience 64, 813–819.PubMedCrossRefGoogle Scholar
  76. Johnson, S. W., Mercuri, N. B., and North, R. A. (1992) 5-Hydroxytryptamine,B receptors block the GABAB synaptic potential in rat dopamine neurons. J. Neurosci. 12, 2000–2006.Google Scholar
  77. Kaila, K. (1995) Ionic basis for GABAA receptor channel function in the nervous system. Prog. Neurobiol. 42, 489–537.CrossRefGoogle Scholar
  78. Kaila, K., Voipio, J., Paalasmaa, P., Pasternack, M. and Deisz, R. A. (1993) The role of bicarbonate in GABAA receptor-mediated IPSPs of rat neocortical neurones. J. Physiol. 464, 273–289.PubMedGoogle Scholar
  79. Karlsson, G., Kolb, C., Hausdorf, A., Portet, C., Schmutz, M., and Olpe, H.-R. (1992) GABAB receptors in various in vitro and in vivo models of epilepsy: a study with the GABAB receptor blocker CGP 35348. Neuroscience 47, 63–68.PubMedCrossRefGoogle Scholar
  80. Karlsson, G. and Olpe, H.-R. (1989) Inhibitory processes in normal and epileptic-like rat hippocampal slices: the role of GABAB receptors. Eur. J. Pharmacol. 163, 285–290.PubMedCrossRefGoogle Scholar
  81. Karlsson, G., Pozza, M., and Olpe, H.-R. (1988) Phaclofen: a GABAB blocker reduces long-duration inhibition in the neocortex. Eur. J. Pharmacol. 148, 485–486.PubMedCrossRefGoogle Scholar
  82. Klee, M. R., Misgeld, U., and Zeise, M. L. (1981) Pharmacological differences between CA3 and dentate granule cells in hippocampal slices, in Cellular Analogues of Conditioning and Neural Plasticity. ( Feher, O. and Joo, F., eds.), Pergamon and Akadémiai Kiadó, Budapest, pp. 145–154.Google Scholar
  83. Knott, C., Maguire, J. J., Moratalla, R., and Bowery, N. G. (1993) Regional effects of pertussis toxin in vivo and in vitro on GABAB receptor binding in rat brain. Neuroscience 52, 73–81.PubMedCrossRefGoogle Scholar
  84. Komatsu, Y. and Iwakiri, M. (1992) Low-threshold Cat* channels mediate induction of long-term potentiation in kitten visual cortex. J. Neurophysiol. 67, 401–410.PubMedGoogle Scholar
  85. Kuriyama, K., Nakayasu, H., Mizutani, H., Hanai, K., and Kimura, H. (1992) Structure and function of GABAB receptor in bovine cerebral cortex: analysis using the purified receptor and monoclonal antibody. Pharmacol. Comm. 2, 15–19.Google Scholar
  86. Kuriyama, K. and Ohmori, Y. (1990) Solubilization and partial purification of cerebral GABAB receptors, in GABA B Receptors in Mammalian Function ( Bowery, N. G., Bittiger, H., and Olpe, H.-R., eds.), Wiley, Chichester, UK, pp. 183–193.Google Scholar
  87. Lacey, M. G., Mercuri, N. B., and North, R. A. (1988) On the potassium conductance increase activated by GABAB and dopamine D2 receptors in rat substantia nigra neurones. J. Physiol. 401, 437–453.PubMedGoogle Scholar
  88. Lambert, N. A., Harrison, N. L., and Teyler, T. J. (1991) Baclofen-induced disinhibition in area CA1 of rat hippocampus is resistant to extracellular Bat+. Brain Res. 547, 349–352.PubMedCrossRefGoogle Scholar
  89. Lambert, N. A. and Wilson, W. A. (1994) Temporally distinct mechanisms of use-dependent depression at inhibitory synapses in the rat hippocampus in vitro. J. Neurophysiol. 72, 121–130.PubMedGoogle Scholar
  90. Lancaster, B. and Wheal, H. V. (1984) The synaptically evoked late hyperpolarisation in CA1 pyramidal cells is resistant to intracellular EGTA. Neuroscience 12, 267–276.PubMedCrossRefGoogle Scholar
  91. Laurie, D. J., Wisden, W., and Seeburg, P. H. (1992) The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. J. Neurosci. 12, 4151–4172.PubMedGoogle Scholar
  92. Ling, D. S. F. and Benardo, L. S. (1994) Properties of isolated GABAB-mediated inhibitory postsynaptic currents in hippocampal pyramidal cells. Neuroscience 63, 937–944.PubMedCrossRefGoogle Scholar
  93. Ling, D. S. F. and Benardo, L. S. (1995) Activity-dependent depression of monosynaptic fast IPSCs in hippocampus: contributions from reductions in chloride driving force and conductance. Brain Res. 670, 142–146.PubMedCrossRefGoogle Scholar
  94. Llinâs, R., Steinberg, I. Z., and Walton, K. (1981) Relationship between presynaptic calcium current and postsynaptic potential in squid giant synapse. Biophys. J. 33, 323–352.PubMedCrossRefGoogle Scholar
  95. Llinâs, R., Sugimori, M., Lin, J.-W., and Cherksey, B. (1989) Blocking and isolation of a calcium channel from neurons in mammals and cephalopods utilizing a toxin fraction (FTX) from funnel-web spider poison. Proc. Natl. Acad. Sci. USA 86, 1689–1693.PubMedCrossRefGoogle Scholar
  96. Llinâs, R., Sugimori, M., Hillman, D. E., and Cherksey, B. (1992) Distribution and functional significance of the P-type, voltage-dependent Cat+ channels in the mammalian central nervous system. Trends Neurosci. 9, 351–355.CrossRefGoogle Scholar
  97. Llinâs, R. and Yarom, Y. (1981a) Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro. J. Physiol. 315, 569–584.Google Scholar
  98. Llinâs, R. and Yarom, Y. (1981b) Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage-dependent ionic conductances. J. Physiol. 315, 549–567.PubMedGoogle Scholar
  99. Lloyd, K. G. (1990) Antidepressants and GABAB site upregulation, in GABA B Receptors in Mammalian Function ( Bowery, N. G., Bittiger, H., and Olpe, H.-R., eds.), John Wiley, Chichester, UK, pp. 297–307.Google Scholar
  100. Lloyd, K. G., Thuret, F., and Pilc, A. (1985) Upregulation ofy-aminobutyric acid (GABAB) binding sites in rat frontal cortex: a common action of repeated administration of different classes of antidepressants and electroshock. J. Pharmacol. Exp. Ther. 235, 191–199.PubMedGoogle Scholar
  101. Malouf, A. T., Robbins, C. A., and Schwartzkroin, P. A. (1990) Phaclofen inhibition of the slow inhibitory postsynaptic potential in hippocampal slice cultures: a possible role for the GABAB-mediated inhibitory postsynaptic potential. Neuroscience 35, 53–61.PubMedCrossRefGoogle Scholar
  102. Marescaux, C., Liu, Z., Bernasconi, R., and Vergnes, M. (1992) GABAB receptors are involved in the occurrence of absence seizures in rats. Pharmacol. Commun. 2, 57–62.Google Scholar
  103. Markram, H. and Sakmann, B. (1994) Calcium transients in dendrites of neocortical neurons evoked by single subthreshold excitatory postsynaptic potentials via low-voltage activated calcium channels. Proc. Natl. Acad. Sci. USA 91, 5207–5211.PubMedCrossRefGoogle Scholar
  104. Matsushima, T., Tegner, J., Hill, R. H., and Grillner, S. (1993) GABAB receptor activation causes a depression of low and high-voltage activated Cat* current, postinhibitory rebound, and postspike afterhyperpolarization in lamprey neurons. J. Neurophysiol. 70, 2606–2619.PubMedGoogle Scholar
  105. Mayer, M. L. and Westbrook, G. L. (1987) The physiology of excitatory amino acids in the vertebrate central nervous system. Prog. Neurobiol. 28, 197–276.PubMedCrossRefGoogle Scholar
  106. McCarren, M. and Alger, B. E. (1985) Use-dependent depression of IPSPs in rat hippocampal pyramidal cells in vitro. J. Neurophysiol. 53, 557–571.PubMedGoogle Scholar
  107. McCormick, D. A. (1989) GABA as an inhibitory transmitter in human cerebral cortex. J. Neurophysiol. 62, 1018–1027.PubMedGoogle Scholar
  108. McDermott, A. B., Mayer, M. L., Westbrook, G. L., Smith, S. J., and Barker, J. L. (1986) NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurons. Nature 321, 519–522.CrossRefGoogle Scholar
  109. McManus, D. J. and Greenshaw, A. J. (1991) Differential effects of antidepressants on GABAB and ß-adrenergic receptors in rat cerebral cortex. Biochem. Pharmacol. 42, 1525–1528.PubMedCrossRefGoogle Scholar
  110. Metherate, R. and Ashe, J. H. (1994) Facilitation of an NMDA receptor-mediated EPSP by paired-pulse stimulation in rat neocortex via depression of GABAergic IPSPs. J. Physiol. 481, 331–348.PubMedGoogle Scholar
  111. Miettinen, R. and Freund, T. F. (1992) Convergence and segregation of septal and median raphe inputs onto different subsets of hippocampal inhibitory interneurons. Brain Res. 594, 263–272.PubMedCrossRefGoogle Scholar
  112. Mintz, I. M. and Bean, B. P. (1993) GABAB receptor inhibition of P-type channels in central neurons. Neuron 10, 889–898.PubMedCrossRefGoogle Scholar
  113. Misgeld, U., Bijak, M., and Jarolimek, W. (1995) A physiological role of GABAB receptors and the effects of baclofen in the mammalian central nervous system. Prog. Neurobiol. 46, 423–462.PubMedCrossRefGoogle Scholar
  114. Misgeld, U., Deisz, R. A., Dodt, H. U., and Lux, H. D. (1986) The role of chloride transport in postsynaptic inhibition of hippocampal neurons. Science 232, 1413–1415.PubMedCrossRefGoogle Scholar
  115. Misgeld, U., Klee, M. R., and Zeise, M. L. (1982) Differences in burst characteristics and drug sensitivity between CA3 neurons and granule cells, in Physiology and Pharmacology of Epileptogenic Phenomena ( Klee, M. R., Lux, H. D., and Speckmann, E. J., eds.), Raven, New York, pp. 131–139.Google Scholar
  116. Misgeld, U., Klee, M. R., and Zeise, M. L. (1984) Differences in baclofen-sensitivity between CA3 neurons and granule cells of the guinea pig hippocampus in vitro. Neurosci. Lett. 47, 307–311.PubMedCrossRefGoogle Scholar
  117. Misgeld, U., Müller, W., and Brunner, H. (1989) Effects of (—)baclofen on inhibitory neurons in the guinea pig hippocampal slice. Pflügers Archiv. 414, 139–144.PubMedCrossRefGoogle Scholar
  118. Morishita, R., Kato, K., and Asano, T. (1990) GABAB receptors couple to G proteins Go, Go* and G;, but not to G;2. FEBS Lett. 271, 231–235.PubMedCrossRefGoogle Scholar
  119. Morris, R. G. M., Anderson, E., Lynch, G. S., and Baudry, M. (1986) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319, 774–776.PubMedCrossRefGoogle Scholar
  120. Mott, D. D. and Lewis, D. V. (1991) Facilitation of the induction of long-term potentiation by GABAB receptors. Science 252, 1718–1720.PubMedCrossRefGoogle Scholar
  121. Mott, D. D. and Lewis, D. V. (1994) The pharmacology and function of central GABAB receptors, in International Review of Neurobiology, vol 36 (Bradley, R. J. and Harris, R. A., eds.), Academic, New York, pp. 97–223.Google Scholar
  122. Müller, W. and Misgeld, U. (1989) Carbachol reduces IK’ Baciofen, but not IK, GABA in guinea pig hippocampal slices. Neurosci. Lett. 102, 229–234.PubMedCrossRefGoogle Scholar
  123. Müller, W. and Misgeld, U. (1990) Inhibitory role of dentate hilus neurons in guinea pig hippocampal slice. J. Neurophysiol. 64, 46–56.PubMedGoogle Scholar
  124. Nathan, T. and Lambert, J. D. C. (1991) Depression of the fast IPSP underlies paired-pulse facilitation in area CA1 of the rat hippocampus. J. Neurophysiol. 66, 1704–1715.PubMedGoogle Scholar
  125. Neher, E. and Penner, R. (1994) Mice sans synaptotagmin. Nature 372, 316, 317.Google Scholar
  126. Newberry, N. R. and Nicoll, R. A. (1984) A bicuculline-resistant inhibitory post-synaptic potential in rat hippocampal pyramidal cells in vitro. J. Physiol. 348, 239–254.Google Scholar
  127. Newberry, N. R. and Nicoll, R. A. (1985) Comparison of the action of baclofen with gamma-aminobutyric acid on rat hippocampal pyramidal cells in vitro. J. Physiol. 360, 161–185.Google Scholar
  128. Nicoll, R. A., Malenka, R. C., and Kauer, J. A. (1990) Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system. Physiol. Rev. 70, 513–565.PubMedGoogle Scholar
  129. Nisenbaum, E. S., Berger, T. W., and Grace, A. A. (1993) Depression of glutamatergic and GABAergic synaptic responses in striatal spiny neurons by stimulation of presynaptic GABAB receptors. Synapse 14, 221–242.PubMedCrossRefGoogle Scholar
  130. Nowak, L., Bregestovski, P., Ascher, R, Herbert, A., and Prochiantz, A. (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307, 462–465.PubMedCrossRefGoogle Scholar
  131. Nowycky, M. C., Fox, A. P., and Tsien, R. W. (1985) Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316, 440–443.PubMedCrossRefGoogle Scholar
  132. Ohmori, Y. and Kuriyama, K. (1989) Negative coupling of y-aminobutyric acid (GABAB) receptor with phosphatidylinositol turnover in the brain. Neurochem. Int. 15, 359–363.PubMedCrossRefGoogle Scholar
  133. Olpe, H.-R., Karlsson, G., Pozza, M. F., Brugger, F., Steinmann, M., Van Riezen, H., Fagg, G., Hall, R. G., Froestl, and Bittiger, H. (1990) CGP 35348: a centrally active blocker of GABAB receptors. Eur. J. Pharmacol. 187, 27–38.PubMedCrossRefGoogle Scholar
  134. Otis, T. S., DeKoninck, Y., and Mody, I. (1993) Characterization of synaptically elicited GABAB responses using patch-clamp recordings in rat hippocampal slices. J. Physiol. 463, 391–407.PubMedGoogle Scholar
  135. Otis, T. S. and Mody, I. (1992) Differential activation of GABAA and GABAB receptors by spontaneously released transmitter. J. Neurophysiol. 67, 227–235.PubMedGoogle Scholar
  136. Pacelli, G. J., Su, W., and Kelso, S. R. (1991) Activity-induced decrease in early and late inhibitory synaptic conductances in hippocampus. Synapse 7, 1–13.PubMedCrossRefGoogle Scholar
  137. Pawelzik, H., Martin, G., Deisz, R. A., and Zieglgänsberger, W. (1996) The µ-opioid agonist DAMGO differentially modulates NMDA and non-NDMA-mediated synaptic transmission in rat neocortical neurons in vitro (in preparation).Google Scholar
  138. Pierau, F.-K. and Zimmermann, R (1973) Action of a GABA-derivative on postsynaptic potentials and membrane properties of cats’ spinal motoneurones. Brain Res. 54, 376–380.PubMedCrossRefGoogle Scholar
  139. Pin, J.-P. and Bockaert, J. (1990) co Conotoxin GVIA and dihydropyridines discriminate two types of Ca2+ channels involved in GABA release from striatal neurons in culture. Eur. J. Pharmacol. 188, 81–84.Google Scholar
  140. Pitler, T. A. and Alger, B. E. (1994) Differences between presynaptic and postsynaptic GABAB mechanisms in rat hippocampal pyramidal cells. J. Neurophysiol. 72, 2317–2327.PubMedGoogle Scholar
  141. Pratt, G. D. and Bowery, N. G. (1993) Repeated administration of desipramine and a GABAB receptor antagonist, CGP 36742, discretely up-regulates GABAB receptor binding in rat frontal cortex. Br. J. Pharmacol. 110, 724–735.PubMedCrossRefGoogle Scholar
  142. Premkumar, L. S., Chung, S.-H., and Gage, R. W. (1990) GABA-induced potassium channels in cultured neurons. Proc. Royal Soc. Lond. B 241, 153–158.CrossRefGoogle Scholar
  143. Premkumar, L. S. and Gage, P. W. (1994) Potassium channels activated by GABAB agonists and serotonin in cultured hippocampal neurons. J. Neurophysiol. 71, 2570–2575.PubMedGoogle Scholar
  144. Prince, D. A., Deisz, R. A., Thompson, S. M., and Chagnac-Amitai, Y. (1992) Functional alterations in GABAergic inhibition during activity. Epilepsy Res. 8, 31–38.Google Scholar
  145. Randall, A. and Tsien, R. W. (1995) Pharmacological dissection of multiple types of Cat+ channel currents in rat cerebellar granule neurons. J. Neurosci. 15, 2995–3012.PubMedGoogle Scholar
  146. Rane, S. G. and Dunlap, K. (1986) Kinase C activator 1,2-oleoylacetylglycerol attenuates voltage-dependent calcium currents in sensory neurons. Proc. Natl. Acad. Sci. USA 83, 184–188.PubMedCrossRefGoogle Scholar
  147. Robertson, B. and Taylor, W. R. (1986) Effects of y-aminobutyric acid and (–)-baclofen on calcium and potassium currents in cat dorsal root ganglion neurones in vitro. Br. J. Pharmacol. 89, 661–672.PubMedCrossRefGoogle Scholar
  148. Saint, D. A., Thomas, T., and Gage, P. W. (1990) GABAB agonists modulate a transient potassium current in cultured mammalian hippocampal neurons. Neurosci. Lett. 118, 9–13.PubMedCrossRefGoogle Scholar
  149. Schofield, P. R., Darlison, M. G., Fujita, N., Burt, D. R., Stephenson, F. A., Rodriguez, H., Rhee, L. M., Ramachandran, J., Reale, V., Glencorse, T. A., Seeburg, P. H., and Barnard, E. A. (1987) Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor super-family. Nature 328, 221–227.PubMedCrossRefGoogle Scholar
  150. Scholz, K. P. and Miller, R. J. (1991) GABAB receptor-mediated inhibition of Cat+ currents and synaptic transmission in cultured rat hippocampal neurones. J. Physiol. 444, 669–686.PubMedGoogle Scholar
  151. Scott, R. H. and Dolphin, A. C. (1986) Regulation of calcium currents by a GTP ana- logue: potentiation of (–)-baclofen-mediated inhibition. Neurosci. Lett. 69, 59–64.PubMedCrossRefGoogle Scholar
  152. Scott, R. H., Wootton, J. F., and Dolphin, A. C. (1990) Modulation of neuronal T-type calcium channel currents by photoactivation of intracellular guanosine 5’-0(3-Thio)triphosphate. Neuroscience 38, 285–294.PubMedCrossRefGoogle Scholar
  153. Seabrook, G. R., Howson, W., and Lacey, M. G. (1991) Subpopulations of GABAmediated synaptic potentials in slices of rat dorsal striatum are differentially modulated by presynaptic GABAB receptors. Brain Res. 562, 332–334.PubMedCrossRefGoogle Scholar
  154. Seeburg, R. H. (1993) The molecular biology of mammalian glutamate receptor channels. Trends Neurosci. 16, 359–365.PubMedCrossRefGoogle Scholar
  155. Segal, M. (1988) Effects of a lidocaine derivative QX-572 on CA1 neuronal responses to electrical and chemical stimuli in a hippocampal slice. Neuroscience 27, 905–909.PubMedCrossRefGoogle Scholar
  156. Segal, M. (1990) A subset of local interneurons generate slow inhibitory postsynaptic potentials in hippocampal neurons. Brain Res. 511, 163–164.PubMedCrossRefGoogle Scholar
  157. Siggins, G. R. and Gruol, D. L. (1986) Mechanisms of transmitter action in the vertebrate central nervous system, in Handbook of Physiology—The Nervous System IV, American Physiological Society, Bethesda, MD, pp. 1–114.Google Scholar
  158. Snead, O. C. (1992) GABAB receptor mediated mechanisms in experimental absence seizures in rat. Pharmacol. Commun. 2, 63–69.Google Scholar
  159. Soltesz, I., Haby, M., Leresche, N., and Crunelli, V. (1988) The GABAB antagonist phaclofen inhibits the late K+-dependent IPSP in cat and rat thalamic and hippocampal neurones. Brain Res. 448, 351–354.PubMedCrossRefGoogle Scholar
  160. Soltesz, I., Lightowler, S., Leresche, N., and Crunelli, V. (1989a) Optic tract stimulation evokes GABAA but not GABAB IPSPs in the rat ventral lateral geniculate nucleus. Brain Res. 479, 49–55.PubMedCrossRefGoogle Scholar
  161. Soltesz, I., Lightowler, S., Leresche, N., and Crunelli, V. (1989b) On the properties and origin of the GABAB inhibitory postsynaptic potential recorded in morphologically identified projection cells of the cat dorsal lateral geniculate nucleus. Neuroscience 33, 23–33.PubMedCrossRefGoogle Scholar
  162. Somogyi, R (1990) Synaptic organization of GABAergic neurons and GABAA receptors in the lateral geniculate nucleus and visual cortex, in Neural Mechanisms of Visual Perception ( Lam, D. M. and Gilbert, C. D., eds.), Gulf, Houston, pp. 35–62.Google Scholar
  163. Stelzer, A., Slater, N. T., and ten Bruggencate, G. (1987) Activation of NMDA receptors blocks GABAergic inhibition in an in vitro model of epilepsy. Nature 326, 698–701.PubMedCrossRefGoogle Scholar
  164. Steriade, M. (1984) The excitatory-inhibitory response sequence in thalamic and neocortical cells: state-related changes and regulatory systems, in Dynamic Aspects of Neo-cortical Function ( Edelmann, G. M., Gall, W. E., and Cowan, W. M., eds.), Wiley, New York, pp. 107–157.Google Scholar
  165. Stratton, K. R., Cole, A. J., Pritchett, J., Eccles, C. U., Worley, P. F., and Baraban, J. M. (1989) Intrahippocampal injection of pertussis toxin blocks adenosine suppression of synaptic responses. Brain Res. 494, 359–364.PubMedCrossRefGoogle Scholar
  166. Südhof, T. C., Petrenko, A. G., Whittaker, V. P., and Jahn, R. (1993) Molecular approaches to synaptic vesicle exocytosis. Prog. Brain Res. 98, 235–240.PubMedCrossRefGoogle Scholar
  167. Sugita, S., Johnson, S. W., and North, R. A. (1992) Synaptic inputs to GABAA and GABAB receptors originate from discrete afferent neurons. Neurosci. Lett. 134, 207–211.PubMedCrossRefGoogle Scholar
  168. Sutor, B. and Zieglgänsberger, W. (1987) A low-voltage activated, transient calcium current is responsible for the time-dependent depolarizing inward rectification of rat neocortical neurons in vitro. Pflügers Archiv. 410, 102–111.PubMedCrossRefGoogle Scholar
  169. Taussig, R., Iniguez-Liuhi, J. A., and Gilman, A. G. (1993) Inhibition of adenylyl cyclase by G.,. Science 261, 218–221.PubMedCrossRefGoogle Scholar
  170. Thalmann, R. H. (1988) Evidence that guanosine triphosphate (GTP)-binding proteins control a synaptic response in brain: effect of pertussis toxin and GTPyS on the late inhibitory postsynaptic potential of hippocampal CA3 neurons. J. Neurosci. 8, 4589–4602.PubMedGoogle Scholar
  171. Thompson, S. M. (1994) Modulation of inhibitory synaptic transmission in the hippo-campus. Prog. Neurobiol. 42, 575–609.PubMedCrossRefGoogle Scholar
  172. Thompson, S. M., Deisz, R. A., and Prince, D. A. (1988) Relative contributions of passive equilibrium and active transport to the distribution of chloride in mammalian cortical neurons. J. Neurophysiol. 60, 105–124.PubMedGoogle Scholar
  173. Thompson, S. M. and Gähwiler, B. H. (1989) Activity-dependent disinhibition. I. Repetitive stimulation reduces IPSP driving force and conductance in hippocampus in vitro. J. Neurophysiol. 61, 501–511.PubMedGoogle Scholar
  174. Thompson, S. M. and Gähwiler, B. H. (1992) Comparison of the actions of baclofen at pre- and postsynaptic receptors in the rat hippocampus in vitro. J. Physiol. 451, 329–345.Google Scholar
  175. Tsakiridou, E., Bertollini, L., deCurtis, M., Avanzini, G., and Pape, H. C. (1995) Selective increase in T-type calcium conductance of reticular thalamic neurons in a rat model of absence epilepsy. J. Neurosci. 15, 3110–3117.PubMedGoogle Scholar
  176. Uchimura, N. and North, R. A. (1991) Baclofen and adenosine inhibit synaptic potentials mediated by y-aminobutyric acid and glutamate release in rat nucleus accumbens. J. Pharmacol. Exp. Ther. 258, 663–668.PubMedGoogle Scholar
  177. Van Rijn, C. M., Van Berlo, M. J., Feenstra, M. G. P., Schoofs, M. L. F., and Hommes, O. R. (1987) R(—)-Baclofen: focal epilepsy after intracortical administration in the rat. Epilepsy Res. 1, 321–327.PubMedCrossRefGoogle Scholar
  178. Verdoorn, T. A., Draguhn, A., Ymer, S., Seeburg, P. H., and Sakmann, B. (1990) Functional properties of recombinant rat GABAA receptors depend upon subunit composition. Neuron 4, 919–928.PubMedCrossRefGoogle Scholar
  179. Vergnes, M., Marescaux, C., De Paulis, A., Micheletti, G., and Waiter, J.-M. (1990) Spontaneous spike-and-wave discharges in Wistar rats: a model of genetic generalized nonconvulsive epilepsy, in Generalized Epilepsy: Neurobiological Approaches ( Avoli, M., Gloor, P., Kostopoulos, G., and Naquet, R., eds.), Birkhäuser, Boston, pp. 238–253.Google Scholar
  180. Wheeler, D. B., Randall, A., and Tsien, R. W. (1994) Roles of N-type and Q-type Cat+ channels in supporting hippocampal synaptic transmission. Science 264, 107–111.PubMedCrossRefGoogle Scholar
  181. Wilcox, K. S. and Dichter, M. A. (1994) Paired pulse depression in cultured hippocampal neurons is due to a presynaptic mechanism independent of GABAB autoreceptor activation. J. Neurosci. 14, 1775–1788.PubMedGoogle Scholar
  182. Wisden, W., Laurie, D. J., Monyer, H., and Seeburg, P. H. (1992) The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. J. Neurosci. 12, 1040–1062.PubMedGoogle Scholar
  183. Wojcik, W. J. and Neff, N. H. (1984) y-Aminobutyric acid B receptors are negatively coupled to adenylate cyclase in brain and in the cerebellum; these receptors may be associated with granule cells. Mol. Pharmacol. 25, 24–28.Google Scholar
  184. Wu, L.-G. and Saggau, P. (1995) GABAB receptor mediated presynaptic inhibition in guinea pig hippocampus is caused by reduction of presynaptic Cat+ influx. J. Physiol. 485, 649–657.PubMedGoogle Scholar
  185. Wu, Y.-N., Mercuri, N. B., and Johnson, S. W. (1995) Presynaptic inhibition of y-aminobutyric acidB-mediated synaptic current by adenosine recorded in vitro in midbrain dopamine neurons. J. Pharmacol. Exp. Ther. 273, 576–581.PubMedGoogle Scholar
  186. Yoon, K.-W. and Rothman, S. M. (1991) The modulation of rat hippocampal synaptic conductances by baclofen and y-aminobutyric acid. J. Physiol. 442, 377–390.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Rudolf A. Deisz

There are no affiliations available

Personalised recommendations