Nongenomic Actions of Thyroid Hormone

  • Paul J. Davis
  • Faith B. Davis
Part of the Contemporary Endocrinology book series (COE, volume 2)


Nonnuclear or nongenomic cellular actions of thyroid hormone are those that are independent of traditional nuclear thyroid hormone receptors (TRs) (1,2). The scope of these actions is broad (Fig. 1), at least in part because they involve various organelles, specialized functions of the plasma membrane, and biochemical events in cytoplasm. Recognition of the existence of nongenomic actions over the past 15 yr has provided a complex picture of the roles of thyroid hormone in the cell beyond its important functions in regulating gene expression (3,4).


Thyroid Hormone ATPase Activity Thyroid Hormone Action Nongenomic Action Nongenomic Effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Evans RM. The steroid and thyroid hormone receptor superfamily. Science 1988; 240: 889–895.PubMedCrossRefGoogle Scholar
  2. 2.
    Lazar MA. Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr Rev 1993; 14: 184–193.PubMedGoogle Scholar
  3. 3.
    Brent GA. The molecular basis of thyroid hormone action. N Engl J Med 1994; 331: 847–853.PubMedCrossRefGoogle Scholar
  4. 4.
    Oppenheimer JH. Thyroid hormone action at the molecular level. In: Braverman LE and Utiger RD, eds. The Thyroid. JB Lippincott, Philadelphia, 1996, pp. 162–184.Google Scholar
  5. 5.
    Davis FB, Cody V, Davis PJ, Borzynski LJ, Blas SD. Stimulation by thyroid hormone analogues of red blood cell Ca2+ -ATPase activity in vitro. Correlations between hormone structure and biological activity in a human cell system. J Biol Chem 1983;258:12, 373–12, 377.Google Scholar
  6. 6.
    Siegrist-Kaiser CA, Juge-Aubry C, Tranter MP, Ekenbarger DM, Leonard JL. Thyroxine-dependent modulation of actin polymerization in cultured astrocytes: a novel extranuclear action of thyroid hormone. J Biol Chem 1990; 265: 5296–5302.PubMedGoogle Scholar
  7. 7.
    Harris D.R, Green WL, Craelius W. Acute thyroid hormone promotes slow inactivation of sodium current in neonatal cardiac myocytes. Biochim Biophys Acta 1991; 1095: 175–181.PubMedCrossRefGoogle Scholar
  8. 8.
    Dudley SC Jr, Baumgarten CM. Bursting of cardiac sodium channels after acute exposure to 3,5,3 ’-triiodo-L-thyronine. Circ Res 1993; 73: 301–313.PubMedCrossRefGoogle Scholar
  9. 9.
    Davis PJ, Blas SD. In vitro stimulation of human red blood cell Ca2+-ATPase by thyroid hormone. Biochem Biophys Res Comm 1981; 99: 1073–1080.PubMedCrossRefGoogle Scholar
  10. 10.
    Lawrence WD, Schoenl M, Davis PJ. Stimulation in vitro of rabbit erythrocyte cytosol phospholipid-dependent protein kinase activity. J Biol Chem 1989; 264: 4766–4768.PubMedGoogle Scholar
  11. 11.
    Lin H-Y, Thacore HR, Davis FB, Davis PJ. Nongenomic potentiation by thyroid hormone of interferon-gamma-induced antiviral state requires PKA and PKC activities. Amer J Physiol 1996; 271: C1256 - C1261.PubMedGoogle Scholar
  12. 12.
    Davis FB, Moffett MJ, Davis PJ, Al Ogaily MS, Blas SD. Inositol phosphates modulate binding of thyroid hormone to human red cell membranes in vitro. J Clin Endocrinol Metab 1993; 77: 1427–1430.PubMedCrossRefGoogle Scholar
  13. 13.
    Davis FB, Davis PJ, Blas SD. Role of calmodulin in thyroid hormone stimulation in vitro of human erythrocyte Ca2+-ATPase activity. J Clin Invest 1983; 71: 579–586.PubMedCrossRefGoogle Scholar
  14. 14.
    Warnick PR, Davis FB, Mylotte KM, Davis PJ, Dube MP, Blas SD. Calcium channel blocker inhibition of the calmodulin-dependent effects of thyroid hormone and milrinone on rabbit myocardial membrane Ca2+-ATPase activity. Biochem Pharmacol 1988; 37: 2619–2623.PubMedCrossRefGoogle Scholar
  15. 15.
    Segal J, Rehder M-C, Ingbar SH. Calmodulin mediates the stimulating effect of 3,5,3 ’-triiodothyronine on adenylate cyclase activity in rat thymocyte plasma membranes. Endocrinology 1986; 119: 2629–2634.PubMedCrossRefGoogle Scholar
  16. 16.
    Baskurt OK, Levi E, Temizer A, Ozer S, Caglayan S, Dikmenoglu N, Andac SO. In vitro effects of thyroxine on the mechanical properties of erythrocytes. Life Sci 1990; 46: 1471–1477.PubMedCrossRefGoogle Scholar
  17. 17.
    Rudinger A, Mylotte KM, Davis PJ, Davis FB, Blas SD. Rabbit myocardial membrane Ca2+ATPase activity: stimulation in vitro by thyroid hormone. Arch Biochem Biophys 1984; 229: 379–385.PubMedCrossRefGoogle Scholar
  18. 18.
    Warnick PR, Davis PJ, Davis FB, Cody V, Galindo J Jr, Blas SD. Rabbit skeletal muscle sarcoplasmic reticulum Ca2+ -ATPase activity: stimulation in vitro by thyroid hormone analogues and bipyridines. Biochim Biophys Acta 1993; 1153: 184–190.PubMedCrossRefGoogle Scholar
  19. 19.
    Segal J, Ingbar SH. Stimulation by triiodothyronine of the in vitro uptake of sugars by rat thymocytes. J Clin Invest 1979; 63: 507–515.PubMedCrossRefGoogle Scholar
  20. 20.
    Lin H-Y, Thacore HR, Davis FB, Davis PJ. Thyroid hormone analogues potentiate the antiviral action of interferon-gamma. J Cell Physiol 1996; 167: 269–276.PubMedCrossRefGoogle Scholar
  21. 21.
    Vandenbrouck Y, Janvier B, Loriette C, Bereziat G, Mangeney-Andreani M. Thyroid hormone modulates apolipoprotein-AI gene expression at the post-transcriptional level in Hep G2 cells. Eur J Biochem 1995; 231: 126–132.PubMedCrossRefGoogle Scholar
  22. 22.
    Vassy R, Nicolas P, Yin Y-L, Perret G-Y. Nongenomic effect of triiodothyronine on cell surface beta-adrenoreceptors on cultured embryonic cardiac myocytes. Proc Soc Exper Biol Med 1997, in press.Google Scholar
  23. 23.
    Williams LT, Lefkowitz RJ, Watanabe AM, Hathaway DR, Besch HR Jr. Thyroid hormone regulation of beta-adrenergic receptor number. J Biol Chem. 1977; 252: 2787–2789.PubMedGoogle Scholar
  24. 24.
    Farwell AP, DiBenedetto DJ, Leonard JL. Thyroxine targets different pathways of internalization of type II iodothyronine 5’-deiodinase in astrocytes. J Biol Chem 1993; 268: 5055–5062.PubMedGoogle Scholar
  25. 25.
    Lanni A, Moreno M, Lombardi A, Goglia F. Rapid stimulation in vitro of rat liver cytochrome oxidase activity by 3,5-diiodo-L-thyronine and by 3,3 ’-diiodo-L-thyronine. Mol Cell Endocrinol 1994; 99: 89–94.PubMedCrossRefGoogle Scholar
  26. 26.
    Mason GA, Walker CH, Prange Ai, Jr. Depolarization-dependent 45Ca uptake by synaptosomes of rat cerebral cortex is enhanced by L-triiodothyronine. Neuropsychopharmacology 1990; 3: 291–295.PubMedGoogle Scholar
  27. 27.
    Klemperer JD, Klein I, Gomez M, Helm RE, Ojamaa K, Thomas SJ, Isom OW, Krieger K. Thyroid hormone treatment after coronary-artery bypass surgery. N Engl J Med 1995; 333: 1522–1527.PubMedCrossRefGoogle Scholar
  28. 28.
    Ojamaa K, Balkman C, Klein IL. Acute effects of triiodothyronine on arterial smooth muscle cells. Ann Thorac Surg 1993; 56: S61–67.PubMedCrossRefGoogle Scholar
  29. 29.
    Ashizawa K, McPhie P, Lin K-H, Cheng S-Y. An in vitro novel mechanism of regulating the activity of pyruvate kinase M2 by thyroid hormone and fructose 1,6-bisphosphate. Biochemistry 1991; 30: 7105–7111.PubMedCrossRefGoogle Scholar
  30. 30.
    Davis PJ, Davis FB, Blas SD. Studies on the mechanism of thyroid hormone stimulation in vitro of human red cell Ca2+-activity. Life Sci 1982; 30: 675–682.PubMedCrossRefGoogle Scholar
  31. 31.
    Smallwood JI, Gugi B, Rasmussen H. Regulation of erythrocyte Ca2+ pump activity by protein kinase C. J Biol Chem 1988; 263: 2195–2202.PubMedGoogle Scholar
  32. 32.
    Mowbray J, Corrigall J. Short-term control of mitochondrial adenine nucleotide translocator by thyroid hormone. Eur J Biochem 1984; 139: 95–99.PubMedCrossRefGoogle Scholar
  33. 33.
    Giguère A, Lehoux J-G, Gallo-Payet N, Bellabarba D. 3,5,3 ’-Triiodothyronine binding studies in synaptosomes from brain of chick embryo. Properties and ontogeny. Brain Res Dev Brain Res 1992; 66: 221–227.PubMedCrossRefGoogle Scholar
  34. 34.
    Lin H-Y, Thacore HR, Davis PJ, Davis FB. Thyroid hormone potentiates the antiviral action of interferon-gamma in cultured human cells. J Clin Endocrinol Metab 1994; 79: 62–65.PubMedCrossRefGoogle Scholar
  35. 35.
    Davis PJ, Davis FB, Lawrence WD. Thyroid hormone regulation of membrane Ca2+-ATPase activity. Endocr Res 1989; 15: 651–682.PubMedCrossRefGoogle Scholar
  36. 36.
    Miyamoto S, Teramoto H, Coso OA, Gutkind JS, Burbelo PD, Akiyama SK, Yamada KM. Integrin function: molecular hierarchies of cytoskeletal and signaling molecules. J Cell Biol 1995; 131: 791–805.PubMedCrossRefGoogle Scholar
  37. 37.
    Zhou Y, Samson M, Francon J, Blondeau J-P. Thyroid hormone concentrative uptake in rat erythrocytes. Involvement of the tryptophan transport system T in countertransport of tri-iodothyronine and aromatic amino acids. Biochem J 1992; 281: 81–86.PubMedGoogle Scholar
  38. 38.
    Yan Z, Hinkle PM. Saturable, stereospecific transport of 3,5,3 ’-triiodo-L-thyronine and L-thyroxine into GH,C, pituitary cells. J Biol Chem 1993;268:20, 179–20, 184.Google Scholar
  39. 39.
    Prasad PD, Leibach FH, Mahesh VB, Ganapathy V. Relationship between thyroid hormone transport and neutral amino acid transport in JAR human choriocarcinoma cells. Endocrinology 1994; 134: 574–581.PubMedCrossRefGoogle Scholar
  40. 40.
    Beslin A, Chantoux F, Blondeau J-P, Francon J. Relationship between the thyroid hormone transport system and the Na+ -H+ exchanger in cultured rat brain astrocytes. Endocrinology 1995; 136: 5385–5390.PubMedCrossRefGoogle Scholar
  41. 41.
    Winder SJ, Kendrick-Jones J. Calcium/calmodulin-dependent regulation of the NH2-terminal F-actin binding domain of utrophin. FEBS Lett 1995; 357: 125–128.PubMedCrossRefGoogle Scholar
  42. 42.
    Farwell AP, Tranter MP, Leonard JL. Thyroxine-dependent regulation of integrin-laminin interactions in astrocytes. Endocrinology 1995; 136: 3909–3915.PubMedCrossRefGoogle Scholar
  43. 43.
    Bradbury NA, Bridges RJ. Role of membrane trafficking in plasma membrane solute transport. Am J Physiol 1994; 267: C1–24.PubMedGoogle Scholar
  44. 44.
    Weinstein SP, Haber RS. Glucose transport stimulation by thyroid hormone in ARL 15 cells: partial role of increased GLUT1 glucose transporter gene transcription. Thyroid 1993; 3: 135–142.PubMedCrossRefGoogle Scholar
  45. 45.
    Segal J, Ingbar SH. 3,5,3 ’-Triiodothyronine enhances sugar transport in rat thymocytes by increasing the intrinsic activity of the plasma membrane sugar transporter. J Endocrinol 1990; 124: 133–140.PubMedCrossRefGoogle Scholar
  46. 46.
    Segal J. Acute effect of thyroid hormone on the heart: an extranuclear increase in sugar uptake. J Mol Cell Cardiol 1989; 21: 323–334.PubMedCrossRefGoogle Scholar
  47. 47.
    Segal J, Ingbar SH. 3,5,3 ’-triiodothyronine increases cellular adenosine 3 ’,5 ’-monophosphate concentration and sugar uptake in rat thymocytes by stimulating adenylate cyclase activity: studies with the adenylate cyclase inhibitor MDL 12330A. Endocrinology 1989; 124: 2166–2171.PubMedCrossRefGoogle Scholar
  48. 48.
    Segal J, Ingbar SH. Evidence that an increase in cytoplasmic calcium is the initiating event in certain plasma membrane-mediated responses to 3,5,3 ’-triiodothyronine in rat thymocytes. Endocrinology 1989; 124: 1949–1955.PubMedCrossRefGoogle Scholar
  49. 49.
    Segal J, Buckley C, Ingbar SH. Stimulation of adenylate cyclase activity in rat thymocytes in vitro by 3,5,3 ’-triiodothyronine. Endocrinology 1985; 116: 2036–2043.PubMedCrossRefGoogle Scholar
  50. 50.
    Segal J. Adrenergic inhibition of the stimulatory effect of 3,5,3 ’-triiodothyronine on calcium accumulation and cytoplasmic free calcium concentration in rat thymocytes. Further evidence in support of the concept that calcium serves as the first messenger for the prompt action of thyroid hormone. Endocrinology 1988; 122: 2240–2246.CrossRefGoogle Scholar
  51. 51.
    Levey GS, Epstein SE. Myocardial adenyl cyclase: activation by thyroid hormone and evidence for two adenyl cyclase systems. J Clin Invest 1969; 48: 1663–1669.PubMedCrossRefGoogle Scholar
  52. 52.
    Galo MG, Uñates LE, Farías RN. Effect of membrane fatty acid composition on the action of thyroid hormones on (Ca2+ + Mg2+)-adenosine triphosphatase from rat erythrocyte. J Biol Chem 1981; 256: 7113–7114.PubMedGoogle Scholar
  53. 53.
    Segal J, Hardiman J, Ingbar SH. Stimulation of calcium-ATPase activity by 3,5,3 ’-triiodo-thyronine in rat thymocyte plasma membranes. A possible role in the modulation of cellular calcium concentration. Biochem J 1989; 261: 749–754.PubMedGoogle Scholar
  54. 54.
    Corry DB, Ellis CC, Tuck ML. Increased inward passive permeability in vitro to sodium in uraemic erythrocytes. Clin Sci 1996; 90: 3–8.PubMedGoogle Scholar
  55. 55.
    Smith TJ, Davis FB, Davis PJ. Stereochemical requirements for the modulation by retinoic acid of thyroid hormone activation of Ca2+-ATPase and binding at the human erythrocyte membrane. Biochem J 1992; 284: 583–587.PubMedGoogle Scholar
  56. 56.
    Enyedi A, Vorherr T, James P, McCormick DJ, Filoteo AG, Carafoli E, Penniston JT. The calmodulin binding domain of the plasma membrane Ca2+ pump interacts both with calmodulin and with another part of the pump. J Biol Chem 1989;264:12, 313–12, 321.Google Scholar
  57. 57.
    Davis FB, Davis PJ, Lawrence WD, Blas SD. Specific inositol phosphates inhibit basal and calmodulin-stimulated Ca2+-ATPase activity in human erythrocyte membranes in vitro and inhibit binding of calmodulin to membranes. FASEB J 1991; 5: 2992–2995.PubMedGoogle Scholar
  58. 58.
    Sundquist J, Blas SD, Hogan JE, Davis FB, Davis PJ. The alpha1-adrenergic receptor in human erythrocyte membranes mediates interaction in vitro of epinephrine and thyroid hormone at the membrane Ca2+-ATPase. Cell Signal 1992; 4: 795–799.PubMedCrossRefGoogle Scholar
  59. 59.
    Dube MP, Davis FB, Davis PJ, Schoen’ M, Blas SD. Effects of hyperthyroidism and hypothyroidism on human red blood cell Ca2+-ATPase activity. J Clin Endocrinol Metab 1986; 62: 253–257.PubMedCrossRefGoogle Scholar
  60. 60.
    Giguère A, Fortier S, Beaudry C, Gallo-Payet N, Bellabarba D. Effect of thyroid hormones on G proteins in synaptosomes of chick embryo. Endocrinology 1996; 137: 2558–2564.PubMedCrossRefGoogle Scholar
  61. 61.
    Walker JD, Crawford FA Jr, Mukherjee R, Spinale FG. The direct effects of 3,5,3 ’-triiodothyronine (T3) on myocyte contractile processes. Insights into mechanisms of action. J Thorac Cardiovasc Surg 1995; 110: 1369–1380.PubMedCrossRefGoogle Scholar
  62. 62.
    Lawrence WD, Deziel MR, Davis PJ, Schoenl M, Davis FB, Blas SD. Thyroid hormone stimulates release in vitro of calmodulin enhancing activity from human red cell membranes. Clin Sci 1993; 84: 217–223.PubMedGoogle Scholar
  63. 63.
    Huang S-L, Wen YI, Kupranycz DB. Abnormality of calmodulin activity in hypertension. Evidence of the presence of an activator. J Clin Invest 1988; 82: 276–281.PubMedCrossRefGoogle Scholar
  64. 64.
    Safran M, Farwell AP, Leonard JL. Thyroid hormone-dependent redistribution of the 55-kilodalton monomer of protein disulfide isomerase in cultured glial cells. Endocrinology 1992; 131: 2413–2418.PubMedCrossRefGoogle Scholar
  65. 65.
    Dillmann WH. Biochemical basis of thyroid hormone action in the heart. Am J Med 1990; 88: 626–630.PubMedCrossRefGoogle Scholar
  66. 66.
    Rohrer D, Dillmann WH. Thyroid hormone markedly increases the mRNA coding for sarcoplasmic reticulum Ca2+-ATPase in the rat heart. J Biol Chem 1989; 263: 6941–6944.Google Scholar
  67. 67.
    Han J, Leem C, So I, Kim E, Hong S, Ho W, Sung H, Earm YE. Effects of thyroid hormone on the calcium current and isoprenaline-induced background current in rabbit ventricular myocytes. J Mol Cell Cardiol 1994; 26: 925–935.PubMedCrossRefGoogle Scholar
  68. 68.
    Simonet WS, Ness GC. Transcriptional and posttranscriptional regulation of rat hepatic 3-hydroxy-3-methylglutaryl-coenzyme A reductase by thyroid hormones. J Biol Chem. 1988;263: 12, 448–12, 453.Google Scholar
  69. 69.
    Krane IM, Spindel ER, Chin WW. Thyroid hormone decreases the stability and the poly(A) tract length of rat thyrotropin 13-subunit messenger RNA. Mol Endocrinol 1991; 5: 469–475.PubMedCrossRefGoogle Scholar
  70. 70.
    Puymirat J, Etongue-Mayer P, Dussault JH. Thyroid hormones stabilize acetylcholinesterase mRNA in neuro-2A cells that overexpress the beta, thyroid receptor. J Biol Chem 1995;270: 30, 651–30, 656.Google Scholar
  71. 71.
    Theriault A, Ogbonna G, Adeli K. Thyroid hormone modulates apolipoprotein B gene expression in HepG2 cells. Biochem Biophys Res Comm 1992; 186: 617–623.PubMedCrossRefGoogle Scholar
  72. 72.
    Freedman RB, Hirst TR, Tuite MF. Protein disulphide isomerase: building bridges in protein folding. TIBS 1994; 19: 331–336.PubMedGoogle Scholar
  73. 73.
    Yoshida K, Davis PJ, Schoenl M. Dissociable and nondissociable cytoplasmic protein-thyroid hormone interactions. Biochim Biophys Acta 1979; 582: 332–345.PubMedCrossRefGoogle Scholar
  74. 74.
    Davis PJ, Handwerger BS, Glaser F. Physical properties of a dog liver and kidney cytosol protein that binds thyroid hormone. J Biol Chem 1974; 249: 6208–6217.PubMedGoogle Scholar
  75. 75.
    Hashizume K, Miyamoto T, Kobayahi M, Suzuki S, Ichikawa K, Yamauchi K, Ohtsuka H, Takeda T. Cytosolic 3,5,3 ’-triiodo-L-thyronine (T3)-binding protein (CTBP) regulation of nuclear T3 binding: evidence for the presence of T3-CTBP complex-binding in nuclei. Endocrinology 1989; 124: 2851–2856.PubMedCrossRefGoogle Scholar
  76. 76.
    Fanjul AN, Farías RN. Cold-sensitive cytosolic 3,5,3 ’-triiodo-L-thyronine-binding protein and pyruvate kinase from human erythrocytes share similar regulatory properties of hormone binding by glycolytic intermediates. J Biol Chem 1993; 268: 175–179.PubMedGoogle Scholar
  77. 77.
    Bissonnette M, Wali RK, Hartmann SC, Niedziela SM, Roy HK, Tien X-Y, Sitrin MD, Brasitus TA. 1,25-Dihydroxyvitamin D, and 12–0-tetradecanoyl phorbol 13-acetate cause differential activation of Ca2+ -dependent and Ca2+ -independent isoforms of protein kinase C in rat colonocytes. J Clin Invest 1995; 95: 2215–2221.PubMedCrossRefGoogle Scholar
  78. 78.
    Newton AC. Protein kinase C: structure, function, and regulation. J Biol Chem 1995;270: 28, 495–28, 498.Google Scholar
  79. 79.
    Lin H-Y, Thacore HR, Davis FB, Martino LJ, Davis PJ. Potentiation by thyroxine of interferon-γ-induced HLA-DR expression is protein kinase A- and C-dependent. J Interferon Cytokine Res 1996; 16: 17–24.PubMedCrossRefGoogle Scholar
  80. 80.
    Sterling K. The mitochondrial route of thyroid hormone action. Bull NY Acad Med 1977; 53: 260–276.Google Scholar
  81. 81.
    Davis PJ. Cellular actions of thyroid hormone. In: Braverman LE, Utiger RD, eds. The Thyroid. JB Lippincott, Philadelphia, 1991, pp. 190–203.Google Scholar
  82. 82.
    Sterling K, Brenner MA. Thyroid hormone action: effect of triiodothyronine on mitochondrial adenine nucleotide translocase in vivo and in vitro. Metabolism 1995; 44: 193–199.PubMedCrossRefGoogle Scholar
  83. 83.
    Goglia F, Lanni A, Barth J, Kadenbach B. Interaction of diiodothyronines with isolated cytochrome c oxidase. FEBS Lett 1994; 346: 295–298.PubMedCrossRefGoogle Scholar
  84. 84.
    Lanni A, Moreno M, Cioffi M, Goglia F. Effect of 3,3 ’-diiodothyronine and 3–5-diiodothyronine on rat liver oxidative capacity. Mol Cell Endocrinol 1992; 86: 143–148.PubMedCrossRefGoogle Scholar
  85. 85.
    Kvetny J. 3,5-T2 stimulates oxygen consumption, but not glucose uptake in human mononuclear blood cells. Horm Metab Res 1992; 24: 322–325.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Paul J. Davis
  • Faith B. Davis

There are no affiliations available

Personalised recommendations