Management of Thyroid Cancer

  • Kenneth B. Ain
Part of the Contemporary Endocrinology book series (COE, volume 2)


Thyroid carcinomas comprise a unique group of malignancies arising from either follicular or parafollicular thyroid cells. Each variety of thyroid carcinoma has distinct functional and clinical characteristics that require clinicians to be well-versed in endocrinology, nuclear medicine, and pathology for effective management. Since chemotherapy is rarely indicated for these cancers, endocrinologists, rather than medical oncologists, are generally better trained in their management. Around three-fourths of thyroid cancers are papillary carcinomas with the remainder dispersed between follicular, anaplastic, and medullary histologies. Their biologic behavior runs the gamut from the innocuous occult papillary microcarcinoma to the most aggressive and lethal solid tumor of the body, anaplastic carcinoma. For the majority of thyroid cancer patients, clinical endpoints are measured over several decades, making most prospective clinical trials difficult, if not impossible. Because of this, there is wide diversity in clinical approaches with much reliance on retrospective studies.


Thyroid Cancer Thyroid Carcinoma Papillary Thyroid Carcinoma Thyroid Nodule Papillary Carcinoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Parker SL, Tong T, Bolden S, et al. Cancer statistics. Cancer J Clin 1996; 46: 5–27.CrossRefGoogle Scholar
  2. 2.
    Whelan SL, Parkin DM, Masuyer E. Patterns of cancer in five continents. In: IARC Scientific Publications. International Agency for Research on Cancer. Lyon, 1990.Google Scholar
  3. 3.
    Spitz MR, Sider JG, Katz RL, et al. Ethnic patterns of thyroid cancer incidence in the United States, 1973–1981.Int J Cancer 1988; 42: 549–553.Google Scholar
  4. 4.
    Feldman AR, Kessler L, Myers MH, et al. The prevalence of cancer: estimates based on the Connecticut tumor registry. N Engl J Med 1986; 315: 1394–1397.PubMedCrossRefGoogle Scholar
  5. 5.
    Lew EA, Gajewski J. Medical Risks: Trends in Mortality by Age and Time Elapsed. Praeger, New York, 1990.Google Scholar
  6. 6.
    Burch HB. Evaluation and management of the solid thyroid nodule. Endocrinol Metab Clin N Am 1995; 24: 663–710.Google Scholar
  7. 7.
    Ashcraft MW, Van Herle AJ. Management of thyroid nodules. II: Scanning techniques, thyroid suppressive therapy, and fine needle aspiration. Head Neck Surg 1981; 3: 297–322.PubMedCrossRefGoogle Scholar
  8. 8.
    Papini E, Bacci V, Panunzi C, et al. A prospective randomized trial of levothyroxine suppressive therapy for solitary thyroid nodules. Clin Endocrinol (Oxf) 1993; 38: 507–513.CrossRefGoogle Scholar
  9. 9.
    Reverter JL, Lucas A, Salinas I, et al. Suppressive therapy with levothyroxine for solitary thyroid nodules. Clin Endocrinol 1992; 36: 25–28.CrossRefGoogle Scholar
  10. 10.
    Gharib H, James EM, Charboneau JW, et al. Suppressive therapy with levothyroxine for solitary thyroid nodules: A double-blind controlled clinical study. N Engl J Med 1987; 317: 70–75.PubMedCrossRefGoogle Scholar
  11. 11.
    Cheung PSY, Lee JMH, Boey JH. Thyroxine suppressive therapy of benign solitary thyroid nodules: A randomized prospective study. World J Surg 1989; 13: 818–822.PubMedCrossRefGoogle Scholar
  12. 12.
    Gharib H. Fine-needle aspiration biopsy of thyroid nodules: advantages, limitations, and effect. Mayo Clin Proc 1994; 69: 44–49.PubMedCrossRefGoogle Scholar
  13. 13.
    Mortensen JD, Bennett WA, Woolner LB. Incidence of carcinoma in thyroid glands removed at 1000 consecutive routine necropsies. Surg Forum 1954; 5: 659–663.Google Scholar
  14. 14.
    Brander A, Viikinikoski P, Nickels J, et al. Thyroid gland: ultrasound screening in middle-aged women with no previous thyroid disease. Radiology 1989; 173: 507–510.PubMedGoogle Scholar
  15. 15.
    Brander A, Viikinkoski P, Nickels J, et al. Thyroid gland: ultrasound screening in a random adult population. Radiology 1991; 181: 683–687.PubMedGoogle Scholar
  16. 16.
    Pacini F, Fugazzola L, Lippi F, et al. Detection of thyroglobulin in fine needle aspirates of nonthyroidal neck masses: a clue to the diagnosis of metastatic differentiated thyroid cancer. J Clin Endocrinol Metab 1992; 74: 1401–1404.PubMedCrossRefGoogle Scholar
  17. 17.
    Pacini F, Fontanelli M, Fugazzola L, et al. Routine measurement of serum calcitonin in nodular thyroid diseases allows the preoperative diagnosis of unsuspected sporadic medullary thyroid carcinoma. J Clin Endocrinol Metab 1994; 78: 826–829.PubMedCrossRefGoogle Scholar
  18. 18.
    Dunn JT. When is a thyroid nodule a sporadic medullary carcinoma [editorial]. J Clin Endocrinol Metab 1994; 78: 824–825.PubMedCrossRefGoogle Scholar
  19. 19.
    Bell B, Mazzaferri EL. Familial adenomatous polyposis (Gardner’s syndrome) and thyroid carcinoma: a case report and review of the literature. Digest Dis Sci 1993; 38: 185–190.PubMedCrossRefGoogle Scholar
  20. 20.
    Ain KB. Papillary thyroid carcinoma: etiology, assessment, and therapy. Endocrin Metab Clin N Am 1995; 24: 711–760.Google Scholar
  21. 21.
    Kato Z, Asano J, Kato T, et al. Thyroid cancer in a case with the Alagille syndrome. Clin Genet 1994; 45: 21–24.PubMedCrossRefGoogle Scholar
  22. 22.
    Cooper DS, Axelrod L, DeGroot LJ, et al. Congenital goiter and the development of metastatic follicular carcinoma with evidence for a leak of non-hormonal iodide: clinical, pathological, kinetic and biochemical studies and a review of the literature. J Clin Endocrinol Metab 1981; 52: 294–306.PubMedCrossRefGoogle Scholar
  23. 23.
    Grossman RF, Tu SH, Duh Q-Y, et al. Familial nonmedullary thyroid cancer. An emerging entity that warrants aggressive treatment. Arch Surg 1995; 130: 892–897.PubMedCrossRefGoogle Scholar
  24. 24.
    Lote K, Andersen K, Nordal E, et al. Familial occurrence of papillary thyroid carcinoma. Cancer 1980; 46: 1291–1297.PubMedCrossRefGoogle Scholar
  25. 25.
    Gorson D. Familial papillary carcinoma of the thyroid. Thyroid 1992; 2: 131–132.PubMedCrossRefGoogle Scholar
  26. 26.
    Nêmec J, Soumar J, Zamrazil V, et al. Familial occurrence of differentiated (non-medullary) thyroid cancer. Oncology 1975; 32: 151–157.PubMedCrossRefGoogle Scholar
  27. 27.
    Ozaki O, Ito K, Kobayashi K, et al. Familial occurrence of differentiated, nonmedullary thyroid carcinoma. World J Surg 1988; 12: 565–571.PubMedCrossRefGoogle Scholar
  28. 28.
    Antonini P, Vénuat A-M, Caillou B, et al. Cytogenetic studies on 19 papillary thyroid carcinomas. Genes Chrom Cancer 1992; 5: 206–211.PubMedCrossRefGoogle Scholar
  29. 29.
    Herrmann MA, Hay ID, Bartelt Jr DH, et al. Cytogenetic and molecular genetic studies of follicular and papillary thyroid cancers. J Clin Invest 1991; 88: 1596–1604.PubMedCrossRefGoogle Scholar
  30. 30.
    Sozzi G, Bongarzone I, Miozzo M, et al. Cytogenetic and molecular genetic characterization of papillary thyroid carcinomas. Genes Chrom Cancer 1992; 5: 212–218.PubMedCrossRefGoogle Scholar
  31. 31.
    Jhiang SM, Mazzaferri EL. The ret/PTC oncogene in papillary thyroid carcinoma. J Lab Clin Med 1994; 123: 331–337.PubMedGoogle Scholar
  32. 32.
    Pierotti MA, Santoro M, Jenkins RB, et al. Characterization of an inversion on the long arm of chromosome 10 juxtaposing D10S170 and RET and creating the oncogenic sequence RET/ PTC. Proc Natl Acad Sci USA 1992; 89: 1616–1620.PubMedCrossRefGoogle Scholar
  33. 33.
    Sozzi G, Bongarzone I, Miozzo M, et al. A t(10;17) translocation creates the RET/PTC2 chimeric transforming sequence in papillary thyroid carcinoma. Genes Chromo Cancer 1994; 9: 244–250.CrossRefGoogle Scholar
  34. 34.
    Santoro M, Dathan NA, Berlingieri MT, et al. Molecular characterization of RET/PTC3; a novel rearranged version of the RET proto-oncogene in a human thyroid papillary carcinoma. Oncogene 1994; 9: 509–516.PubMedGoogle Scholar
  35. 35.
    Bongarzone I, Butti MG, Coronelli S, et al. Frequent activation of ret protooncogene by fusion with a new activating gene in papillary thyroid carcinomas. Cancer Res 1994; 54: 2979–2985.PubMedGoogle Scholar
  36. 36.
    Filetti S, Belfiore A, Amir SM, et al. The role of thyroid-stimulating antibodies of Graves’ disease in differentiated thyroid cancer. New Eng J Med 1988; 318: 753–759.PubMedCrossRefGoogle Scholar
  37. 37.
    Belfiore A, Garofalo MR, Giuffrida D, et al. Increased aggressiveness of thyroid cancer in patients with Graves’ disease. J Clin Endocrinol Metab 1990; 70: 830–835.PubMedCrossRefGoogle Scholar
  38. 38.
    Hales IB, McElduff A, Crummer P, et al. Does Graves’ disease or thyrotoxicosis affect the prognosis of thyroid cancer. J Clin Endocrinol Metab 1992; 75: 886–889.PubMedCrossRefGoogle Scholar
  39. 39.
    Farbota LM, Calandra DB, Lawrence AM, et al. Thyroid carcinoma in Graves’ disease. Surgery 1985; 98: 1148–1153.PubMedGoogle Scholar
  40. 40.
    Dobyns BM, Sheline GE, Workman JB, et al. Malignant and benign neoplasms of the thyroid in patients treated for hyperthyroidism: a report of the Cooperative Thyrotoxicosis Therapy Follow-up Study. J Clin Endocrinol Metab 1974; 38: 976–998.PubMedCrossRefGoogle Scholar
  41. 41.
    Behar R, Arganni M, Wu T-C, et al. Graves’ disease and thyroid cancer. Surgery 1986; 100: 1121–1127.PubMedGoogle Scholar
  42. 42.
    Ahuja S, Ernst H. Hyperthyroidism and thyroid carcinoma. Acta Endocrinol (Copenh) 1991; 124: 146–151.Google Scholar
  43. 43.
    Schneider AB. Radiation-induced thyroid tumors. Endocrinol Metab Clin N Am 1990; 19: 495–508.Google Scholar
  44. 44.
    DeGroot LJ. Diagnostic approach and management of patients exposed to irradiation to the thyroid. J Clin Endocrinol Metab 1989; 69: 925–928.PubMedCrossRefGoogle Scholar
  45. 45.
    Schneider AB, Ron E, Lubin J, et al. Dose-response relationships for radiation-induced thyroid cancer and thyroid nodules: evidence for the prolonged effects of radiation on the thyroid. J Clin Endocrinol Metab 1993; 77: 362–369.PubMedCrossRefGoogle Scholar
  46. 46.
    Demidchik EP, Kazakov VS, Astakhova LN, et al. Thyroid cancer in children after the Chernobyl accident: clinical and epidemiological evaluation of 251 cases in the Republic of Belarus. In: Nagataki S, ed. Nagasaki Symposium on Chernobyl: Update and Future. Elsevier, Amsterdam, 1994, pp. 21–30.Google Scholar
  47. 47.
    Baverstock KF. Thyroid cancer in children in Belarus after Chernobyl. World Health Stat Q 1993; 46: 204–208.PubMedGoogle Scholar
  48. 48.
    Franceschi S, Boyle P, Maisonneuve P, et al. The epidemiology of thyroid carcinoma. Crit Rev Oncogenesis 1993; 4: 25–52.PubMedGoogle Scholar
  49. 49.
    Schneider AB, Shore-Freedman E, Ryo UY, et al. Radiation-induced tumors of the head and neck following childhood irradiation. Prospective studies. Medicine (Baltimore) 1985; 64: 1–15.Google Scholar
  50. 50.
    Favus MJ, Schneider AB, Stachura ME, et al. Thyroid cancer occurring as a late consequence of head-and-neck irradiation: Evaluation of 1056 patients. N Engl J Med 1976; 294: 1019–1025.PubMedCrossRefGoogle Scholar
  51. 51.
    DeGroot LJ, Reilly M, Pinnameneni K, et al. Retrospective and prospective study of radiation-induced thyroid disease. Am J Med 1983; 74: 852–862.PubMedCrossRefGoogle Scholar
  52. 52.
    McCabe DP, Farrar WB, Petkov TM, et al. Clinical and pathological correlations in disease metastatic to the thyroid gland. Am J Surg 1985; 150: 519–523.PubMedCrossRefGoogle Scholar
  53. 53.
    Ivy HK. Cancer metastatic to the thyroid: A diagnostic problem. Mayo Clin Proc 1984; 59: 856–859.PubMedCrossRefGoogle Scholar
  54. 54.
    Horowitz JJ, Fajardo M, Callahan LD, et al. Clear cell carcinoma of the thyroid. Intern Surg 1966; 45: 429–439.Google Scholar
  55. 55.
    Lang W, Borrusch H, Bauer L. Occult carcinomas of the thyroid. Evaluation of 1,020 sequential autopsies. Am J Clin Pathol 1988; 90: 72–76.PubMedGoogle Scholar
  56. 56.
    Harach HR, Franssila KO, Wasenius V-M. Occult papillary carcinoma of the thyroid. Cancer 1985; 56: 531–538.PubMedCrossRefGoogle Scholar
  57. 57.
    Bondeson L, Ljungberg O. Occult thyroid carcinoma at autopsy in Malmö, Sweden. Cancer 1981; 47: 319–323.PubMedCrossRefGoogle Scholar
  58. 58.
    Ottino A, Pianzola HM, Castelletto RH. Occult papillary thyroid carcinoma at autopsy in La Plata, Argentina. Cancer 1989; 64: 547–551.PubMedCrossRefGoogle Scholar
  59. 59.
    Chong PY. Thyroid carcinomas in Singapore autopsies. Pathology 1994; 26: 20–22.PubMedCrossRefGoogle Scholar
  60. 60.
    Fukunaga FH, Yatani R. Geographic pathology of occult thyroid carcinomas. Cancer 1975; 36: 1095–1099.PubMedCrossRefGoogle Scholar
  61. 61.
    Yamamoto Y, Maeda T, Izumi K, et al. Occult papillary carcinoma of the thyroid: a study of 408 autopsy cases. Cancer 1990; 65: 1173–1179.PubMedCrossRefGoogle Scholar
  62. 62.
    Martinez-Tello FJ, Martinez-Cabruja R, Fernandez-Martin J, et al. Occult carcinoma of the thyroid. Cancer 1993; 71: 4022–4029.PubMedCrossRefGoogle Scholar
  63. 63.
    Sampson RJ, Key CR, Buncher CR, et al. Thyroid carcinoma in Hiroshima and Nagasaki. I. Prevalence of thyroid carcinoma at autopsy. JAMA 1969; 209: 65–70.PubMedCrossRefGoogle Scholar
  64. 64.
    Carcangiu ML, Zampi G, Rosai J. Papillary thyroid carcinoma: a study of its many morphologic expressions and clinical correlates. Pathol Ann 1985; 20: 1–44.Google Scholar
  65. 65.
    Fassina AS, Montesco MC, Ninfo V, et al. Histological evaluation of thyroid carcinomas: reproducibility of the “WHO” classification. Tumori 1993; 79: 314–320.PubMedGoogle Scholar
  66. 66.
    Beahrs OH, Henson DE, Hutter RVP, et al. Manual for Staging of Cancer; American Join Committee on Cancer. J. B. Lippincott, Philadelphia, 1992.Google Scholar
  67. 67.
    Byar DP, Green SB, Dor P, et al. A prognostic index for thyroid carcinoma. A study of the E.O.R.T.C. Thyroid Cancer Cooperative Group. Europ J Cancer 1979; 15: 1033–1041.Google Scholar
  68. 68.
    Cady B, Rossi R. An expanded view of risk-group definition in differentiated thyroid carcinoma. Surgery 1988; 104: 947–953.PubMedGoogle Scholar
  69. 69.
    DeGroot LJ, Kaplan EL, McCormick M, et al. Natural history, treatment, and course of papillary thyroid carcinoma. J Clin Endocrinol Metab 1990; 71: 414–424.PubMedCrossRefGoogle Scholar
  70. 70.
    Hay ID. Papillary thyroid carcinoma. Endocrinol Metab Clin N Am 1990; 19: 545–576.Google Scholar
  71. 71.
    Hay ID, Bergstralh EJ, Goellner JR, et al. Predicting outcome in papillary thyroid carcinoma: development of a reliable prognostic scoring system in a cohort of 1779 patients surgically treated at one institution during 1940 through 1989. Surgery 1993; 114: 1050–1058.PubMedGoogle Scholar
  72. 72.
    Akslen LA. Prognostic importance of histologic grading in papillary thyroid carcinoma. Cancer 1993; 72: 2680–2685.PubMedCrossRefGoogle Scholar
  73. 73.
    DeGroot LJ, Kaplan EL, Straus FH, et al. Does the method of management of papillary thyroid carcinoma make a difference in outcome. World J Surg 1994; 18: 123–130.PubMedCrossRefGoogle Scholar
  74. 74.
    LiVolsi VA: Surgical Pathology of the Thyroid. W. B. Saunders, Philadelphia, 1990.Google Scholar
  75. 75.
    Hedinger CE, Williams ED, Sobin LH. Histological Typing of Thyroid Tumours. Springer-Verlag, Berlin, 1988.CrossRefGoogle Scholar
  76. 76.
    LiVolsi VA: Papillary neoplasms of the thyroid: pathologic and prognostic features. Am J Clin Pathol 1992; 97: 426–434.PubMedGoogle Scholar
  77. 77.
    Woolner LB: Thyroid carcinoma: pathologic classification with data on prognosis. Sem Nucl Med 1971; 1: 481–502.CrossRefGoogle Scholar
  78. 78.
    Harach HR, Zusman SB. Cytologic findings in the follicular variant of papillary carcinoma of the thyroid. Acta Cytol 1992; 36: 142–146.PubMedGoogle Scholar
  79. 79.
    Tielens ET, Sherman SI, Hruban RH, et al. Follicular variant of papillary thyroid carcinoma. Cancer 1994; 73: 424–431.PubMedCrossRefGoogle Scholar
  80. 80.
    Hawk WA, Hazard JB. The many appearances of papillary carcinoma of the thyroid. Clev Clin Quart 1976; 43: 207–216.Google Scholar
  81. 81.
    Johnson TL, Lloyd RV, Thompson NW, et al. Prognostic implications of the tall cell variant of papillary thyroid carcinoma. Am J Surg Pathol 1988; 12: 22–27.PubMedCrossRefGoogle Scholar
  82. 82.
    Egea AM, Gonzalez JMR, Perez JS, et al. Prognostic value of the tall cell variety of papillary cancer of the thyroid. Eur J Surg Oncol 1993; 19: 517–521.Google Scholar
  83. 83.
    Evans HL. Columnar-cell carcinoma of the thyroid: a report of two cases of an aggressive variant of thyroid carcinoma. Am J Clin Pathol 1986; 85: 77–80.PubMedGoogle Scholar
  84. 84.
    Akslen LA, Varhaug JE. Thyroid carcinoma with mixed tall-cell and columnar-cell features. Am J Clin Pathol 1990; 94: 442–445.PubMedGoogle Scholar
  85. 85.
    Berends D, Mouthaan PJ. Columnar-cell carcinoma of the thyroid. Histopathol 1992; 20: 360–362.CrossRefGoogle Scholar
  86. 86.
    Mizukami Y, Nonomusra A, Michigishi T, et al. Columnar cell carcinoma of the thyroid gland: a case report and review of the literature. Hum Pathol 1994; 25: 1098–1101.PubMedCrossRefGoogle Scholar
  87. 87.
    Sobrinho-Simóes M, Nesland JM, Johannessen JV. Columnar-cell carcinoma. Another variant of poorly differentiated carcinoma of the thyroid. Am J Clin Pathol 1988; 89: 264–267.PubMedGoogle Scholar
  88. 88.
    Herrera MF, Hay ID, Wu PS-C, et al. Hürthle cell (oxyphilic) papillary thyroid carcinoma: a variant with more aggressive biologic behavior. World J Surg 1992; 16: 669–675.PubMedCrossRefGoogle Scholar
  89. 89.
    Sobrinho-Simóes MA, Nesland JM, Holm R, et al. Hiirthle cell and mitochondrion-rich papillary carcinomas of the thyroid gland: an ultrastructural and immunocytochemical study. Ultrastruct Pathol 1985; 8: 131–142.PubMedCrossRefGoogle Scholar
  90. 90.
    Franssila KO, Ackerman LV, Brown CL, et al. Session II: follicular carcinoma. Sem Diag Pathol 1985; 2: 101–122.Google Scholar
  91. 91.
    Lukacs GL, Balazs G, Zs-Nagy I, et al. Clinical meaning of DNA content in the long-term behaviour of follicular thyroid tumours: A 12-year follow-up. Eur J Surg 1994; 160: 417–423.PubMedGoogle Scholar
  92. 92.
    Lang W, Georgii A, Stauch G, et al. The differentiation of atypical adenomas and encapsulated follicular carcinomas in the thyroid gland. Virchows Arch A Path Anat Histol 1980; 385: 125–141.CrossRefGoogle Scholar
  93. 93.
    Oyama T, Vickery Jr AL, Preffer RI, et al. A comparative study of flow cytometry and histopathologic findings in thyroid follicular carcinomas and adenomas. Hum Pathol 1994; 25: 271–275.PubMedCrossRefGoogle Scholar
  94. 94.
    Schürmann G, Mattfeldt T, Feichter G, et al. Stereology, flow cytometry, and immunohistotochemistry of follicular neoplasms of the thyroid gland. Hum Pathol 1991; 22: 179–184.PubMedCrossRefGoogle Scholar
  95. 95.
    Zedenius J, Auer G, Bäckdahl M, et al. Follicular tumors of the thyroid gland: diagnosis, clinical aspects and nuclear DNA analysis. World J Surg 1992; 16: 589–594.PubMedCrossRefGoogle Scholar
  96. 96.
    Grebe SKG, Hay ID. Follicular thyroid cancer. Endocrinol Metab Clin N Am 1995; 24: 761–801.Google Scholar
  97. 97.
    Schlumberger M, Tubiana M, De Vathaire F, et al. Long-term results of treatment of 283 patients with lung and bone metastases from differentiated thyroid carcinoma. J Clin Endocrinol Metab 1986; 63: 960–967.PubMedCrossRefGoogle Scholar
  98. 98.
    Casara D, Rubello D, Saladini G, et al. Distant metastases in differentiated thyroid cancer: long-term results of radioiodine treatment and statistical analysis of prognostic factors in 214 patients. Tumori 1991; 77: 432–436.PubMedGoogle Scholar
  99. 99.
    Mizukami Y, Michigishi T, Nonomura A, et al. Distant metastses in differentiated thyroid carcinomas: A clinical and pathologic study. Hum Pathol 1990; 21: 283–290.PubMedCrossRefGoogle Scholar
  100. 100.
    van Heerden JA, Hay ID, Goellner JR, et al. Follicular thyroid carcinoma with capsular invasion alone: A nonthreatening malignancy. Surgery 1992; 112: 1130–1138.PubMedGoogle Scholar
  101. 101.
    Robbins J, Merino MJ, Boice Jr JD, et al. Thyroid cancer: a lethal neoplasm. Ann Int Med 1991; 115: 133–147.PubMedGoogle Scholar
  102. 102.
    Mazzaferri EL, Jhiang SM. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med 1994; 97: 418–428.PubMedCrossRefGoogle Scholar
  103. 103.
    Shah JP, Loree TR, Dharker D, et al. Prognostic factors in differentiated carcinoma of the thyroid gland. Am J Surg 1992; 164: 658–661.PubMedCrossRefGoogle Scholar
  104. 104.
    Cooper DS, Schneyer CR. Follicular and Hürthle cell carcinoma of the thyroid. Endocrinol Metab Clin N Am 1990; 19: 577–591.Google Scholar
  105. 105.
    Carcangiu ML, Zampi G, Rosai J. Poorly differentiated (“insular”) thyroid carcinoma: a reinterpretation of Langhans’ “wuchernde Struma”. Am J Surg Pathol 1984; 8: 655–668.PubMedCrossRefGoogle Scholar
  106. 106.
    Flynn SD, Forman BH, Stewart AF, et al. Poorly differentiated (“insular”) carcinoma of the thyroid gland: an aggressive subset of differentiated thyroid neoplasms. Surgery 1988; 104: 963–970.PubMedGoogle Scholar
  107. 107.
    Carcangiu ML, Zampi G, Pupi A, et al. Papillary carcinoma of the thyroid: a clinicopathologic study of 241 cases treated at the University of Florence, Italy. Cancer 1985; 55: 805–828.PubMedCrossRefGoogle Scholar
  108. 108.
    Balan KK, Raouf AH, Critchley M. Outcome of 249 patients attending a nuclear medicine department with well differentiated thyroid cancer: a 23 year review. Brit J Radiol 1994; 67: 283–291.PubMedCrossRefGoogle Scholar
  109. 109.
    Coburn MC, Wanebo HJ. Prognostic factors and management considerations in patients with cervical metastases of thyroid cancer. Am J Surg 1992; 164: 671–676.PubMedCrossRefGoogle Scholar
  110. 110.
    Tubiana M, Schlumberger M, Rougier P, et al. Long-term results and prognostic factors in patients with differentiated thyroid carcinoma. Cancer 1985; 55: 794–804.PubMedCrossRefGoogle Scholar
  111. 111.
    Akslen LA, Myking AO, Salvesen H, et al. Prognostic importance of various clinicopathological features in papillary thyroid carcinoma. Eur J Cancer 1993; 29A: 44–51.CrossRefGoogle Scholar
  112. 112.
    Cunningham MP, Duda RB, Recant W, et al. Survival discriminants for differentiated thyroid cancer. Am J Surg 1990; 160: 344–347.PubMedCrossRefGoogle Scholar
  113. 113.
    Joensuu H, Klemi PJ, Paul R, et al. Survival and prognostic factors in thyroid carcinoma. Acta Radiol Oncol 1986; 25: 243–248.PubMedCrossRefGoogle Scholar
  114. 114.
    McConahey WM, Hay ID, Woolner LB, et al. Papillary thyroid cancer treated at the Mayo Clinic, 1946 through 1970: initial manifestations, pathologic findings, therapy, and outcome. Mayo Clin Proc 1986; 61: 978–996.PubMedCrossRefGoogle Scholar
  115. 115.
    Mizukami Y, Noguchi M, Michigishi T, et al. Papillary thyroid carcinoma in Kanazawa, Japan: prognostic significance of histological subtypes. Histopathol 1992; 20: 243–250.CrossRefGoogle Scholar
  116. 116.
    Casara D, Rubello D, Saladini G, et al. Differentiated thyroid carcinoma in the elderly. Aging Clin Exp Res 1992; 4: 333–339.Google Scholar
  117. 117.
    Godballe C, Asschenfeldt P, Sorensen JA, et al: Papillary thyroid carcinoma: correlations between prognosis, age, and clinicopathological and histomorphological findings. Laryngoscope 1994; 104: 747–751.PubMedCrossRefGoogle Scholar
  118. 118.
    Simpson WJ, McKinney SE, Carruthers JS, et al. Papillary and follicular thyroid cancer. Prognostic factors in 1,578 patients. Am J Med 1987; 83: 479–488.PubMedCrossRefGoogle Scholar
  119. 119.
    Ceccarelli C, Pacini F, Lippi F, et al. Thyroid cancer in children and adolescents. Surgery 1988; 104: 1143–1148.PubMedGoogle Scholar
  120. 120.
    Frankenthaler RA, Sellin RV, Cangir A, et al. Lymph node metastasis from papillary-follicular thyroid carcinoma in young patients. Am J Surg 1990; 160: 341–343.PubMedCrossRefGoogle Scholar
  121. 121.
    Harness JK, Thompson NW, McLeod MK, et al. Differentiated thyroid carcinoma in children and adolescents. World J Surg 1992; 16: 547–554.PubMedCrossRefGoogle Scholar
  122. 122.
    La Quaglia MP, Corbally MT, Heller G, et al. Recurrence and morbidity in differentiated thyroid carcinoma in children. Surgery 1988; 104: 1149–1156.PubMedGoogle Scholar
  123. 123.
    Samuel AM, Sharma SM. Differentiated thyroid carcinomas in children and adolescents. Cancer 1991; 67: 2186–2190.PubMedCrossRefGoogle Scholar
  124. 124.
    Zimmerman D, Hay ID, Gough IR, et al. Papillary thyroid carcinoma in children and adults: long-term follow-up of 1039 patients conservatively treated at one institution during three decades. Surgery 1988; 104: 1157–1166.PubMedGoogle Scholar
  125. 125.
    Correa P, Chen VW. Endocrine gland cancer. Cancer 1995; 75: 338–352.PubMedCrossRefGoogle Scholar
  126. 126.
    Polednak AP. Trends in cancer incidence in Connecticut, 1935–1991. Cancer 1994; 74: 2863–2872.PubMedCrossRefGoogle Scholar
  127. 127.
    Bur M, Shiraki W, Masood S. Estrogen and progesterone receptor detection in neoplastic and non-neoplastic thyroid tissues. Mod Pathol 1993; 6: 469–472.PubMedGoogle Scholar
  128. 128.
    Hiasa Y, Nishioka H, KItahori Y, et al. Immunohistochemical analysis of estrogen receptors in 313 paraffin section cases of human thyroid tissue. Oncology 1993; 50: 132–136.PubMedCrossRefGoogle Scholar
  129. 129.
    van Hoeven KH, Menendez-Botet CJ, Strong EW, et al. Estrogen and progesterone receptor content in human thyroid disease. Am J Clin Pathol 1993; 99: 175–181.PubMedGoogle Scholar
  130. 130.
    Akslen LA, Nilssen S, Kvå le G. Reproductive factors and risk of thyroid cancer. A prospective study of 63,090 women from Norway. Br J Cancer 1992; 65: 772–774.PubMedCrossRefGoogle Scholar
  131. 131.
    McTiernan AM, Weiss NS, Dating JR. Incidence of thyroid cancer in women in relation to reproductive and hormonal factors. Am J Epidem 1984; 120: 423–435.Google Scholar
  132. 132.
    DeGroot LJ, Kaplan EL, Shukla MS, et al. Morbidity and mortality in follicular thyroid cancer. J Clin Endocrinol Metab 1995; 80: 2946–2953.PubMedCrossRefGoogle Scholar
  133. 133.
    Brennan MD, Bergstralh EJ, van Heerden JA, et al. Follicular thyroid cancer treated at the Mayo Clinic, 1946 through 1970: initial manifestations, pathologic findings, therapy, and outcome. Mayo Clin Proc 1991; 66: 11–22.PubMedCrossRefGoogle Scholar
  134. 134.
    Schmidt RJ, Wang C: Encapsulated follicular carcinoma of the thyroid. Diagnosis, treatment, and results. Surgery 1986; 100: 1068–1077.PubMedGoogle Scholar
  135. 135.
    Jorda M, Gonzalez-Campora R, Mora J, et al. Prognostic factors in follicular carcinoma of the thyroid. Arch Pathol Lab Med 1993; 117: 631–635.PubMedGoogle Scholar
  136. 136.
    Emerick GT, Duh Q-Y, Siperstein AE, et al. Diagnosis, treatment, and outcome of follicular thyroid carcinoma. Cancer 1993; 72: 3287–3295.PubMedCrossRefGoogle Scholar
  137. 137.
    Tscholl-Ducommun J, Hedinger CE. Papillary thyroid carcinomas: morphology and prognosis. Virch Arch [Pathol Anat] 1982; 396: 19–39.CrossRefGoogle Scholar
  138. 138.
    Rossi RL, Cady B, Silverman ML, et al. Surgically incurable well-differentiated thyroid carcinoma. Prognostic factors and results of therapy. Arch Surg 1988; 123: 569–574.PubMedCrossRefGoogle Scholar
  139. 139.
    Cody III HS, Shah JP. Locally invasive, well-differentiated thyroid cancer: 22 years’ experience at Memorial Sloan-Kettering Cancer Center. Am J Surg 1981; 142: 480–483.PubMedCrossRefGoogle Scholar
  140. 140.
    Shin D-H, Mark EJ, Suen HC, et al. Pathologic staging of papillary carcinoma of the thyroid with airway invasion based on the anatomic manner of extension to the trachea: a clinicopathologic study based on 22 patients who underwent thyroidectomy and airway resection. Hum Pathol 1993; 24: 866–870.PubMedCrossRefGoogle Scholar
  141. 141.
    McCaffrey TV, Bergstralh EJ, Hay ID. Locally invasive papillary thyroid carcinoma: 19401990. Head Neck 1994; 16: 165–172.PubMedCrossRefGoogle Scholar
  142. 142.
    Chen W-L, Guan S-I, Huang W-S. Radioiodine I-131 therapy in the management of differentiated thyroid carcinoma: a review of 202 patients. J Formos Med Assoc 1993; 92: 623–631.PubMedGoogle Scholar
  143. 143.
    Heie J, Stenwig AE, Kullmann G, et al. Distant metastases in papillary thyroid cancer: a review of 91 patients. Cancer 1988; 61: 1–6.CrossRefGoogle Scholar
  144. 144.
    Ozaki O, Ito K, Sugino K. Clinico-pathologic study of pulmonary metastasis of differentiated thyroid carcinoma: age-, sex-, and histology-matched case-control study. Int Surg 1993; 78: 218–220.PubMedGoogle Scholar
  145. 145.
    Rodriquez-Cuevas S, Almendaro SL, Cardoso JMR, et al. Papillary thyroid cancer in Mexico: review of 409 cases. Head Neck 1993; 15: 537–545.CrossRefGoogle Scholar
  146. 146.
    Solomon BL, Wartofsky L, Burman KD. Current trends in the management of well differentiated papillary thyroid carcinoma. J Clin Endocrinol Metab 1996; 81: 333–339.PubMedCrossRefGoogle Scholar
  147. 147.
    Pineda JD, Lee T, Robbins J. Treating metastatic thyroid cancer. The Endocrinologist 1993; 3: 433–442.CrossRefGoogle Scholar
  148. 148.
    Ain KB. Strategies in the management of differentiated thyroid carcinoma. Int Med 1996; 17: 45–58.Google Scholar
  149. 149.
    Demeure MJ, Clark OH. Surgery in the treatment of thyroid cancer. Endocrinol Metab Clin N Am 1990; 19: 663–683.Google Scholar
  150. 150.
    Soh EY, Clark OH. Surgical considerations and approach to thyroid cancer. Endocrinol Metab Clin N Am 1996; 25: 115–139.CrossRefGoogle Scholar
  151. 151.
    Pasieka JL, Rotstein LE. Consensus conference on well-differentiated thyroid cancer: a summary. Can J Surg 1993; 36: 298–301.PubMedGoogle Scholar
  152. 152.
    Fujimoto Y, Obara T, Ito Y, et al. Aggressive surgical approach for locally invasive papillary carcinoma of the thyroid in patients over forty-five years of age. Surgery 1986; 100: 1098–1106.PubMedGoogle Scholar
  153. 153.
    Gerfo PL, Chabot J, Gazetas P. The intraoperative incidence of detectable bilateral and multi-centric disease in papillary cancer of the thyroid. Surgery 1990; 108: 958–963.PubMedGoogle Scholar
  154. 154.
    Hines JR, Winchester DJ. Total lobectomy and total thyroidectomy in the management of thyroid lesions. Arch Surg 1993; 128: 1060–1064.PubMedCrossRefGoogle Scholar
  155. 155.
    Flynn MB, Lyons KJ, Tarter JW, et al. Local complications after surgical resection for thyroid carcinoma. Am J Surg 1994; 168: 404–407.PubMedCrossRefGoogle Scholar
  156. 156.
    Samaan NA, Schultz PN, Hickey RC, et al. The results of various modalities of treatment of well differentiated thyroid carcinoma: a retrospective review of 1599 patients. J Clin Endocrinol Metab 1992; 75: 714–720.PubMedCrossRefGoogle Scholar
  157. 157.
    Simpson WJ, Panzarella T, Carruthers JS, et al. Papillary and follicular thyroid cancer: impact of treatment in 1,578 patients. Int J Rad Onc Biol Phys 1988; 14: 1063–1075.CrossRefGoogle Scholar
  158. 158.
    Wong JB, Kaplan MM, Meyer KB, et al. Ablative radioactive iodine therapy for apparently localized thyroid carcinoma: a decision analytic perspective. Endocrinol Metab Clin N Am 1990; 19: 741–760.Google Scholar
  159. 159.
    Dottorini ME, Lomuscio G, Mazzucchelli L, et al. Assessment of female fertility and carcinogenesis after iodine-131 therapy for differentiated thyroid carcinoma. J Nucl Med 1995; 36: 21–27.PubMedGoogle Scholar
  160. 160.
    Schlesinger T, Flower MA, McCready VR. Radiation dose assessments in radioiodine (131I) therapy. 1. The necessity for in vivo quantitation and dosimetry in the treatment of carcinoma of the thyroid. Radiother Oncol 1989; 14: 35–41.PubMedCrossRefGoogle Scholar
  161. 161.
    Samuel AM, Rajashekharrao B. Radioiodine therapy for well-differentiated thyroid cancer: a quantitative dosimetric evaluation for remnant thyroid ablation after surgery. J Nucl Med 1994; 35: 1944–1950.PubMedGoogle Scholar
  162. 162.
    Comtois R, Theriault C, Del Vecchio P. Assessment of the efficacy of iodine-131 for thyroid ablation. J Nucl Med 1993; 34: 1927–1930.PubMedGoogle Scholar
  163. 163.
    Beierwaltes WH. Radioiodine therapy of thyroid disease. Nucl Med Biol 1987; 14: 177–181.Google Scholar
  164. 164.
    Sweeney DC, Johnston GS. Radioiodine therapy for thyroid cancer. Endocrinol Metab Clin N Am 1995; 24: 803–839.Google Scholar
  165. 165.
    Benua RS, Leeper RD. A method and rationale for treating metastatic thyroid carcinoma with the largest safe dose of 1311. In: Medeiros-Neto G, Gaitan E, eds. Frontiers in Thyroidology. Plenum, New York, 1986, pp. 1317–1321.Google Scholar
  166. 166.
    Lakshmanan M, Schaffer A, Robbins J, et al: A simplified low iodine diet in 1–131 scanning and therapy of thyroid cancer. Clin Nucl Med 1988; 13: 866–868.PubMedCrossRefGoogle Scholar
  167. 167.
    Ain KB, DeWitt PA, Gardner TG, et al. Low-iodine tube-feeding diet for iodine-131 scanning and therapy. Clin Nucl Med 1994; 19: 504–507.PubMedCrossRefGoogle Scholar
  168. 168.
    Edmonds CJ, Hayes S, Kermode JC, et al. Measurement of serum TSH and thyroid hormones in the management of treatment of thyroid carcinoma with radioiodine. Brit J Radiol 1977; 50: 799–807.PubMedCrossRefGoogle Scholar
  169. 169.
    Goldman JM, Line BR, Aamodt RL, et al. Influence of triiodothyronine withdrawal time on 131 I uptake postthyroidectomy for thyroid cancer. J Clin Endocrinol Metab 1980; 50: 734–739.PubMedCrossRefGoogle Scholar
  170. 170.
    Hershman JM, Edwards CL. Serum thyrotropin (TSH) levels after thyroid ablation compared with TSH levels after exogenous bovine TSH: Implications for 131 I treatment of thyroid carcinoma. J Clin Endocrinol 1972; 34: 814–818.CrossRefGoogle Scholar
  171. 171.
    Hays MT, Solomon DH, Beall GN: Suppression of human thyroid function by antibodies to bovine thyrotropin. J Clin Endocrinol 1967; 27: 1540–1549.CrossRefGoogle Scholar
  172. 172.
    Meier CA, Braverman LE, Ebner SA, et al. Diagnostic use of recombinant human thyrotropin in patients with thyroid carcinoma (phase I/II study). J Clin Endocrinol Metab 1994; 78: 188–196.PubMedCrossRefGoogle Scholar
  173. 173.
    Benua RS, Cicale NR, Sonenberg M, et al. The relation of radioiodine dosimetry to results and complications in the treatment of metastatic thyroid cancer. Am J Roentgenol Radiat Ther Nucl Med 1962; 87: 171–182.Google Scholar
  174. 174.
    Pineda JD, Lee T, Ain KB, et al. Iodine-131 therapy for thyroid cancer patients with elevated thyroglobulin and negative diagnostic scan. J Clin Endocrinol Metab 1995; 80: 1488–1492.PubMedCrossRefGoogle Scholar
  175. 175.
    Van Nostrand DV, Neutze J, Atkins F: Side effects of “rational dose” iodine-131 therapy for metastatic well-differentiated thyroid carcinoma. J Nucl Med 1986; 27: 1519–1527.PubMedGoogle Scholar
  176. 176.
    Sarkar SD, Beierwaltes WH, Gill SP, et al. Subsequent fertility and birth histories of children and adolescents treated with 131 I for thyroid cancer. J Nucl Med 1976; 17: 460–464.PubMedGoogle Scholar
  177. 177.
    Hall P, Boice J, Berg G, et al. Leukemia incidence after iodine exposure. Lancet 1992; 340: 1–4.PubMedGoogle Scholar
  178. 178.
    Edmonds CJ, Smith T. The long-term hazards of the treatment of thyroid cancer with radioiodine. Brit J Radiol 1986; 59: 45–51.PubMedCrossRefGoogle Scholar
  179. 179.
    Marinelli LD, Quimby EH, Hine GJ. Dosage determination with radioactive isotopes. II. Practical considerations in therapy and protection. Am J Roentgenol 1948; 59: 260–281.Google Scholar
  180. 180.
    Thomas SR, Maxon HR, Fritz KM, et al. A comparison of methods for assessing patient body burden following 131 I therapy for thyroid cancer. Radiology 1980; 137: 839–842.PubMedGoogle Scholar
  181. 181.
    Rall JE, Foster CG, Robbins J, et al. Dosimetric considerations in determining hematopoietic damage from radioactive iodine. Am J Roentgenol Radiat Ther Nucl Med 1953; 70: 274–282.Google Scholar
  182. 182.
    Balachandran S, Sayle BA. Value of thyroid carcinoma imaging after therapeutic doses of radioiodine. Clin Nucl Med 1981; 6: 162–177.PubMedCrossRefGoogle Scholar
  183. 183.
    Nmec J, Rohling S, Zamrazil V, et al. Comparison of the distribution of diagnostic and thyroablative I-131 in the evaluation of differentiated thyroid cancers. J Nucl Med 1979; 20: 92–97.Google Scholar
  184. 184.
    Sherman SI, Tielens ET, Sostre S, et al. Clinical utility of posttreatment radioiodine scans in the management of patients with thyroid carcinoma. J Clin Endocrinol Metab 1994; 78: 629–634.PubMedCrossRefGoogle Scholar
  185. 185.
    Park H-M, Perkins OW, Edmondson JW, et al. Influence of diagnostic radioiodines on the uptake of ablative dose of iodine-131. Thyroid 1994; 4: 49–54.PubMedCrossRefGoogle Scholar
  186. 186.
    Jeevanram RK, Shah DH, Sharma SM, et al. Influence of inital large dose on subsequent uptake of therapeutic radioiodine in thyroid cancer patients. Nucl Med Biol 1986; 13: 277–279.Google Scholar
  187. 187.
    Waxman A, Ramanna L, Chapman N, et al. The significance of I-131 scan dose in patients with thyroid cancer: Determination of ablation: concise communication. J Nucl Med 1981; 22: 861–865.PubMedGoogle Scholar
  188. 188.
    Arnstein NB, Carey JE, Spaulding SA, et al. Determination of iodine-131 diagnostic dose for imaging metastatic thyroid cancer. J Nucl Med 1986; 27: 1764–1769.PubMedGoogle Scholar
  189. 189.
    Gershengorn MC, Izumi M, Robbins J. Use of lithium as an adjunct to radioiodine therapy of thyroid carcinoma. J Clin Endocrinol Metab 1976; 42: 105–111.PubMedCrossRefGoogle Scholar
  190. 190.
    Pons F, Carrió I, Estorch M, et al. Lithium as an adjuvant of iodine-131 uptake when treating patients with well-differentiated thyroid carcinoma. Clin Nucl Med 1987; 25: 644–647.CrossRefGoogle Scholar
  191. 191.
    Proye CAG, Dromer DHR, Carnaille BM, et al. Is it still worthwhile to treat bone metastases from differentiated thyroid carcinoma with radioactive iodine. World J Surg 1992; 16: 640–646.PubMedCrossRefGoogle Scholar
  192. 192.
    Marcocci C, Pacini F, Elisei R, et al. Clinical and biologic behavior of bone metastases from differentiated thyroid carcinoma. Surgery 1989; 106: 960–966.PubMedGoogle Scholar
  193. 193.
    Niederle B, Roka R, Schemper M, et al. Surgical treatment of distant metastases in differentiated thyroid cancer: indication and results. Surgery 1986; 100: 1088–1096.PubMedGoogle Scholar
  194. 194.
    Brabant G, Maenhaut C, Köhrle J, et al: Human thyrotropin receptor gene: expression in thyroid tumors and correlation to markers of thyroid differentiation and dedifferentiation. Mol Cell Endocrinol 1991; 82: R7 - R12.PubMedCrossRefGoogle Scholar
  195. 195.
    Dumont JE, Lamy F, Roger P, et al. Physiological and pathological regulation of thyroid cell proliferation and differentiation by thyrotropin and other factors. Physiol Rev 1992; 72: 667–697.PubMedGoogle Scholar
  196. 196.
    Edmonds CJ, Kermode JC. Thyrotrophin receptors, tumour radioiodine concentration and thyroglobulin secretion in differentiated thyroid cancers. Br J Cancer 1985; 52: 537–541.PubMedCrossRefGoogle Scholar
  197. 197.
    Müller-Gärtner HW, Baisch H, Garn M, et al. Individually different proliferation responses of differentiated thyroid carcinomas to thyrotropin. In: Goretzki PE, Röher HD, eds. Growth Regulation of Thyroid Gland and Thyroid Tumors. Karger, Basel, 1989, pp. 137–151.Google Scholar
  198. 198.
    Siperstein AE, Claasen HR, Miller R, et al. Thyroid-stimulating hormone growth-responsive, cyclic adenosine monophosphate-unresponsive poorly differentiated thyroid carcinoma of follicular cell origin. In Goretzki PE, Röher HD, eds. Growth Regulation of Thyroid Gland and Thyroid Tumors. Karger, Basel, 1989, pp. 81–87.Google Scholar
  199. 199.
    Mazzaferri EL, Young RL. Papillary thyroid carcinoma: a 10 year follow-up report of the impact of therapy in 576 patients. Am J Med 1981; 70: 511–518.PubMedCrossRefGoogle Scholar
  200. 200.
    Burmeister LA, Goumaz MO, Mariash CN, et al. Levothyroxine dose requirements for thyrotropin suppression in the treatment of differentiated thyroid cancer. J Clin Endocrinol Metab 1992; 75: 344–350.PubMedCrossRefGoogle Scholar
  201. 201.
    Garnick RL, Burt GF, Borger FR, et al. Stability indicating high-pressure liquid chromatographic method for quality control of sodium liothyronine and sodium levothyroxine in tablet formulations. In: Gueriguian JL, Bransome EDJ, Outschoorn AS, eds. Hormone Drugs. United States Pharmacopeial Convention, Inc., Rockville, MD, 1982, pp. 504–516.Google Scholar
  202. 202.
    Franklyn JA, Betteridge J, Daykin J, et al. Long-term thyroxine treatment and bone mineral density. Lancet 1992; 340: 9–13.PubMedCrossRefGoogle Scholar
  203. 203.
    Marcocci C, Golia F, Bruno-Bossio G, et al. Carefully monitored levothyroxine suppressive therapy is not associated with bone loss in premenopausal women. J Clin Endocrinol Metab 1994; 78: 818–823.PubMedCrossRefGoogle Scholar
  204. 204.
    Fazio S, Biondi B, Carella C, et al. Diastolic dysfunction in patients on thyroid-stimulating hormone suppressive therapy with levothyroxine: beneficial effect of (3-blockade. J Clin Endocrinol Metab 1995; 80: 2222–2226.PubMedCrossRefGoogle Scholar
  205. 205.
    Brierley JD, Tsang RW. External radiation therapy in the treatment of thyroid malignancy. Endocrinol Metab Clin N Am 1996; 25: 141–157.CrossRefGoogle Scholar
  206. 206.
    Maxon HR, Thomas SR, Hertzberg VS, et al. Relation between effective radiation dose and outcome of radioiodine therapy for thyroid cancer. New Eng J Med 1983; 309: 937–941.PubMedCrossRefGoogle Scholar
  207. 207.
    Phlips P, Hanzen C, Andry G, et al: Postoperative irradiation for thyroid cancer. Eur J Surg Onco 1993; 19: 399–404.Google Scholar
  208. 208.
    Ésik O, Németh G, Eller J. Prophylactic external irradiation in differentiated thyroid cancer: a retrospective study over a 30-year observation period. Oncology 1994; 51: 372–379.PubMedCrossRefGoogle Scholar
  209. 209.
    Wu XL, Hu YH, Li QH, et al. Value of postoperative radiotherapy for thyroid cancer. Head Neck Surg 1987; 10: 107–112.PubMedCrossRefGoogle Scholar
  210. 210.
    Farahati J, Reiners C, Stuschke M, et al. Differentiated thyroid cancer: Impact of adjuvant external radiotherapy in patients with perithyroidal tumor infiltration (stage pT4). Cancer 1996; 77: 172–180.PubMedCrossRefGoogle Scholar
  211. 211.
    Wilford MR, Chertow BS, Lepanto PB, et al. Dramatic response of follicular thyroid carcinoma with superior vena cava syndrome and tracheal obstruction to external-beam radiotherapy. Am J Med 1991; 90: 753–757.PubMedGoogle Scholar
  212. 212.
    Kim JH, Leeper RD. Treatment of locally advanced thyroid carcinoma with combination doxorubicin and radiation therapy. Cancer 1987; 60: 2372–2375.PubMedCrossRefGoogle Scholar
  213. 213.
    O’Connell MEA, A’Hern RP, Harmer CL. Results of external beam radiotherapy in differentiated thyroid carcinoma: a retrospective study from the Royal Marsden Hospital. Eur J Cancer 1994; 30A: 733–739.CrossRefGoogle Scholar
  214. 214.
    Ahuja S, Ernst H. Chemotherapy of thyroid carcinoma. J Endocrinol Invest 1987; 10: 303–310.PubMedGoogle Scholar
  215. 215.
    De Besi P, Busnardo B, Toso S, et al. Combined chemotherapy with bleomycin, adriamycin, and platinum in advanced thyroid cancer. J Endocrinol Invest 1991; 14: 475–480.PubMedGoogle Scholar
  216. 216.
    Ain KB, Taylor KD. Somatostatin analogs affect proliferation of human thyroid carcinoma cell lines in vitro. J Clin Endocrinol Metab 1994; 78: 1097–1102.PubMedCrossRefGoogle Scholar
  217. 217.
    Ain KB, Ishizawar RC, Taylor KD. Suramin inhibits growth of differentiated and anaplastic human thyroid carcinomas in monolayer and spheroid cultures with disparate effects in vivo. In: 76th Annual Meeting of the Endocrine Society. Anaheim, CA, 1994.Google Scholar
  218. 218.
    Ain KB, Tofiq S, Taylor K. Taxol demonstrates significant antineoplastic activity against human anaplastic thyroid carcinoma cell lines in vitro and in vivo. In: 77th Annual Meeting of the Endocrine Society. Washington, DC, 1995.Google Scholar
  219. 219.
    Ain KB, Taylor KD, Boghaert ER. Effects of 13-cis-retinoic acid on growth and morphology of human anaplastic and papillary thyroid carcinomas in monolayer and spheroid cultures. In: 75th Annual Meeting of the Endocrine Society. Las Vegas, Nevada, 1993.Google Scholar
  220. 220.
    Mariotti S, Barberino G, Caturegli P, et al. Assay of thyroglobulin in serum with thyroglobulin autoantibodies: An unobtainable goal. J Clin Endocrinol Metab 1995; 80: 468–472.PubMedCrossRefGoogle Scholar
  221. 221.
    Spencer CA, Wang C-C. Thyroglobulin measurement: Techniques, clinical benefits, and pitfalls. Endocrinol Metab Clin N Am 1995; 24: 841–863.Google Scholar
  222. 222.
    Van Herle AJ, Van Herle IS, Greipel MA. An international cooperative study evaluating serum thyroglobulin standards. J Clin Endocrinol Metab 1985; 60: 338–343.PubMedCrossRefGoogle Scholar
  223. 223.
    Feldt-Rasmussen U, Schlumberger M. European interlaboratory comparison of serum thyrogloblin measurement. J Endocrinol Invest 1988; 11: 175–181.PubMedGoogle Scholar
  224. 224.
    Ericsson UB, Christensen SB, Thorell JI. A high prevalence of thyroglobulin autoantibodies in adults with and without thyroid disease as measured with a sensitive solid-phase immunosorbent radioassay. Clin Immunol Immunopathol 1985; 37: 154–162.PubMedCrossRefGoogle Scholar
  225. 225.
    Ozata M, Suzuki S, Miyamoto T, et al. Serum thyroglobulin in the follow-up of patients with treated differentiated thyroid cancer. J Clin Endocrinol Metab 1994; 79: 98–105.PubMedCrossRefGoogle Scholar
  226. 226.
    Galloway RJ, Smallridge RC. Imaging in thyroid cancer. Endocrinol Metab Clin N Am 1996; 25: 93–113.CrossRefGoogle Scholar
  227. 227.
    Dadparvar S, Krishna L, Brady LW, et al. The role of iodine-131 and thallium-201 imaging and serum thyroglobulin in the management of differentiated thyroid carcinoma. Cancer 1993; 71: 3767–3773.PubMedCrossRefGoogle Scholar
  228. 228.
    Hoefnagel CA, Delprat CC, Marcuse HR, et al. Role of thallium-201 total-body scintigraphy in follow-up of thyroid carcinoma. J Nucl Med 1986; 27: 1854–1857.PubMedGoogle Scholar
  229. 229.
    Ramanna L, Waxman A, Braunstein G. Thallium-201 scintigraphy in differentiated thyroid cancer: comparison with radioiodine scintigraphy and serum thyroglobulin determinations. J Nucl Med 1991; 32: 441–446.PubMedGoogle Scholar
  230. 230.
    Brendel AJ, Guyot M, Jeandot R, et al. Thallium-201 imaging in the follow-up of differentiated thyroid carcinoma. J Nucl Med 1988; 29: 1515–1520.PubMedGoogle Scholar
  231. 231.
    Burman KD, Anderson JH, Wartofsky L, et al. Management of patients with thyroid carcinoma: application of thallium-201 scintigraphy and magnetic resonance imaging. J Nucl Med 1990; 31: 1958–1964.PubMedGoogle Scholar
  232. 232.
    Charkes ND, Vitti RA, Brooks K. Thallium-201 SPECT increases detectability of thyroid cancer metastases. J Nucl Med 1990; 31: 147–153.PubMedGoogle Scholar
  233. 233.
    Yen T-C, Lin H-D, Lee C-H, et al. The role of technetium-99m sestamibi whole-body scans in diagnosing metastatic Hürthle cell carcinoma of the thyroid gland after total thyroidectomy: A comparison with iodine-131 and thallium-201 whole-body scans. Eur J Nucl Med 1994; 21: 980–983.PubMedCrossRefGoogle Scholar
  234. 234.
    Balon HR, Fink-Bennett D, Stoffer SS. Technetium-99m-sestamibi uptake by recurrent Hurthle cell carcinoma of the thyroid. J Nucl Med 1992; 33: 1393–1395.PubMedGoogle Scholar
  235. 235.
    Grunwald F, Schomburg A, Bender H, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography in the follow-up of differentiated thyroid cancer. Eur J Nucl Med 1996; 23: 312–319.PubMedCrossRefGoogle Scholar
  236. 236.
    Scott GC, Meier DA, Dickinson CZ. Cervical lymph node metastasis of thyroid papillary carcinoma imaged with fluorine-18-FDG, technetium-99m-pertechnetate and iodine-131-sodium iodide. J Nucl Med 1995; 36: 1843–1845.PubMedGoogle Scholar
  237. 237.
    O’Connell ME, Flower MA, Hinton PJ, et al. Radiation dose assessment in radioiodine therapy. Dose-response relationships in differentiated thyroid carcinoma using quantitative scanning and PET. Radiother Oncol 1993; 28: 16–26.PubMedCrossRefGoogle Scholar
  238. 238.
    Sisson JC, Ackermann RJ, Meyer MA, et al. Uptake of 18-fluoro-2-deoxy-D-glucose by thyroid cancer: implications for diagnosis and therapy. J Clin Endocrinol Metab 1993; 77: 1090–1094.PubMedCrossRefGoogle Scholar
  239. 239.
    Higashi T, Ito K, Nishikawa Y, et al. Gallium-67 imaging in the evaluation of thyroid malignancy. Clin Nucl Med 1988; 13: 792–799.PubMedCrossRefGoogle Scholar
  240. 240.
    Auffermann W, Clark OH, Thurnher S, et al. Recurrent thyroid carcinoma: Characteristics on MR images. Radiology 1988; 168: 753–757.PubMedGoogle Scholar
  241. 241.
    Friedman M, Torlumi DM, Mafee MF. Diagnostic imaging techniques in thyroid cancer. Am J Surg 1988; 155: 215–223.PubMedCrossRefGoogle Scholar
  242. 242.
    Fagin JA. Molecular genetics of human thyroid neoplasms. Ann Rev Med 1994; 45: 45–52.PubMedCrossRefGoogle Scholar
  243. 243.
    Rosai J, Saxn EA, Woolner L. Session III: Undifferentiated and poorly differentiated carcinoma. Sem Diag Pathol 1985; 2: 123–136.Google Scholar
  244. 244.
    Nel CJC, van Heerden JA, Goellner JR, et al. Anaplastic carcinoma of the thyroid: a clinico-pathologic study of 82 cases. Mayo Clin Proc 1985; 60: 51–58.PubMedCrossRefGoogle Scholar
  245. 245.
    Junor EJ, Paul J, Reed NS. Anaplastic thyroid carcinoma: 91 patients treated by surgery and radiotherapy. Eur J Surg Oncol 1992; 18: 83–88.PubMedGoogle Scholar
  246. 246.
    Samaan NA, Ordonlez NG. Uncommon types of thyroid cancer. Endocrinol Metab Clin N Am 1990; 19: 637–648.Google Scholar
  247. 247.
    Tennvall J, Lundell G, Hallquist A, et al. Combined doxorubicin, hyperfractinated radiotherapy, and surgery in anaplastic thyroid carcinoma. Cancer 1994; 74: 1348–1354.PubMedCrossRefGoogle Scholar
  248. 248.
    Schlumberger M, Parmentier C, Delisle M-J, et al. Combination therapy for anaplastic giant cell thyroid carcinoma. Cancer 1991; 67: 564–566.PubMedCrossRefGoogle Scholar
  249. 249.
    Schröder S, Holl K, Padberg BC. Pathology of sporadic and hereditary medullary thyroid carcinoma. Rec Res Cancer Res 1992; 125: 19–45.CrossRefGoogle Scholar
  250. 250.
    Pommier RF, Brennan MF. Medullary thyroid carcinoma. The Endocrinologist 1992; 2: 393–405.CrossRefGoogle Scholar
  251. 251.
    Evans DB, Lee JE, Merrell RC, et al. Adrenal medullary disease in multiple endocrine neoplasia type 2. Endocrinol Metab Clin N Am 1994; 23: 167–176.Google Scholar
  252. 252.
    Raue F, Frank-Raue K, Grauer A. Multiple endocrine neoplasia type 2: Clinical features and screening. Endocrinol Metab Clin N Am 1994; 23: 137–156.Google Scholar
  253. 253.
    Takai S-I, Kinoshita S, Tanaka F, et al. Prominent corneal nerves in patients with multiple endocrine neoplasia type 2A. Diagnostic implications. World J Surg 1992; 16: 620–624.PubMedCrossRefGoogle Scholar
  254. 254.
    Wohllk N, Cote GJ, Evans DB, et al. Application of genetic screening information to the management of medullary thyroid carcinoma and multiple endocrine neoplasia type 2. Endocrinol Metab Clin N Am 1996; 25: 1–25.CrossRefGoogle Scholar
  255. 255.
    Snow KJ, Boyd III AE. Management of individual tumor syndromes: Medullary thyroid carcinoma and hyperparathyroidism. Endocrinol Metab Clin N Am 1994; 23: 157–166.Google Scholar
  256. 256.
    Ledger GA, Khosla S, Lindor NM, et al. Genetic testing in the diagnosis and management of multiple endocrine neoplasia type II. Ann Intern Med 1995; 122: 118–124.PubMedGoogle Scholar
  257. 257.
    Samaan NA, Schultz PN, Hickey RC. Medullary thyroid carcinoma: Prognosis of familial versus sporadic disease and the role of radiotherapy. J Clin Endocrinol Metab 1988; 67: 801–805.PubMedCrossRefGoogle Scholar
  258. 258.
    Dralle H, Damm I, Scheumann GFW, et al. Frequency and significance of cervicomediastinal lymph node metastases in medullary thyroid carcinoma: Results of a compartment-oriented microdissection method. Henry Ford Hosp Med J 1992; 40: 264–267.PubMedGoogle Scholar
  259. 259.
    Udelsman R, Mojiminiyi OA, Soper NDW, et al. Medullary carcinoma of the thyroid: management of persistent hypercalcitonaemia utilizing [99mTc](V)dimercaptosuccinic acid scintigraphy. Br J Surg 1989; 76: 1278–1281.PubMedCrossRefGoogle Scholar
  260. 260.
    Clarke SEM, Lazarus CR, Wraight P, et al. Pentavalent [99mTc]DMSA, [131I]MIBG, and [99mTc]MDP-An evaluation of three imaging techniques in patients with medullary carcinoma of the thyroid. J Nucl Med 1988; 29: 33–38.PubMedGoogle Scholar
  261. 261.
    Ansari AN, Siegel ME, DeQuattro V, et al. Imaging of medullary thyroid carcinoma and hyperfunctioning adrenal medulla using iodine-131 metaiodobenzylguanidine. J Nucl Med 1986; 27: 1858–1860.PubMedGoogle Scholar
  262. 262.
    Ohta H, Endo K, Fujita T, et al. Sipple’s syndrome with liver tumors examined by iodine-131 MIBG and technetium-99m(V)-DMSA. J Nucl Med 1988; 29: 1130–1135.PubMedGoogle Scholar
  263. 263.
    Troncone L, Rufini V, Montemaggi P, et al. The diagnostic and therapeutic utility of radio-iodinated metaiodobenzylguanidine (MIBG): 5 years of experience. Eur J Nucl Med 1990; 16: 325–335.PubMedCrossRefGoogle Scholar
  264. 264.
    Berna L, Cabezas R, Mora J, et al. 111In-octreotide and IImTc(V)-dimercaptosuccinic acid studies in the imaging of recurrent medullary thyroid carcinoma. J Endocrinol 1995; 144: 339–345.PubMedCrossRefGoogle Scholar
  265. 265.
    Dorr U, Wurstlin S, Frank-Raue K, et al. Somatostatin receptor scintigraphy and magnetic resonance imaging in recurrent medullary thyroid carcinoma: a comparative study. Horm Metab Res Suppl 1993; 27: 48–55.PubMedGoogle Scholar
  266. 266.
    Frank-Raue K, Bihl H, Dorr U, et al. Somatostatin receptor imaging in persistent medullary thyroid carcinoma. Clin Endocrinol (Ox1) 1995; 42: 31–37.CrossRefGoogle Scholar
  267. 267.
    Krausz Y, Ish-Shalom S, Dejong RB, et al. Somatostatin-receptor imaging of medullary thyroid carcinoma. Clin Nucl Med 1994; 19: 416–421.PubMedCrossRefGoogle Scholar
  268. 268.
    Waddington WA, Kettle AG, Heddle RM, et al. Intraoperative localization of recurrent medullary carcinoma of the thyroid using indium-111 pentetreotide and a nuclear surgical probe. Eur J Nucl Med 1994; 21: 463–464.Google Scholar
  269. 269.
    Matsuzuka F, Miyauchi A, Katayama S, et al. Clinical aspects of primary thyroid lymphoma: diagnosis and treatment based on our experience of 119 cases. Thyroid 1993; 3: 93–99.PubMedCrossRefGoogle Scholar
  270. 270.
    Pyke CM, Grant CS, Habermann TM, et al. Non-Hodgkin’s lymphoma of the thyroid: Is more than biopsy necessary. World J Surg 1992; 16: 604–610.PubMedCrossRefGoogle Scholar
  271. 271.
    Burman KD, Ringel MD, Wartofsky L. Unusual types of thyroid neoplasms. Endocrinol Metab Clin N Am 1996; 25: 49–68.CrossRefGoogle Scholar
  272. 272.
    Doria R, Jekel JF, Cooper DL. Thyroid lymphoma: The case for combined modality therapy. Cancer 1994; 73: 200–206.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Kenneth B. Ain

There are no affiliations available

Personalised recommendations