Advertisement

PCR-Based Methods for Mutation Detection

  • Elizabeth M. Rohlfs
  • W. Edward HighsmithJr.
Part of the Pathology and Laboratory Medicine book series (PLM)

Abstract

Since its development in 1985 the polymerase chain reaction (PCR) has revolutionized basic and applied research (1,2). With DNA or cDNA as a template, millions of copies of a target sequence are generated during the reaction. Introduction of the thermophilic Thermus aquaticus polymerase increased the specificity of the reaction and made automation and routine use possible (35). The ability of PCR to produce multiple copies of a discrete portion of the genome has resulted in its incorporation into techniques used in a wide variety of research and clinical applications. Clinical applications include diagnosis of inherited disease, HLA typing, identity testing, infectious disease diagnosis, and management, hematologic disease diagnosis and staging and susceptibility testing for cancer.

Keywords

Polymerase Chain Reaction Product Duchenne Muscular Dystrophy Multiplex Polymerase Chain Reaction Adenomatous Polyposis Coli Gene Dystrophin Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Saiki, R. K., Scharf, S., Faloona, F., Mullis, K. B., Horn, G. T., Erlich, H. A., and Arnheim, N. Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354, 1985.PubMedCrossRefGoogle Scholar
  2. 2.
    Mullis, K. B. and Faloona, F. A. Specific synthesis of DNA in vitro via a polymerasecatalyzed chain reaction. Methods Enzymol. 155:335–350, 1987.PubMedCrossRefGoogle Scholar
  3. 3.
    Brock, T. D. and Freeze, H. Thermus aquaticus gen. n. and sp. n., a non-sporulating extreme thermophile. J. Bacteriol. 98:289–297. 1969.PubMedGoogle Scholar
  4. 4.
    Chien, A., Edgar, D. B., and Trela, J. M Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J. Bacteriol. 127:1550–1557, 1976.Google Scholar
  5. 5.
    Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, J. J., Higuchi, R., Horn, G. T., Mullis, K. B., and Erlich, H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491, 1988.PubMedCrossRefGoogle Scholar
  6. 6.
    Sambrook, J., Fritch, E. F., and Maniatis, T, eds., Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 947–957, 1989.Google Scholar
  7. 7.
    Denhardt, D. T. (1966) A membrane-filter technique for the detection of complementary DNA. Biochem. Biophys. Res. Commun. 23:641–646.PubMedCrossRefGoogle Scholar
  8. 8.
    Wahl, G. M., Stern, M., and Stark, G. R. Efficient transfer of large DNA fragments form agarose gels to diazobenzyloxymethyl-paper and rapid hybridization by using dextran sulfate. Proc. Natl. Acad. Sci. USA 76:3683–3687, 1979.PubMedCrossRefGoogle Scholar
  9. 9.
    Bolton, E. T. and McCarthy, B. J. A general method for the isolation of RNA complementary to DNA. Proc. Natl. Acad. Sci. USA 48:1390–1397, 1962.PubMedCrossRefGoogle Scholar
  10. 10.
    Casey, J. and Davidson, M. Rates of formation and thermal stabilities of RNA:DNA and DNA:DNA duplexes at high concentrations of formamide. Nucleic Acids Res. 4:1539– 1552, 1977.PubMedCrossRefGoogle Scholar
  11. 11.
    Wallace, R. B., Shaffer, J., Murphy, R. F., Bonner, J., Hirose, T., and Itakura, K. Hybridization of synthetic oligodeoxynucleotides to φ) x 174 DNA: the effect of single base pair mismatch. Nucleic Acids Res. 6:3543–3557, 1979.PubMedCrossRefGoogle Scholar
  12. 12.
    Wood, W. I., Gitschier, J., Lasky, L. A., and Lawn, R. M. (1985) Base compositionindependent hybridization in tetramethylammonium chloride: a method for oligonucleotide screening of highly complex gene libraries. Proc. Natl. Acad. Sci. USA 82: 1585–1588.PubMedCrossRefGoogle Scholar
  13. 13.
    Conner, B. J., Reyes, A. A., Morin, C., Itakura, K., Teplitz, R. L., and Wallace, R. B. (1983) Detection of sicke cell βs-globin allele by hybridization with synthetic oligonucleotides. Proc. Natl. Acad. Sci. USA 80:278–282.PubMedCrossRefGoogle Scholar
  14. 14.
    Saiki, R. K., Bugawan, T. L., Horn, G. T., Mullis, K. B., and Erlich, H. A. (1986) Analysis of enzymatically amplified β-globin and HLA-DQa DNA with allele-specific oligonucleotide probes. Nature 324:163–166.PubMedCrossRefGoogle Scholar
  15. 15.
    Kerem, B., Rommens, J. M., Buchanan, J. A., Markiewicz, D., Cox, T. K., Chakravarti, A., Buchwald, M., and Tsui, L. Identification of the cystic fibrosis gene: genetic analysis. Science 245:1073–1080, 1989.PubMedCrossRefGoogle Scholar
  16. 16.
    Farr, C. J., Saiki, R. K., Erlich, H. A., McCormick, F., and Marshall, C. J. Analysis of RAS gene mutations in acute myeloid leukemia by polymerase chain reaction and oligonucleotide probes. Proc. Natl. Acad. Sci. USA 85:1629–1633, 1988.PubMedCrossRefGoogle Scholar
  17. 17.
    Kuijpers, R. W. A. M., Simsek, S., Faber, N. M., Goldschmeding, R., van Wermerkerken, R. K. V., and von dem Borne A. E. G. K. R. Single point mutation in human glycoprotein IIIa is associated with a new platelet-specific alloantigen (Mo) involved in neonatal thrombocytopenia. Blood 81:70–76, 1993.PubMedGoogle Scholar
  18. 18.
    Vidaud, D., Emmerich, J., Alhenc-Geals, M., Yvart, J., Fiessinger, J. N., and Aiach, M. Met 358 to arg mutation of alpha1-antitrypsin assoiciated with protein C deficiency in a patient with mild bleeding tendency. J. Clin. Invest. 89:1537–1543, 1992.PubMedCrossRefGoogle Scholar
  19. 19.
    Darras, B. T., Blattner, P., Harper, J. F., Spiro, A. J., Alter, S., and Francke, U. Intragenic deletions in 21 Duchenne Muscular Dystrophy (DMD)/Becker Muscular Dystrophy (BMD) families studied with the dystrophin cDNA: location of breakpoints on HindIII and BglII exon-containing fragment maps, meiotic and mitotic origin of the mutations. Am. J. Hum. Genet. 43:620–629, 1988.PubMedGoogle Scholar
  20. 20.
    Prior, T. W., Papp, A. C., Snyder, P. J., Highsmith, W. E., Friedman, K. J., Perry, T. R., Silverman, L. M., and Mendell, J. R. Determination of carrier status in Duchenne and Becker muscular dystrophies by quantitative polymerase chain reaction and allele-specific oligonucleotides. Clin. Chem. 36:2113–2117. 1990.Google Scholar
  21. 21.
    Skogerboe, K. J., West, S. F., Murillo, M. D., and Tait, J. F. PCR dot blots: large signal differences between sense and anti-sense probes. Biotechniques 9:154–157, 1990.PubMedGoogle Scholar
  22. 22.
    Siaki, R. K., Chang, C., Levenson, C. H., Warren, T. C., Boehm, C. D., Kazazian, H. H., and Erlich, H. A. Diagnosis of sickle cell anemia and -thalassemia with enzymatically amplified DNA and nonradioactive allele-specific oligonucleotides. New Engl. J. Med. 319:537–541, 1988.CrossRefGoogle Scholar
  23. 23.
    Saiki, R. K., Walsh, P. S., Levenson, C. H., and Erlich, H. A. Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proc. Natl. Acad. Sci. USA 86:6230–6234, 1989.PubMedCrossRefGoogle Scholar
  24. 24.
    Kawasaki, E., Saiki, R., and Erlich, H. Genetic analysis using polymerase chain rectionamplified DNA immobilized oligonucleotide probes: reverse dot-blot typing. Methods Enzymol. 218:369–381, 1993.PubMedCrossRefGoogle Scholar
  25. 25.
    Chehab, F. F. and Wall, J. Detection of multiple cystic fibrosis mutations by reverse dot blot hybridization: a technology for carrier screening. Hum. Genet. 89:163–168, 1992.PubMedCrossRefGoogle Scholar
  26. 26.
    Zhang, Y., Coyne, M. Y., Will, S. G., Levenson, C. H., and Kawasaki, E. S. Single-base mutational analysis of cancer and genetic diseases using membrane bound modified oli gonucleotides. Nucleic Acids. Res. 19:3929–3933, 1991.PubMedCrossRefGoogle Scholar
  27. 27.
    Cuppens, H., Buyse, I., Baens, M., Marynen, P., and Cassiman, J. Simultaneous screening for 11 mutations in the cystic fibrosis transmembrane conductance regulator gene by multiplex amplification and reverse dot-blot. Mol. Cell. Probes. 6:33–39, 1992.PubMedCrossRefGoogle Scholar
  28. 28.
    Cai, S., Wall, J., Kan, Y. W., and Chehab, F. F. Reverse dot blot probes for the screening of β-thalassemia mutations in Asians and American blacks. Hum. Mutat. 3:59–63, 1994.PubMedCrossRefGoogle Scholar
  29. 29.
    Maggio, A., Giambona, A., Cai, S. P., Wall, J., Kan, Y. W., and Chehab, F. F. Rapid and simultaneous typing of hemoglobin S, hemoglobin C and seven Mediterranean -thalassemia mutations by covalent reverse dot-blot analysis: application to prenatal diagnosis in Sicily. Blood 81:239–242, 1993.PubMedGoogle Scholar
  30. 30.
    Hance, A. J., Gandchamp, B., Levy-Frebault, V., Lecossier, D., Rauzier, J., Bocart, D., and Gicquel, B. Detection and identification of mycobacteria by amplification of mycobacterial DNA. Mol. Microbiol. 3:843–849, 1989.PubMedCrossRefGoogle Scholar
  31. 31.
    FMC BioProducts Catalog 1995, Technical Applications, p. 70.Google Scholar
  32. 32.
    Orita, M., Suzuki, Y., Sekiya, T., and Hayashi, K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5:874–879, 1989.PubMedCrossRefGoogle Scholar
  33. 33.
    Hollstein, M., Sidransky, D., Vogelstein, B., and Harris, C. C. p53 mutations in human cancers. Science 253:49–53 1991.PubMedCrossRefGoogle Scholar
  34. 34.
    Levine, A. J., Momand, J., and Finlay, C. A. The p53 tumor suppressor gene. Nature 351:453–456, 1991.PubMedCrossRefGoogle Scholar
  35. 35.
    Sheffield, V. C., Beck, J. S., Kwitek, A. E., Sandstrom, D. W., and Stone, E. M. The sensitivity of single-strand conformational polymorphism analysis for the detection of single base substitutions Genomics 16:325–332, 1993.PubMedCrossRefGoogle Scholar
  36. 36.
    Myers, R. M., Lerman, L. S., and Maniatis, T. Saturation mutagenesis of cloned DNA fragments. Science 229:242–247, 1985.PubMedCrossRefGoogle Scholar
  37. 37.
    Lin-Goerke, J., Ye, S., and Highsmith, W. E. Effects of gel matrix on the sensitivity of SSCP analysis: A study of the effects of novel gel matrices, fragment size, GC content, and base alteration. Am. J. Hum. Genet. 55(Suppl.): A 188, 1994.Google Scholar
  38. 38.
    Ravnik-Glavac, M., Glavac, D., and Dean, M. Sensitivity of SSCP and heteroduplex method for mutation detection in the cystic fibrosis gene. Hum. Mol. Genet. 3:801–807, 1994.PubMedCrossRefGoogle Scholar
  39. 39.
    Bhattacharyya, A. and Lilley, D. M. J. The contrasting structures of mismatched DNA sequences containing looped-out bases (bulges) and multiple mismatches (bubbles). Nucleic Acids Res. 17:6821–6840, 1989.PubMedCrossRefGoogle Scholar
  40. 40.
    Keen, J., Lester, D., Inglehearn, C., Curtis, A., and Bhattacharyya, S. Improved detection of heteroduplexes on Hydrolink gels. Trends Genet. 7:5, 1991.PubMedCrossRefGoogle Scholar
  41. 41.
    Molinari, R. J., Conners, M., and Shorr, R. G. Hydrolink gels for electrophoresis, in Advances in Electrophoresis, vol. 6, Chrambach, A., Dunn, M. J., and Radola, B. J., eds., VCH, New York, pp. 44–60, 1993.Google Scholar
  42. 42.
    Rossetti, S., Corra, S., Biasi, M. O., Turco, A. E., and Pignatti, P. F. Comparison of heteroduplex and single-strand conformation analysis, followed by ethidium fluorescence visualization for the detection of mutations in four human genes. Mol. Cell. Probes 9:195–200, 1995.PubMedCrossRefGoogle Scholar
  43. 43.
    Myers, R. M., Lumelsky, N., Lerman, L. S., and Maniatis, T. Detection of single base substitutions in total genomic DNA. Nature 313:495–498, 1985.PubMedCrossRefGoogle Scholar
  44. 44.
    Lerman, L. S. and Silverstein, K. Computational simulation of DNA melting and its application to denaturing gradient gel electrophoresis. Methods Enzymol. 155:482–501, 1987.PubMedCrossRefGoogle Scholar
  45. 45.
    Abrams, E. S., Murdaugh, S. E., Lerman, L. S. Comprehensive detection of single base changes in human genomic DNA using denaturing gradient gel electrophoresis and a GC clamp Genomics 7:463–475, 1990.PubMedCrossRefGoogle Scholar
  46. 46.
    Cotton, R. G. H., Rodrigues, N. R., and Campbell, R. D. Reactivity of cytosine and thymine in single-base-pair mismatches with hydroxylamine and osmium tetoxide and its application to the study of mutations. Proc. Natl. Acad. Sci. USA 85:4397–4401, 1988.PubMedCrossRefGoogle Scholar
  47. 47.
    Grompe, M. The rapid detection of unknown mutations in nucleic acids. Nature Genet. 5:111–117.1993.PubMedCrossRefGoogle Scholar
  48. 48.
    Saleeba, J. A., Ramus, S. J., and Cotton, R. G. H. Complete mutation detection using unlabeled chemical cleavage. Hum. Mutat. 1:63–69, 1992.PubMedCrossRefGoogle Scholar
  49. 49.
    Myers, R. M., Larin, Z., and Maniatis, T. Detection of single base substitutions by ribonuclease cleavage at mismatches in RNA:DNA duplexes. Science 230:1242–1246, 1985.PubMedCrossRefGoogle Scholar
  50. 50.
    Gibbs, R. A. and Caskey, C. T. Identification and localization of mutations at the LeschNyhan locus by ribonuclease A cleavage. Science 236:303–305, 1987.PubMedCrossRefGoogle Scholar
  51. 51.
    Marini, J. C., Lewis, M.B., Wang, Q., Chen, K. J., and Orrison, B. M. Serine for glycine substitutions in type I collagen in two cases of type IV osteogenesis imperfecta (OI). J. Biol. Chem. 268:2667–2673, 1993.PubMedGoogle Scholar
  52. 52.
    Forrester, K., Almoguera, C., Han, K., Grizzle, W. E., and Perucho, M. Detection of high incidence ofK-ras oncogenes during human colon tumorigenesis. Nature 327:298–303, 1987.PubMedCrossRefGoogle Scholar
  53. 53.
    Murthy, K. K., Shen, S.-H., and Banville, D. A sensitive method for detection of mutations-A PCR-based RNase Protection assay. DNA Cell Biol. 14:87–94, 1995.PubMedCrossRefGoogle Scholar
  54. 54.
    Goldrick, M. M., Kimball, G. R., Martin, L. A., Tseng, J. Y.-H., Sommers, S. S. and Lee, Q. NIRCA: a rapid robust method for screening for unknown point mutations. Biotechniques 21:106–112, 1996.PubMedGoogle Scholar
  55. 55.
    Kogan, S. C., Doherty, M., and Gitschier, J. An improved method for prenatal diagnosis of genetic diseases by analysis of amplified DNA sequences. New Engl. J. Med. 317:985– 990, 1987.PubMedCrossRefGoogle Scholar
  56. 56.
    Feldman, G. L., Williamson, R., Beaudet, A. L., and O’Brien, W. E. Prenatal diagnosis of cystic fibrosis by DNA amplification for detection of KM-19 polymorphism. Lancet ii:102, 1988.Google Scholar
  57. 57.
    Yuan, R. Structure and mechanism of multifunctional restriction endonucleases. Ann. Rev. Biochem. 50:285–315, 1981.PubMedCrossRefGoogle Scholar
  58. 58.
    Highsmith, W. E., Burch, L. H., Zhou, Z., Olsen, J. C., Strong, T. V., Smith, T., Friedman, K. J., Silverman, L. M., Boucher, R. C., Collins, F. S., and Knowles, M. R. Identification of a splice site mutation (2789 + 5G > A) associated with small amounts of normal cystic fibrosis transmembrane conductance regulator mRNA and mild cystic fibrosis. Hum. Mutat. 1996, in press.Google Scholar
  59. 59.
    Vohl, M., Couture, P., Moorjani, S., Torres, A. L., Gagne, C., Despres, J., Lupien, P., Labrie, F., and Simard, J. Rapid restriction fragment analysis for screening four point mutations of the the low-density lipoprotein receptor gene in French Canadians. Hum. Mutat. 6:243–246, 1995.PubMedCrossRefGoogle Scholar
  60. 60.
    Rootwelt, H., Berger, R., Gray, G., Kelly, D. A., Coskun, T., and Kvittingen, E. A. Novel splice, missense, and nonsense mutations in the fumarylacetoacetase gene causing tyrosinemia type I. Am. J. Hum. Genet. 55:653–658, 1994.PubMedGoogle Scholar
  61. 61.
    Cutting, G. R., Kasch, L. M., Rosenstein, B. J., Zielenski, J., Tsui, L., Antonarkis, S. E., and Kazazian, H. H. A cluster of cystic fibrosis mutations in the first nucleotide-binding fold of the cystic fibrosis conductance regulator protein. Nature 346:366–369, 1990.PubMedCrossRefGoogle Scholar
  62. 62.
    Hixson, J. E. and Vernier, D. T. Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI. J. Lipid Res. 31:545–548, 1990.Google Scholar
  63. 63.
    Eiken, H. G., Odland, E., Boman, H., Skjelkvale, L., Engebretsen, L. F., and Apold, J. Application of natural and amplification created restriction sites for the diagnosis of PKU mutations. Nucleic Acids Res. 19:1427–1430, 1991.PubMedCrossRefGoogle Scholar
  64. 64.
    Haliassos, A., Chomel, J. C., Tesson, L., Baudis, M., Kruh, J., Kaplan, J. C., and Kitzis, A. Modification of enzymatically amplified DNA for the destruction of point mutations. Nucleic Acids Res. 17:3606, 1989.PubMedCrossRefGoogle Scholar
  65. 65.
    Friedman, K. J., Highsmith, W. E., and Silverman, L. M. Detecting multiple cystic fibrosis mutations by polymerase chain reaction-mediated site-directed mutagenesis. Clin. Chem. 37:753–755, 1991.PubMedGoogle Scholar
  66. 66.
    Gasparini, P., Bonizzato, A., Dognini, M., and Pignatti, P. F. Restriction site generating polymerase chain reaction (RG-PCR) for the probeless detection of hidden genetic variation: application to the study of some common cystic fibrosis mutations. Mol. Cell. Probes 6:1–7, 1992.PubMedCrossRefGoogle Scholar
  67. 67.
    Lindeman, R., Hu, S. P., Volpato, F., and Trent, R. J. Polymerase chain reaction (PCR) mutagenesis enabling rapid non-radioactive detection of common β-thalassaemia mutations in Mediterraneans. Br. J. Haematol. 78:100–104, 1991.PubMedCrossRefGoogle Scholar
  68. 68.
    Wu, D. Y.. Ugozzoli, L., Pal, B. K., and Wallace, R. B. Allele-specific enzymatic amplification of β-globin gneomic DNA for diagnosis of sickle cell anemia. Proc. Natl. cad. Sci. USA 86:2757–2760, 1989.CrossRefGoogle Scholar
  69. 69.
    Newton, C. R., Graham, A., Heptinstall, L. E., Powell, S. J., Summers, C., Kalsheker, N., Smith, J. C., and Markham, A. F. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res. 17:2503–2516, 1989.PubMedCrossRefGoogle Scholar
  70. 70.
    Sarkar, G., Cassady, J., Bottema, C. D. K., and Sommer, S. S. Characterization of polymerase chain reaction amplification of specific alleles. Anal. Biochem. 186:64 68, 1990.Google Scholar
  71. 71.
    Sommer, S. S., Groszbach, A. R., and Bottema, C. D. K. PCR amplification of specific alleles (PASA) is a general method for rapidly detecting known single-base changes. Biotechniques 12:82–87, 1992.PubMedGoogle Scholar
  72. 72.
    Bottema, C. D. K. and Sommer, S. S. PCR amplification of specific alleles: rapid detection of known mutations and polymorphisms. Mutat. Res. 288:93–102, 1993.PubMedCrossRefGoogle Scholar
  73. 73.
    Dutton, C. and Sommer, S. S. Simultaneous detection of multiple single-base alleles at a polymorphic site. Biotechniques 11:700–702, 1991.PubMedGoogle Scholar
  74. 74.
    Friedman, K. J., Heim, R. A., Knowles, M. R., and Silverman, L. M. Rapid characterization of the CFTR intron 8 polythymidine tract: association with variant phenotypes. Hum. Mutat. 1996, in press.Google Scholar
  75. 75.
    Wilson, R. C., Wei, J., Cheng, K. C., Mercado, A. B., and New, M. I. Rapid deoxyribonucleic acid analysis by allele-specific polymerase chain reaction for detection of mutations in the steroid 21-hydroxylase gene. J. Clin. Endocrinol. Metab. 80:1635–1640, 1995.PubMedCrossRefGoogle Scholar
  76. 76.
    Skogen, B., Bellissimo, D. B., Hessner, M. J., Santoso, M. J., Aster, R. H., Newman, P. J., and McFarland, J. G. Rapid determination of platelet alloantigen genotypes by polymerase chain reaction using allele-specific primers. Transfusion 34:955–960, 1994.PubMedCrossRefGoogle Scholar
  77. 77.
    Gibbs, R. A., Nguyen, P., and Caskey, C. T. Detection of single DNA base differences by competitive oligonucleotide priming. Nucleic Acids Res. 17:2437–2448, 1989.PubMedCrossRefGoogle Scholar
  78. 78.
    Athanassiadou, A., Papachatzopoulou, A., and Gibbs, R. A. Detection and genetic analysis of β-thalassemia mutations by competitive oligopriming. Hum. Mutat. 6:30–35, 1995.PubMedCrossRefGoogle Scholar
  79. 79.
    Chehab, F. F. and Kan, Y. W. Detection of specific DNA sequences by fluorescence amplification: a color complementation assay. Proc. Natl. Acad. Sci. USA. 86:9178–9182, 1989.PubMedCrossRefGoogle Scholar
  80. 80.
    Chamberlain, J. S., Gibbs, R. A., Ranier, J. E., Nguyen, P. N., and Caskey, C. T. Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Res. 16:11,141–11,156, 1988.Google Scholar
  81. 81.
    Shuber, A. P., Skoletsky, J., Stern, R. and Handelin, B. L. Efficient 12-mutation testing in the CFTR gene: a general model for complex mutation analysis. Hum. Mol. Genet. 2:153–158, 1993.PubMedCrossRefGoogle Scholar
  82. 82.
    Axton, R. A. and Brock, D. J. H. A single-tube multiplex system for the simultaneous detection of 10 common cystic fibrosis mutations. Hum. Mutat. 5:260–262, 1995.PubMedCrossRefGoogle Scholar
  83. 83.
    Gibbs, R. A., Nguyen, P.-H., Edwards, A., Civtello, A. B., and Caskey, C. T. Multiplex DNA deletion detection and exon sequencing of the hypoxanthine phosphoribosyltransferase gene in Lesch-Nyan families. Genomics 7:235–244, 1990.PubMedCrossRefGoogle Scholar
  84. 84.
    Berg, C., Hedrum, A., Holmberg, A., Ponten, F., Uhlen, M., and Lundeberg, J. Direct solid-phase sequence analysis of the human p53 gene by use of multiplex polymerase chain reaction and a-thiotriphosphate nucleotides. Clin. Chem. 41:1461–1466, 1995.PubMedGoogle Scholar
  85. 85.
    Cama, A., Palmirotta, R., Curia, M. C., Esposito, D. L., Ranieri, A., Ficari, F., Valanzano, R., Battista, P., Modesti, A., Tonelli, F., and Mariani-Costantini, R. Multiplex PCR analysis and genotype-phenotype correlations of frequent APC mutations. Hum. Mutat. 5:144– 152, 1995.PubMedCrossRefGoogle Scholar
  86. 86.
    Chamberlian, J. S., Gibbs, R. A., Ranier, J. E., and Caskey, C. T. Multiplex PCR for the diagnosis of Duchenne muscular dystrophy, in PCR Protocols: A Guide to Methods and Applications, Innis, M. A., Gelfand, D. H., Sinsky, J. J., and White, T. J., eds., Academic, New York, pp. 272–281, 1990.Google Scholar
  87. 87.
    Beggs, A. H., Koenig, M., Boyce, F. M., and Kunkel, L. M. Detection of 98% of DMD/ BMD gene deletions by polymerase chain reaction. Hum. Genet. 86:45–48, 1990.PubMedCrossRefGoogle Scholar
  88. 88.
    Edwards, M. C. and Gibbs, R. A. Multiplex PCR: advantages, development, and applications. PCR Methods Appl. 3:S65–S75, 1994.CrossRefGoogle Scholar
  89. 89.
    Runnebaum, I. B., Nagarajan, M., Bowman, M., Soto, D., and Sukumar, S. Mutations in p53 as potential molecular markers for human breast cancer. Proc. Natl. Acad. Sci. USA 88:10,657–10,661, 1991.PubMedCrossRefGoogle Scholar
  90. 90.
    Roest, P. A. M., Roberts, R. G., Sugino, S., van Ommen, G. B., and den Dunnen, J. T. Protein trunction test (PTT) for rapid detection of translation-terminating mutations. Hum. Mol. Genet. 2:1719–1721, 1993.PubMedCrossRefGoogle Scholar
  91. 91.
    Powell, S. M., Petersen, G. M., Krush, A. J., Booker, S. , Jen, J., Giardiello, F. M., Hamilton, S. R., Vogelstein, B., and Kinzler, K. W. Molecular diagnosis of familial adenomatous polyposis. New Engl. J. Med. 329:1982–1987, 1993.PubMedCrossRefGoogle Scholar
  92. 92.
    Sarkar, G. and Sommer, S. S. Access to a messenger RNA sequence or its protein product is not limited by tissue or species specificity. Science 244:331–334, 1989.PubMedCrossRefGoogle Scholar
  93. 93.
    Miyoshi, Y., Nagase, H., Ando, H., Horji, A., Ichii, S., Nakatsuru, S., Aoki, T., Miki, Y., Takesada, M., and Nakamura, Y. Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum. Mol. Genet. 1:229–233, 1992.PubMedCrossRefGoogle Scholar
  94. 94.
    van der Luijt, R., Khan, P. M., Vasen, H., van Leeuwen, C., Tops, C., Roest, P., den Dunnen, J., and Fodde, R. Rapid detection of translation-terminating mutations at the adenomatous polyposis coli (APC) gene by direct protein truncation test. Genomics 20:1–4, 1994.PubMedCrossRefGoogle Scholar
  95. 95.
    Roest, P. A. M., Roberts, R. G., van der Tuijn, A. C., Heikoop, J. C., van Ommen, G. B., and den Dunnen, J. T. Protein truncation test (PTT) to rapidly screen the DMD gene for translation terminating mutations. Neuromusc. Disord. 3:391–394, 1993.PubMedCrossRefGoogle Scholar
  96. 96.
    Gardner, R. J., Bobrow, M., and Roberts, R. G. The identification of point mutations in Duchenne muscular dystrophy patients by using reverse-transcription PCR and the protein truncation test. Am. J. Hum. Genet. 57:311–320, 1995.PubMedGoogle Scholar
  97. 97.
    Heim, R. A., Kam-Morgan, L. N. W., Binnie, C. G., Corns, D. D., Cayouette, M. C., Farber, R. A., Aylsworth, A. S., Silverman, L. M., and Luce, M. C. Distribution of 13 truncating mutations in the neurofibromatosis 1 gene. Hum. Mol. Genet. 4:975–981, 1995.PubMedCrossRefGoogle Scholar
  98. 98.
    Hogervorst, F. B. L., Cornelis, R. S., Bout, M., van Vliet, M., Oosterwijk, J. C., Olmer, R., Bakker, B., Klijm, J. G. M., Vasen, H. F. A., Meijers-Heijboer, H., Menko, F. H., Cornelisse, C. J., den Dunnen, J. T., Devilee, P., and van Ommen, G. B. Rapid detection of BRC1 mutations by the protein truncation test. Nature Genet. 10:208–212, 1995.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Elizabeth M. Rohlfs
  • W. Edward HighsmithJr.

There are no affiliations available

Personalised recommendations