Molecular Techniques in Laboratory Diagnosis of Infectious Diseases

  • Jaber Aslanzadeh
Part of the Pathology and Laboratory Medicine book series (PLM)


Accurate and timely diagnosis of infectious diseases is essential for proper medical management of patients. The prompt detection of the microbial pathogen also enables care providers to institute adequate measures to interrupt transmission to the susceptible population in the hospital or community. In the past, diagnoses of infectious diseases has usually been dependent on isolation of the infective agent by culture technique. Although this approach seemed adequate to identify the majority of common infections, the approach was not reliable for detection of organisms that were difficult or failed to grow in vitro or had a long incubation time. In fact, in many cases, the patient would recover long before the laboratory results became available. Because of these problems, there has been great demand for alternative techniques that would allow direct detection of infectious agents in clinical samples. Rapid antigen detection tests, such as latex agglutination, enzyme immunoassay (EIA), and direct and indirect fluorescent antibody tests, were developed and, although generally reliable, have a number of limitations. These include limited sensitivity when organisms are not prevalent or do not shed large amounts of antigen into infected tissue and necessity for antigen to react rapidly with the test antibody (1). For these reasons there has been an interest and demand for newer methods for diagnosis of infectious diseases pathogens.


Human Immunodeficiency Virus Lyme Disease Chlamydia Trachomatis Mycoplasma Pneumoniae Latex Agglutination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yolken, R. H. Enzyme immunoassay for detection of infectious diseases antigens in body fluids: current limitation and future prospects. Rev. Infect. Dis. 4:35, 1992.CrossRefGoogle Scholar
  2. 2.
    Goto, M., Oka, S., Okuzumi, K., Kimura, S., and Shimada, K. Evaluation of acridiniumester-labeled DNA probes for identification of Mycobacterium tuberculosis and Mycobacterium avium-Mycobacterium intracellulare complex in culture. J. Clin. Microbiol. 29:2473–2476, 1991.PubMedGoogle Scholar
  3. 3.
    Stockman, L., Clark, K. A., Hunt, J. M., and Roberts, G. D. Evaluation of commercially available acridinium ester-labeled chemiluminescent DNA probes for culture identifiication of Blastomyces dermatitidis, Coccidioides immitis, Cryptococcus neoformans, and Histoplasma capsulatum. J. Clin. Microbiol. 31:845–850, 1993.PubMedGoogle Scholar
  4. 4.
    Kluytmans, J. A. J., Niesters, H. G.M., Mouton, J. W., Quint, W. G. V., Ijpelaar, J. A. J., Van Rijsoort-Vos, J. H., et al. Performance of a nonisotopic DNA probe for detection of Chlamydia trachomatis in urogenital specimens. J. Clin. Microbiol. 29:2685–2689, 1991.PubMedGoogle Scholar
  5. 5.
    Chapin-Robertson, K. C., Reece, E. A., and Edberg, S. C. Evaluation of the Gen Probe PACE II assay for the direct detection of Neisseria gonorrhoeae endocervical specimens. Diagn. Microbiol. Infect. Dis. 15:212,213, 1992.Google Scholar
  6. 6.
    Lewis, J. S., Kranig-Brown, D., and Trainor, D. DNA probe confirmatory test for Neisseria gonorrhoae. J. Clin. Microbiol. 28:2349–2350, 1990.Google Scholar
  7. 7.
    Briselden, A. M. and Hillier, S. L. Evaluation of affirm VP microbial identification test for Gardnerella vaginalis and Trichomonas vaginalis. J. Clin. Microbiol. 32:148–152, 1994.PubMedGoogle Scholar
  8. 8.
    Steed, L. L., Korgenski, E. K., and Daly, J. A. Rapid detection of Streptococcus pyogenes in pediatric patient specimens by DNA probe. J. Clin. Microbiol. 31:2996– 3000, 1993.Google Scholar
  9. 9.
    Doebbeling, B. N., Bale, M. J., Koontz, F. P., Helms, C. M., Wenzel, R. P., and Pfaller, M. A. Prospective evaluation of the Gen Probe assay for detection of Legionellae in respiratory specimens. Eur. J. Clin. Microbiol. Infect. Dis. 7:748–752, 1988.Google Scholar
  10. 10.
    Tenover, F. C., Carlson, L., Barbagallo, S., and Nachamkin, I. DNA probe culture confirmation assay for identification of thermophilic Campylobacter species. J. Clin. Micrbiol. 28:1284–1287, 1990.Google Scholar
  11. 11.
    Daly, J. A., Clifton, N. L., Seskin, K. C., and Gooch, WM., III Use of rapid, nonradioactive DNA probes in culture confirmation tests to detect Streptococcus agalactiae, Haemophilus influenzae, and Enterococcus spp. from pediatric patients with significant infections. J. Clin. Microbiol. 29:80–82, 1991.PubMedGoogle Scholar
  12. 12.
    Youmans, G. R., Davis, T. E., and Fuller, D. D. Use of chemiluminescent DNA probes in the rapid detection of oxacillin resistance in clinically isolated strains of Staphylococcus aureus . Diagn. Microbiol. Infect. Dis. 16:99–104, 1993.Google Scholar
  13. 13.
    Drake, T. A., Hindler, J. A., Berlin, O. G. W., and Bruckner, D. Rapid identification of Mycobacterium avium complex in culture using DNA probers. J. Clin. Microbiol. 25:1442–1445, 1987.Google Scholar
  14. 14.
    Tortoli, E., Simonetti, M. T., Lacchini, C., Penati, V., Piersimoni, C., and Morbiducci, V. Evaluation of a commercial DNA probe assay for the identification of Mycobacterium kansasii Eur. J. Clin. Microbial. Infect. Dis. 13:264–267, 1994.CrossRefGoogle Scholar
  15. 15.
    Walton, D. T. and Valesco, M. Identification of Mycobacterium gordonae from culture by the Gen Probe rapid diagnostic system: evaluation of 218 isolates and potential sources of false-negative results. J. Clin. Microbiol. 29:1850–1854, 1991.PubMedGoogle Scholar
  16. 16.
    Denys, G. A. and Carey, R. B. Identification of Streptococcus pneumoniae with a DNA probe. J. Clin. Microbiol. 30:2725–2727, 1992.Google Scholar
  17. 17.
    Okwumabua, O., Swaminathan, B., Edmonds, P., Wenger, J., Hogan, J., and Alden, M. Evaluation of a chemiluminescent DNA probe assay for the rapid confiirmation of Listeria monocytogenes. Res. Microbiol. 143:183–189,1992.PubMedCrossRefGoogle Scholar
  18. 18.
    Delvenne, P., Fontaine, M. A., Delvenne, C., Nikkels, A., and Boniver, J. Detection of human papillomavirus in paraffin-embedded biopsies of cervical intraepithelial lesions: analysis by immunohistochemistry, in situ hybridization, and the polymerase chain reaction. Mod. Pathol. 7:113–119, 1994.PubMedGoogle Scholar
  19. 19.
    Briselden, A. M. and Hillier, S. L. Evaluation of the affirm VP microbial identification test for Gardnerella vaginalis and Trichomonas vaginalis. J. Clin. Microbiol. 32:148–152, 1994.PubMedGoogle Scholar
  20. 20.
    Urdea, M. S. synthesis and characterization of branched DNA (bDNA) for the direct and quantitative detection of CMV., HBV., HCV and HIV. Clin. Chem. 39:725,726, 1993.Google Scholar
  21. 21.
    Lau, J. Y., Davis, G. L., Kniffen, J., Qian, K. P., Urdea, M. S., Chan, C. S., Mizokami, M., Neuwald, P. D., and Wilber, J. C. Significance of serum hepatitis C virus RNA levels in chronic hepatitis C. Lancet 341:1501–1504, 1993.PubMedCrossRefGoogle Scholar
  22. 22.
    Persing, D. H. In vitro nucleic acid amplification techniques, in Diagnostic Molecular Microbiology Principles and Applications, Persing, D. H., Smith, T. F., Tenover, F. C., and White, T. J., eds., American Society of Microbiology, Washington, DC, pp. 51–87, 1994.Google Scholar
  23. 23.
    Longo, M. C., Berninger, M. S., and Hartley, J. L. Use of uracil DNA glycosylase of control carry-over contamination in polymerase chain reaction. Gene 93:25–128, 1990.CrossRefGoogle Scholar
  24. 24.
    Isaacs, S. T., Tessman, J. W., Metchette, K. C., Hersat, J. E., and Cimino, G. D. Post-PCR sterilization: development and application to an HIV-1 diagnostic assay. Nucleic Acid Res. 19:109–116, 1991.PubMedCrossRefGoogle Scholar
  25. 25.
    Aslanzadeh, J. Application of hydroxylamine hydrocholoride for post-PCR sterilization. Mol. Cell. Probes 7:145–150,1993.Google Scholar
  26. 26.
    Zuravleff, J. J., Yu, V. L., Shonnard, J. W., Davis, B. K., and Rihs, J. D. Diagnosis of Legionnaires’ disease. An update of laboratory methods with new emphasis on isolation by culture. JAMA 250:1981–1985, 1983.PubMedCrossRefGoogle Scholar
  27. 27.
    Tenover, F. C., Edelstein, P. H., Goldstein, L. C., Sturge, J. C., and Plorde, J. J. Comparison of cross-staining reactions by Pseudomonas spp. and fluorescein-labeled polycolonal antibodies directed against Legionella pneumophila. J. Clin. Microbiol. 23:647–649, 1986.PubMedGoogle Scholar
  28. 28.
    Jaulhac, B., Nowicki, M., Bornstein, N., Meunier, O., Prevost, G., Piemont, Y., Fleurette, J., and Monteil, H. Detection of Legionella spp. in bronchoalveolar lavage fluid by DNA amplification. J. Clin. Microbiol. 30:920–924, 1992.Google Scholar
  29. 29.
    Kessler, H. H., Reinthaler, F. F., Pschaid, A., Pierer, K., Kleinhappl, B., Eber, E., and Marth, E. Rapid detection of Legionella species in bronchoalveolar lavage fluid with EnviroAmp Legionella PCR amplification and detection kit. J. Clin. Microbiol. 31:3325–3328, 1993.PubMedGoogle Scholar
  30. 30.
    Lindsay, D. S., Abraham, W. H., and Fallon, R. J. Detection of mip gene by PCR for diagnosis of Legionnaires’ disease. J. Clin. Microbiol. 32:3068,3069, 1994.Google Scholar
  31. 31.
    Jonas, D., Rosenbaum, A., Weyrich, S., and Bhakdi, S. Enzyme- linked immunoassay for detection of PCR amplified DNA of legionella in bronchoalveolar fluid. J. Clin. Microbiol. 33:1247–1252, 1995.Google Scholar
  32. 32.
    Gaydos, C. A., Quinn, T. C., and Eiden, J. J. Identification of Chlamydia pneumoniae by DNA amplification of the 16S rRNA gene. J. Clin. Microbiol. 30:796–800, 1992.Google Scholar
  33. 33.
    Campbell, L. E., Melagosa, M. P., Hamilton, D. J., Kuo, C.-C., and Graystone, J. T. Detection of Chlamydia pneumoniae by polymerase chain reaction. J. Clin. Microbiol. 30:434–439. 1992.Google Scholar
  34. 34.
    Rasmussen, S. J., Douglas, F. P., and Timms, P. PCR detection and differentiation of Chlamydia pneumoniae, Chlamydia psittaci, and Chlamydia trachomatis. Mol. Cell. Probes 6:389–394, 1992.PubMedCrossRefGoogle Scholar
  35. 35.
    Black, C. M., Fields, P. I., Messer, T. O., and Berdal, B. P. Detection of Chlamydia pneumoniae in clinical specimens by polymerase chain reaction using nested primers. Eur. J. Clin. Microbiol. Infect. Dis. 13:752–756, 1994.Google Scholar
  36. 36.
    Gaydos, C. A., Eiden, J. J., Oldach, D., Mundy, L. M., Auwaerter, P., Warner, M. L., Vance, E., Burton, A. A., and Quinn, T. C. diagnosis of Chlamydia pneumoniae infection in patients with community acquired pneumonia by polymerase chain reaction enzyme immunoassay. Clin. Infect. Dis. 19:157–160, 1993.Google Scholar
  37. 37.
    Pruckl, P. M., Aspock, C., Makristathis, A., Rotter, M. L., Wank, H., Willinger, B., and Hirschl, A. M. Polymerase chain reaction for detection of Chlamydia pneumoniae in gargled-water specimens of children. Eur. J. Clin. Microbiol. Infect. Dis. 14:141–144, 1995.Google Scholar
  38. 38.
    Garret, M. and Bonnet, J. PCR detection of Mycoplasma pneumoniae, in Diagnostic Molecular Microbiology Principles and Applications, Persing, D. H., Smith, T. F., Tenover, F. C., and White, T. J, eds. American Society of Microbiology, Washington, DC, pp. 253–260, 1993.Google Scholar
  39. 39.
    vanKuppeveld, F. J., Johansson, K.-E., Galama, J. M., Kissing, J., Bolske, G., Hjelm, E., van der Logt, J. T., and Melchers, W. J. 16S rRNA based polymerase chain reaction compared with culture and serological methods for diagnosis of Mycoplasma pneumoniae infection. Eur. J. Clin. Microbiol. Infect. Dis. 13:401–405, 1994.CrossRefGoogle Scholar
  40. 40.
    Tjhie, J. H., vanKuppeveld, F. J., Roosendaal, R., Melchers, W. J. G., Gordijn, R., MacLaren, D. M., Walboomers, J. M. M., Meijer, C. J. L. M., and Van Den Brule, A. J. C. Direct PCR enables detection of Mycoplasma pneumoniae in patients with respiratory tract infections. J. Clin. Microbiol. 32:11–16, 1994.Google Scholar
  41. 41.
    Leng, Z., Kenny, G. E., and Roberts, M. C. Evaluation of the detection limits of PCR identification of Mycoplasma pneumoniae in clinical samples. Mol. Cell. Probes 8:125– 130, 1994.Google Scholar
  42. 42.
    Luneberg, E., Jensen, J. S., and Frosch, M. Detection of Mycoplasma pneumoniae by polymerase chain reaction and nonradioactive hybridization in microtiter plates. J. Clin. Microbiol. 31:1088–1094, 1993.PubMedGoogle Scholar
  43. 43.
    Hance, A. J., Grandchamp, B., Levy-Frebault, V., et al. Detection of and identification of mycobacteria by amplification of mycobacterial DNA. Mol. Microbiol. 3:843–849, 1989.PubMedCrossRefGoogle Scholar
  44. 44.
    Cousins, D. V., Wilton, S. D., Francis, B. R., and Gow, B. L. Use of polymerase chain reaction for rapid diagnosis of tuberculosis. J. Clin. Microbiol. 30:255–258, 1992.Google Scholar
  45. 45.
    Anderson, A. B., Thybo, S., Godfery-Faussett, P., and Stoker, N. G. Polymerase chain reaction for detection of Mycobacterium tuberculosis in sputum. Eur. J. Clin. Microbiol. Infect. Dis. 12:922–927, 1993.CrossRefGoogle Scholar
  46. 46.
    Buxton, Q. A. D., Hendricks, A., Robinson, L., Shah, J., Lu, L., Vera-Garcia, M., King, W., and Olive, D. M. Comparison of amplified Q beta replicase and PCR assays for detection of Mycobacterium tuberculosis. J. Clin. Microbiol. 33:860–867, 1995.PubMedGoogle Scholar
  47. 47.
    Whitely, R., Arvin, A., Prober, C., Burchett, S., Corey, L., Powell, D., Plotkin, S., Starr, S., Alford, C., Conner, J., Jacobs, R., Nahmias, A., and Soong, S. A controlled trial comparing vidarabine with acyclovir in neonatal herpes simplex virus infection. New Engl. J. Med. 324:444–449, 1991.Google Scholar
  48. 48.
    Elitsur, Y., Carmi, R., and Sarov, I. HSV-specifiic serum/CSF antibody ratio in association with HSV serum IgM antibodies in diagnosis of herpes encephalitis in infants. Isr. J. Med. Sci. 19:943–945, 1983.Google Scholar
  49. 49.
    Aslanzadeh, J., Osmon, D. R., Wilhelm, M. P., Espy, M. J., and Smith, T. F. A prospective study of the polymerase chain reaction for detection of herpes simplex virus in cerebrospinal fluid submitted to the clinical virology laboratory. Mol. Cell. Probes 6:367–373, 1992.CrossRefGoogle Scholar
  50. 50.
    Lakeman, F. D. and Whitley, R. J. Diagnosis of herpes simplex encephalitis: application of polymerase chain reaction to cerebrospinal fluid from brain-biopsied patients and correlation with disease. J. Infect. Dis. 171:857–863, 1995.PubMedCrossRefGoogle Scholar
  51. 51.
    Centers for Disease Control. Lyme disease United States, 1987 and 1988 Morbid. Mortal. Wkly. Rept. 38:668–672, 1989.Google Scholar
  52. 52.
    Persing, D. H., Telford, S. R., Rys, P. N., Dodge, D. E., White, T. J., Malawista, S. E., and Spielman, A. Detection of Borrelia burgdorferi DNA in museum specimens of Ixodes dammini ticks. Science 249:1420–1423, 1990.PubMedCrossRefGoogle Scholar
  53. 53.
    Kruger, W. H. and Pulz, M. Detection of Borrelia burgdorferi in cerebrospinal fluid by the polymerase chain reaction. J. Med. Microbiol. 35:98–102, 1991.CrossRefGoogle Scholar
  54. 54.
    Clarke, L. M., Sierra, M. F., Lopez, D. N., Covino J. M., and McCormack, W. M. Comparison of the Syva Micro Track enzyme immunoassay and Gen-Probe PACE 2 with cell culture for diagnosis of cervical Chlamydia trachomatis infection in a high-prevalence female population. J. Clin. Microbiol. 31:968–971, 1993.PubMedGoogle Scholar
  55. 55.
    Loeffelholz, M. J., Lewinski, C. A., Silver, S. R., Purohit, A. P., Herman, S. A., Buonagurio, D. A., and Dragon, E. A. Detection of Chlamydia trachomatis in endocervical specimens by polymerase chain reaction. J. Clin. Microbiol. 30:2847–2851, 1992.Google Scholar
  56. 56.
    Schachter, J. and Stamm, W. E. Chlamydia, in Manual of Clinical Microbiology, Murry, P. R., Baron, E. J., Pfaller, M. A., Tenover, F. C., and Yolken, R. H., ed., American Society of Microbiology, Washington, DC, 1995.Google Scholar
  57. 57.
    Riggin, C. H. HIV-1 testing by latex agglutination. Clin. Microbiol. News Lett. 12:35–38, 1990.CrossRefGoogle Scholar
  58. 58.
    McDoneel, K. B., Chimel, J. S., Poggensee, L., Wu, S., and Phair, J. P. Predicting progression to AIDS: combined usefulness of CD4 lymphocyte counts and p24 antigenimia. Am. J. Med. 89:706–712, 1990.CrossRefGoogle Scholar
  59. 59.
    Mallet, F., Herbard, C., Brand, D., Chapuis, E., Cros, P., Allibert, P., Besnier, J. M., Barin, F., and Mandrand, B. Enzyme-linked oligosorbant assay for detection of polymerase chain reaction-amplified human immunodeficiency virus type 1. J. Clin. Microbiol. 31:1444–1449, 1993.Google Scholar
  60. 60.
    He, Y., Coutlee, F., Saint-Antoine, P., Olivier, C., Voyer, H., and Kessous-Elbaz, A. Detection of polymerase chain reaction-amplified human immunodeficiency virus typel DNA with a digoxigenin-labeled RNA probe and an enzyme linked immunoassay. J. Clin. Microbiol. 31:1040–1047, 1993.PubMedGoogle Scholar
  61. 61.
    Arens, M. Use of probes and amplifiication techniques for the diagnosis of human immunodeficiency virus (HIV-1) infections. Diag. Microbiol. Infect. Dis. 16:165–172, 1993.Google Scholar
  62. 62.
    Bush, C. E., Donovan, R. M., Peterson, W. R. et al. Detection of human immunodeficiency virus type 1 RNA in plasma samples from high-risk pediatric patients by using the self-sustained sequence replication reaction. J. Clin. Microbiol. 30:281–286, 1992.PubMedGoogle Scholar
  63. 63.
    Urdea, M. S., Wilber, J. C., and Yeghiazarian, T., et al. Direct and quantitative detection of HIV-1 RNA in human plasma with a branched DNA signal amplifiication assay. AIDS 7: S 11–S 14, 1993.Google Scholar
  64. 64.
    Yoshioka, K., Kakuma, S., Wakita, T., Ishikawa, T., Itoh, Y., and Takayanagi, M. Detection of hepatitis C virus by polymerase chain reaction and response to interferon alpha therapy: relationship to genotypes of hepatitis C virus. Hepatology 16:293–299, 1991.CrossRefGoogle Scholar
  65. 65.
    Bukh, J. et. al. Importance of primer selection for the detection of hepatitis C virus RNA with polymerase chain reaction assay. Proc. Natl. Acad. Sci. USA 89:187–191, 1992.Google Scholar
  66. 66.
    Onderdonk, A. B. and Allen, S. D. Clostridium, in Manual of Clinical Microbiology, Murry, P. R., Baron, E. J., Pfaller, M. A., Tenover, F. C., and Yolken, R. H., eds., American Society of Microbiology, Washington, DC, pp. 574–586, 1995.Google Scholar
  67. 67.
    Kato, N., Ou, C. Y., Kato, H., Bartley, S. L., Luo, C. C., Killgore, G. E., and Ueno, K. Detection of toxigenic Clostridium difficile in stool specimens by polymerase chain reaction. J. Infect. Dis. 167:455–488, 1993.CrossRefGoogle Scholar
  68. 68.
    Gumerlock, P. H., Tang, Y. J., Weiss, J. B., and Silva, J., Jr. Specific detection of toxigenic strains of Clostridium difficile in stool specimens. J. Clin. Microbiol. 31:507– 511, 1993.Google Scholar
  69. 69.
    Kuhl, S. J., Tang, Y. J., Navarro, L., Gumerlock, P. H., and Silva, J., Jr. Diagnosis and monitoring of Clostridium diffiicile infections with the polymerase chain reaction. Clin. Infect. Dis. 4:S234–S238, 1993.CrossRefGoogle Scholar
  70. 70.
    Pollard, D. R., Johnson, D. M., Lior, H., Tyler, S. D., and Rozee, K. R. Rapid and specific detection of verotoxin genes in E. coli by the polymerase chain reaction. J. Clin. Microbiol. 28:540–545, 1990.Google Scholar
  71. 71.
    Telenti, A., Imboden, P., Marchesi, F., Schmidheini, T., and Bodmer, T. Direct automated detection of rifampicin resistant Mycobacterium tuberculosis by polymerase chain reaction and single strand confirmation polymorphism analysis. Antimicrob. Agents Chemother. 37:2054–2058, 1993.PubMedCrossRefGoogle Scholar
  72. 72.
    Chambers, H. F. Methicillin-resistant staphylococci. Clin. Microbiol. Rev. 1:173–86, 1988.Google Scholar
  73. 73.
    Ubukata, K., Nakagami, S., Nitta, A., Yamane, A., Kawakami, S., Sugiura, M., and Konno, A. Rapid detection of the mecA gene in methicillin-resistant staphylococci by enzymatic detection of polymerase chain reaction products. J. Clin. Microbiol. 30:1728–1733, 1992.Google Scholar
  74. 74.
    Munoz, R., Coffey, T. J., Daniels, M., et al. Intercontinental spread of a multiresistant clone of serotype 23F Streptococcus pneumoniae. J. Infect. Dis. 164:302–306, 1991.PubMedCrossRefGoogle Scholar
  75. 75.
    Shaw, K. J., Rather, P. N., Hare, R. S., and Miller, G. H. Molecular genetics of aminoglycoside resistance genes and familial relationships of aminoglycoside-modifying enzymes. Microbiol. Rev. 57:138–163, 1993.PubMedGoogle Scholar
  76. 76.
    Honore, N. and Cole, S. The molecular basis of rifampin resistance in Mycobacterium leprae. Antimicrob. Agents Chemother. 37:414–418, 1993.PubMedCrossRefGoogle Scholar
  77. 77.
    Dutka-Malen, S., Evers, S., and Courvalin, P. Detection of glycopeptide resistance genotypes and identfication to the species level of clinically relevant enterococci by PCR. J. Clin. Microbiol. 33:24–27, 1995.PubMedGoogle Scholar
  78. 78.
    Mayer, L. W. Use of plasmid profiles in epidemiologic surveillance of disease outbreaks and in tracing the transmission of antibiotic resistance. Clin. Microbiol. Rev. 1:228–243, 1988.Google Scholar
  79. 79.
    Stull, T. L., LiPuma, J. J., and Edlind, T. D. A broad-spectrum probe for molecular epidemiology of bacteria:ribosomal RNA. J. Infect. Dis. 157:280–286, 1988.PubMedCrossRefGoogle Scholar
  80. 80.
    vanEmbden, J. D., Cave, M. D., Crawford, J. T., et al. Strain identifiication of Mycobacterium tuberculosis by DNA fingerprinting: recommendation for a standardized methodology. J. Clin. Microbiol. 31:406–409, 1993.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Jaber Aslanzadeh

There are no affiliations available

Personalised recommendations