Genetic Basis of Neurologic and Neuromuscular Diseases

  • Myra J. Wick
  • Pamela A. Crifasi
  • Zhenyuan Wang
  • Stephen N. Thibodeau
Part of the Pathology and Laboratory Medicine book series (PLM)


Traditionally, the diagnosis of neurological and neuromuscular disorders was based on patient history, clinical findings, and pedigree analysis. As the result of the Human Genome Project and advances in the fields of cytogenetics and molecular genetics, genes involved in both normal and pathologic processes have been mapped, cloned, and characterized. The types of DNA mutations that have been implicated in neurological diseases include trinucleotide repeat expansions, point mutations, insertions, deletions, and duplications. This chapter describes selected disorders that exemplify the types of mutations and molecular mechanisms involved in neurological and neuro-muscular disorders that have been identified to date.


DUCHENNE Muscular Dystrophy Spinal Muscular Atrophy Ataxia Telangiectasia Mutate Duchenne Muscular Dystrophy Trinucleotide Repeat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fu, Y. H., Kuhl, D. P. A., Pizzuti, A., Pieretti, M., Sutcliffe, J. S., Richards, S., Verkerk, A. H. M. H., Holden, J. J. A., Fenwick, R. G., Jr., Warren, S. T., Oostra, B. A., Nelson, D. L., and Caskey, C. T. Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell 67:1047–1058, 1991.PubMedCrossRefGoogle Scholar
  2. 2.
    La Spada, A. R., Wilson, E. M., Lubahn, D. B., Harding, A. E., and Fischbeck, K. H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352:77–79, 1991.PubMedCrossRefGoogle Scholar
  3. 3.
    La Spada, A. R., Paulson, H. L., and Fischbeck, K. H. Trinucleotide repeat expansion in neurological disease. Ann. Neurol. 36:814–822, 1994.PubMedCrossRefGoogle Scholar
  4. 4.
    Bates, G. and Lehrach, H. Trinucleotide repeat expansions and human genetic disease. BioEssays 16:277–284, 1994.PubMedCrossRefGoogle Scholar
  5. 5.
    Plassart, E. and Fontaine, B. Genes with triplet repeats: a new class of mutations causing neurological diseases. Biomed. Pharmacother. 48:191–197, 1994.PubMedCrossRefGoogle Scholar
  6. 6.
    Caskey, C. T., Pizzuti, A., Fu, Y. H., Fenwick, R. J., Jr., and Nelson, D. L. Triplet repeat mutations in human disease. Science 256:784–789, 1992.PubMedCrossRefGoogle Scholar
  7. 7.
    Zuhlke, C., Riess, O., Bockel, B., Lange, H., and Thies, U. Mitotic stability and meiotic variability of the (CAG)„ repeat in the Huntington disease gene. Hum. Mol. Genet. 2:2063–2067, 1993.PubMedCrossRefGoogle Scholar
  8. 8.
    Snow, K., Tester, D. J., Kruckeberg, K. E., Schaid, D. J., and Thibodeau, S. N. Sequence analysis of the fragile X trinucleotide repeat: implications for the origin of the fragile X mutation. Hum. Mol. Genet. 9:1543–1551, 1994.CrossRefGoogle Scholar
  9. 9.
    Zoghbi, H. Y. and Orr, H. T. Spinocerebellar ataxia type 1. Semin. Cell Biol. 6:29–35, 1995.PubMedCrossRefGoogle Scholar
  10. 10.
    Snow, K., Doud, L. K., Hagerman, R., Pergolizz, R. G., Erster, S. H., and Thibodeau, S. N. Analysis of a CGG sequence at the FMR-1 locus in fragile X families and in the gen-eral population. Am. J. Hum. Genet. 53:1217–1228, 1993.PubMedGoogle Scholar
  11. 11.
    La Spada, A. R., Roling, D. B., Harding, A. E., Warner, C. L., Spiegel, R., Hausmanowa-Petrusewicz, I., Yee, W.-C., and Fischbeck, K. H. Meiotic stability and genotype-pheno-type correlation of the trinucleotide repeat in X-linked spinal and bulbar muscular atrophy. Nature Genet. 2:301–304, 1992.PubMedCrossRefGoogle Scholar
  12. 12.
    Maciel, P., Gaspar, C., DeStefano, A. L., Silveira, I., Coutinho, P., Radvany, J., Dawson, D. M., Sudarsky, L., Guimaraes, J., Loureiro, J. E. L., Nezarati, M. M., Corwin, L. I., Lopes-Cendes, I., Rooke, K., Rosenberg, R., MacLeod, P., Farrer, L. A., Sequeiros, J., and Rouleau, G. A. Correlation between CAG repeat length and clinical features in Machado-Joseph disease. Am. J. Hum. Genet. 57:54–61, 1995.PubMedGoogle Scholar
  13. 13.
    Nagafuchi, S., Yanagisawa, H., Sato, K., Shirayama, T., Ohsaki, E., Bundo, M., Takeda, T., Tadokoro, K., Kondo, I., Murayama, N., Tanaka, Y., Kikushima, H., Umino, K., Kurosawa, H., Furukawa, T., Nihei, K., Inoue, T., Sano, A., Komure, O., Takahashi, M., Yoshizawa, T., Kanazawa, I., and Yamada, M. Dentatorubral and pallidoluysian atro-phy expansion of an unstable CAG trinucleotide on chromosome 12p. Nature Genet. 6:14–18, 1994.PubMedCrossRefGoogle Scholar
  14. 14.
    Tsilfidis, C., MaKenzie, A. E., Mettler, G., Barcelo, J., and Korneluk, R. G. Correlation between CTG trinucleotide repeat length and frequency of severe congenital myotonic dystrophy. Nature Genet. 1:192–195, 1992.Google Scholar
  15. 15.
    Orr, H. T., Chung, M., Banfi, S., Kwiatkowski, T. J., Jr., Servadio, A., Beaudet, A. L., McCall, A. E., Duvick, L. A., Ranum, L. P. W., and Zoghbi, H. Y. Expansion of an unstable trinucteotide CAG repeat in spinocerebellar ataxia type 1. Nature Genet. 4:221–226, 1993.PubMedCrossRefGoogle Scholar
  16. 16.
    Andrew, S. E., Goldberg, Y. P., Kremer, B., Telenius, H., Theilmann, J., Adam, S., Starr, E., Squitieri, F., Lin, B., Kalchman, M. A., Graham, R. K., and Hayden, M. R. The rela-tionship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nature Genet. 4:398–403, 1993.PubMedCrossRefGoogle Scholar
  17. 17.
    Chung, M., Ranum, L. P. W., Duvick, L. A., Servadio, A., Zoghbi, H. Y., and Orr, H. T. Evidence for a mechanism predisposing to intergenerational CAG repeat instability in spinocerebellar ataxia type 1. Nature Genet. 5:254–258, 1993.PubMedCrossRefGoogle Scholar
  18. 18.
    Duyao, M., Ambrose, C., Myers, R., Novelletto, A., Persichetti, F., Frontali, M., Folstein, S., Ross, C., Franz, M., Abbott, M., Gray, J., Conneally, P., Young, A., Penney, J., Hollingsworth, Z., Shoulson, I., Lazzarini, A., Falek, A., Koroshetz, W., Sax, D., Bird, E., Vonsattel, J., Bonilla, E., Alvir, J., Bickham Conde, J., Cha, J.-H., Dure, L., Gomez, F., Ramos, M., Sanchez-Ramos, J., Snodgrass, S., de Young, M., Wexler, N., Moscowitz, C., Penchaszadeh, G., MacFarlane, H., Anderson, M., Jenkins, B., Srinidhi, J., Barnes, G., and MacDonald, M. Trinucleotide repeat length instability and age of onset in Huntington’s disease. Nature Genet. 4:387–392, 1993.PubMedCrossRefGoogle Scholar
  19. 19.
    Reyniers, E., Vits, L., de Boulle, K., Van Roy, B., Van Velzen, D., de Graaf, E., Verkerk, A. J. M. H., Jorens, H. Z. J., Darby, J. K., Oostra, B., and Willems, P. J. The full mutation in the FMR-1 gene of male fragile X patients is absent in their sperm. Nature Genet. 4:143–146, 1993.PubMedCrossRefGoogle Scholar
  20. 20.
    Fu, Y.-H., Pizzuti, A., Fenwick, R. G., Jr., King, J., Rajnarayan, S., Dunne, P. W., Dubel, J., Nasser, G. A., Ashizawa, T., de Jong, P., Wieringa, B., Korneluk, R., Perryman, M. B., Epstein, H. F., and Caskey, C. T. An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science 255:1256–1258, 1992.PubMedCrossRefGoogle Scholar
  21. 21.
    Hoogeveen, A., Willemsen, R., Meyer, N., Rooij, K. E., Roos, R. A. C., Ommen, Get-Jan, B. V., and Galjaard, H. Characterization and localization of the Huntington disease gene product. Hum. Mol. Genet. 2:2069–2073, 1993.PubMedCrossRefGoogle Scholar
  22. 22.
    Li, X. J., Li, S. H., Sharp, A. H., Nucifora, F. C., Jr., Schilling, G., Lanahan, A., Worley, P., Snyder, S. H., and Ross, C. A. A huntington-associated protein enriched in brain with implication for pathology. Nature 378:398–402, 1995.PubMedCrossRefGoogle Scholar
  23. 23.
    La Spada, A. R., Paulson, H. L., and Fischbeck, K. H. Trinucleotide repeat expansion in neurological disease. Ann. Neurol. 6:814–822, 1994.CrossRefGoogle Scholar
  24. 24.
    Mhatre, A. N., Trifiro, M. A., Kaufman, M., Kazemi-Esfarjani, P., Figlewicz, D., Rouleau, G., and Pinsky, L. Reduced transcriptional regulatory competence of the androgen receptor in X-linked spinal and bulbar muscular atrophy. Nature Genet. 5:184–188, 1993.PubMedCrossRefGoogle Scholar
  25. 25.
    Pieretti, M., Zhang, F., Fu, Y.-H., Warren, S. T., Oostra, B. A., Caskey, C. T., and Nelson, D. L. Absence of expression of the FMR-1 gene in fragile X syndrome. Cell 66:817–822, 1991.PubMedCrossRefGoogle Scholar
  26. 26.
    Fu, Y. H., Friedman, D. L., Richards, S., Pearlman, J. A., Gibbs, R. A., Pizzuti, A., Ashizawa, T., Perryman, B., Scarlato, G., Fenwick, R. G., Jr., and Caskey, C. T. Decreased expression of myotonin-protein kinase messenger RNA and protein in adult form of myotonic dystrophy. Science 260:235–238, 1993.PubMedCrossRefGoogle Scholar
  27. 27.
    Sabouri, L. A., Mahadevan, M. S., Narang, M., Lee, D. S. C., Surh, L. C., and Korneluk, R. G. Effect of the myotonic dystrophy (DM) mutation on mRNA levels of the DM gene. Nature Genet. 4:233–238, 1993.PubMedCrossRefGoogle Scholar
  28. 28.
    Timchenko, L., Monckton, D. G., and Caskey, C. T. Myotonic dystrophy: an unstable CTG repeat in a protein kinase gene. Semin. Cell Biol. 6:13–19, 1995.PubMedCrossRefGoogle Scholar
  29. 29.
    Waren, S. T. and Nelson, D. L. Advances in molecular analysis of fragile X syndrome. JAMA 7:536–542, 1994.Google Scholar
  30. 30.
    Taylor, A. K., Safanda, J. F., Fall, M. Z., Quince, C., Lang, K. A., Hull, C. E., Carpenter, I., Staley, L. W., and Hagerman, R. J. Molecular predictors of cognitive involvement in female carriers of fragile X syndrome. JAMA 271:507–514, 1994.PubMedCrossRefGoogle Scholar
  31. 31.
    Pearn, J. Spinal muscular atrophies, in Principles and Practice ofMedical Genetics, 2nd ed., vol. 1, Emery, A. and Rimoin, A., eds., Churchill Livingston, New York, pp. 565– 578, 1990.Google Scholar
  32. 32.
    Baraitson, M. The Genetics of Neurologic Disorders, 2nd ed., Oxford University Press, pp. 248–257, 1990.Google Scholar
  33. 33.
    Davies, K. E., Thomas, N. H., Daniels, R. J., and Dubowitz, V. Molecular studies of spi-nal muscular atrophy. Neuromuscular Disord. 1:83–85, 1991.Google Scholar
  34. 34.
    Melki, J., Lefebvre, S., Burglen, L., Burlet, P., Clermont, O., Millasseau, P., Reboullet, S., Benichou, B., Zeviani, M., Le Paslier, D., Cohen, D., Weissenbach, J., and Munnich, A. De novo and inherited deletions of the 5q13 region in spinal muscular atrophies. Science 264:1474–1477, 1994.PubMedCrossRefGoogle Scholar
  35. 35.
    Lefebvre, S., Burglen„ Reboullet, S., Clermont, O., Burlet, P., Viollet, L., Benichou, B., Cruaud, C., Millasseau, P., Zeviani, M., Le Paslier, D., Frezal, J., Cohen, D., Weissenbach, J., Munnich, A., and Melki, J. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80:155–165, 1995.Google Scholar
  36. 36.
    Roy, N., Mahadevan, M. S., McLean, M., Shutler, G., Yaraghi, Z., Farahani, R., Baird, S., Besner-Johnston, A., Lefebvre, C., Kang, X., Salih, M., Aubry, H., Tamai, K., Guan, X., Ioannou, P., Crawford, T. O., de Jong, P. J., Surh, L., Ikeda, J.-E., Komeluk, R. G., and MacKenzie, A. The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell 80:167–178, 1995.PubMedCrossRefGoogle Scholar
  37. 37.
    Hahnen, E., Forkert, R., Marke, C., Rudnikschoneborn, S., Shonling, J., Zerres, K., and Wirth, B. Molecular analysis of candidate genes on chromosome 5q13 in autosomal recessive spinal muscular atrophy. Evidence of homozygous deletions of the SMN gene in unaffected individuals. Hum. Mol. Genet. 4:1927–1933, 1995.PubMedCrossRefGoogle Scholar
  38. 38.
    Rudnik-Schoneborn, S., Rohrig, D., Morgan, G., Wirth, B., and Zerres, K. Autosomal recessive proximal spinal muscular atrophy in 101 sibs out of 48 families: Clinical picture, influence of gender, and genetic implications. Am. J. Med. Genet. 51:70–76, 1994.PubMedCrossRefGoogle Scholar
  39. 39.
    Cobben, J. M., van der Steege, G., Grootscholten, P., de Visser, M., Scheffer, H., and Buys, C. H. C. M. Deletions of the survival motor neuron gene in unaffected siblings of patients with spinal muscular atrophy. Am. J. Hum. Genet. 57:805–808, 1995.PubMedGoogle Scholar
  40. 40.
    Wirth, B., Rudnik-Schoneborn, S., Hahnen, E., Rohrig, D., and Zerres, K. Prenatal predic-tion in families with autosomal recessive proximal spinal muscular atrophy (5q11.2-q13.3): molecular menetics and clinical experience in 109 cases. Prenat. Diagn. 15:407–417, 1995.PubMedCrossRefGoogle Scholar
  41. 41.
    Wang, C. H., Xu, J., Carter, T. A., Ross, B. M., Sugarman, E. A., Allitto, B. A., Penchaszadeh, G. K., Munsat, T. L., and Gilliam, T. C. Analysis of the survival motor neuron (SMN) gene in spinal muscular atrophy families. Am. Soc. Hum. Genet. 57:A253, 1995.Google Scholar
  42. 42.
    Gutman, D. H. and Collins, F. von Recklinghausen Neurofibromatosis, in The Metabolic and Molecular Bases of Inherited Disease, 7th ed., Scriver C., ed., McGraw-Hill, New York, pp. 677–692, 1995.Google Scholar
  43. 43.
    Barker, D., Wright, E., Nguyen, K., Cannon, L., Fain, P., Goldgar, D., Bishop, D. T., Carey, J., Baty, B., Kivlin, J., Willard, H., Wayne, J. S., Greig, G., Leinwand, L., Nakamura, Y., O’Connell, P., Leppert, M., Lalouel, J.-M., White, R., and Skolnick, M. Gene for von Recklinghausen neurofibromatosis is in the perimcentromeric region of chro-mosome 17. Science 236:1100–1102, 1987.PubMedCrossRefGoogle Scholar
  44. 44.
    Viskochil, D., White, R., and Cawthon, R. The neurofibromatosis type 1 gene. Ann. Rev. Neurosci. 16:183–205, 1993.PubMedCrossRefGoogle Scholar
  45. 45.
    Upadhyaya, M., Shaw, D. J., and Harper, P. S. Molecular basis of neurofibromatosis type 1 (NF1): mutation analysis and polymorphisms in the NF1 gene. Hum. Mutat. 4:83– 101, 1994.Google Scholar
  46. 46.
    Johnson, M. R., DeClue, J. E., Felzmann, S., Vass, W. C., Xu, G., White, R., and Lowy, D. R. Neurofibromin can inhibit ras-dependent growth by a mechanism independent of its GTPase-accelerating function. Mol. Cell. Biol. 14:641–645, 1994.PubMedGoogle Scholar
  47. 47.
    McCormick, F. Ras signaling and NFl. Curr. Opinion Gene. Devel. 5:51–55, 1995.CrossRefGoogle Scholar
  48. 48.
    Ishioka, C., Ballester, R., Engelstein, M., Vidal, M., Kassel, J., The, I., Bernards, A., Gusella, J. F., and Friend, S. H. A functional assay for heterozygous mutations in GTPase activation protein related domain of the neurofibromin type 1 gene. Oncogene 10:841–847, 1995.PubMedGoogle Scholar
  49. 49.
    Heim, R. A., Kam-Morgan, L. M. W., Binnie, C. G., Corna, D. D., Cayouette, M. C., Farber, R. A., Aylsworth, A. S., Silverman, L. M., and Luce, M. C. Neurofibromatosis 1 (NF 1) truncating mutations are dispersed throughout the NF 1 gene (abstract). Am. J. Hum. Gen. 57(Suppl.):A214, 1995.Google Scholar
  50. 50.
    Boder, E. Ataxia-telangiectasia: an overview. Kroc Foundation Series 19:1–63, 1985.PubMedGoogle Scholar
  51. 51.
    Blaese, R. M. Genetic immunodeficiency syndromes with defects in both T- and B-lym-phocyte function, in The Metabolic and Molecular Bases of Inherited Disease, 7th ed., Scriver, C., ed., McGraw-Hill, New York, pp. 3901,3902, 1995.Google Scholar
  52. 52.
    Waldmann, T. A., Strober, W., and Blaese, R. M. Immunodeficiency disease and malig-nancy. Ann. Intern. Med. 77:605,1972.Google Scholar
  53. 53.
    Spector, B. D., Perry, G. S., and Kersey, J. H. Genetically determined immunodeficiency disease and malignancy: report from the immunodeficiency-cancer registry. Clin. Immunol. Immunopathol. 11:12, 1978.PubMedCrossRefGoogle Scholar
  54. 54.
    Gatti, R. A. Ataxia-telangiectasia. Dermatol. Clin. 13:1–6, 1995.PubMedCrossRefGoogle Scholar
  55. 55.
    West, C. M., Elyan, S. A., Berry, P., Cowan, R., and Scott, D. A comparison of the radi-osensitivity of lymphocytes from normal donors, cancer patients, individuals with ataxia-telangiectasia, and ataxia-telangiectasia heterozygotes. J. Radiat. Biol. 68:197–203, 1995.CrossRefGoogle Scholar
  56. 56.
    Swift, M., Morrell, D., Massey, R. B., and Chase, C. L. Incidence of cancer in 161 fami-lies affected by ataxia-telangiectasia. New Engl. J. Med. 325:1831–1836, 1991.PubMedCrossRefGoogle Scholar
  57. 57.
    Easton, D. F. Cancer risks in ataxia-telangiectasia heterozygotes. J. Radiat. Biol. 66(Suppl. 6):S177–182, 1994.CrossRefGoogle Scholar
  58. 58.
    Kojis, T. L., Schneck, R. R., Gatti, R. A., and Sparkes, R. S. Tissue specificity of chromo-somal rearrangements in ataxia-telangiectasia. Hum. Genet. 83:347–52, 1989.PubMedCrossRefGoogle Scholar
  59. 59.
    Kaufman, W. K. Cell cycle checkpoints and DNA repair preserve the stability of the human genome. Cancer Metastasis Rev. 14:31–41, 1995.CrossRefGoogle Scholar
  60. 60.
    Jaspers, N. G., Gatti, R. A., Baan, C., Linssen, P. C., and Bootsma, D. Genetic comple-mentation analysis of ataxia-telangiectasia and Nijmegen breakage syndrome: a survey of 50 patients. Cytogenet. Cell Genet. 49:259–263, 1988.PubMedCrossRefGoogle Scholar
  61. 61.
    Gatti, R. A., Berkel, I., Boder, E., Braedt, G., Charmley, P., Concannon, P., Ersoy, F., Foround, T., Jaspers, N. G. J., Lange, K., Lathrop, G. M., Leppert, M., Nakamura, Y., O’Connell, P., Paterson, M., Salser, W., Sanal, O., Silver, J., Sparkes, R. S., Susi, E., Weeks, D. E., Wei, S., White, R., and Yoder, F. Localization of an ataxia-telangiectasia gene to chromosome 11q22–23. Nature 336:577–580, 1988.PubMedCrossRefGoogle Scholar
  62. 62.
    Savitsky, K., Bar-Shira, A., Gilad, S., Rotman, G., Ziv, Y., Vanagaite, L., Tagle, D. A., Smith, S., Uziel, T., Sfez, S., Ashkenazi, M., Pecker, I., Frydman, M., Harnik, R., Patanjali, S. R., Simons, A., Clines, G. A., Sartiel, A., Gatti, R. A., Chessa, L., Sanal, O., Lavin, M. F., Jaspers, N. G. J., Malcolm, A., Raylor, R., Arlett, C. F., Miki, T., Weissman, S. M., Lovett, M., Collins, F. S., and Shiloh, Y. A single ataxia telangiectasia gene with a prod-uct similar to PI-3 Kinase. Science 268:1749–1753, 1995.PubMedCrossRefGoogle Scholar
  63. 63.
    Charcot, J. M., Marie, P. Sur une forme particuliere d’atrophie musculaire progressive solvent familiale debutante par les pieds et les jambes et atteigrante plus tard les mains. Rev. Med. 6:97, 1886.Google Scholar
  64. 64.
    Tooth, H. H. The Peroneal Type ofProgressive Muscular Atrophy. H. K. Lewis, London, 1886.Google Scholar
  65. 65.
    Wise, C. A., Garcia, C. A., Davis, S. N., Zhang, H., Pentao, L., Patel, P. I., and Lupski, J. R. Molecular analysis of unrelated Charcot-Marie-Tooth (CMT) disease patients suggest a high frequency of the CMT1A duplication. Am. J. Hum. Genet. 53:853, 1993.PubMedGoogle Scholar
  66. 66.
    Chance, P. F., Abbas, N., Lensch, M. W., Pentao, L., Roa, B. B., Patel, P. L., and Lupski, J. R. Two autosomal dominant neuropathies results from reciprocal DNA duplication/ deletion of a region on chromosome 17. Hum. Mol. Genet. 3:223–228, 1994.PubMedCrossRefGoogle Scholar
  67. 67.
    Lupski, J. R., Montes de Oca-Luna, R., Slaugenhaupt, S., Pentao, L., Guzzetta, V., Trask, B. J., Saucedo-Cardenas, O., Barker, D. F., Killan, J. M., Garcia, C. A., Chakravarti, A., and Patel, P. I. DNA duplication associated with Charcot-Marie-Tooth disease type 1A. Cell 66:219, 1991.Google Scholar
  68. 68.
    Matsunami, N., Smith, B., Ballard, L., Lensch, M. W., Robertson, M., Albertsen, H., Hanemann, C. O., Muller, H. W., Bird, T. D., White, R., and Chance, P. F. Peripheral myelin protein-22 gene maps in the duplication of chromosome 17p 11.2 associated with Charcot-Marie-Tooth 1A. Nature Genet. 1:176, 1992.PubMedCrossRefGoogle Scholar
  69. 69.
    Nicholson, G. A., Valentijn, L. J., Cherryson, A. K., Kennerson, M. L., Bragg, T. L., DeKroon, R. M., Ross, D. A., Pollard, J. D., Mcleod, J. G., Bolhius, P. A., and Baas, F. A frame shift mutation in the PMP22 gene in hereditary peripheral neuropathy with liability to pressure palsies. Nature Genet. 6:263–266, 1994.PubMedCrossRefGoogle Scholar
  70. 70.
    Wright, E. C., Goldgar, D. E., Fain, P. R., Barker, D. F., and Skolnick, M. H. A genetic map of human chromosome 17p. Genomics 7:103–109, 1990.PubMedCrossRefGoogle Scholar
  71. 71.
    Ballabio, A. and Zoghbi, H. Y. Charcot-Marie-Tooth Disease and hereditary neuropathy with liability to pressure palsies, in The Metabolic and Molecular Basis of Inherited Disease, 7th ed., McGraw-Hill, New York, pp. 4569–4573, 1995.Google Scholar
  72. 72.
    Chance, P. F., Alderson, M. K., Leppig, K. A., Lensch, M. W., Matsunami, N., Smith, B., Swanson, P. D., Odelberg, S. J., Disteche, C. M., and Bird, T. D. DNA deletion associated with hereditary neuropathy with liability to pressure palsies. Cell 72:143, 1993.PubMedCrossRefGoogle Scholar
  73. 73.
    Windebank, A. J., Schenone, A., and Dewald, G.W. Hereditary neuropathy with liability to pressure palsies and inherited brachial plexus neuropathy-two genetically distinct dis-orders. Mayo Clin. Proc. 70:743–746, 1995.PubMedCrossRefGoogle Scholar
  74. 74.
    Roa, B. B., Garcia, C. A., Suter, U., Kulpa, D. A., Wise, C. A., Mueller, J., Welcher, A. A., Snipes, G. J., Shooter, E. M., Patel, P. I., and Lupski, J. R. Charcot-Marie-Tooth dis-ease type lA association with a spontaneous point mutation in the PMP22 gene. New Engl. J. Med. 329:96, 1993.PubMedCrossRefGoogle Scholar
  75. 75.
    Emery, A. E. H. Clinical features, in Duchenne Muscular Dystrophy, 2nd ed., Motulsky, A. G., Harper, P. S., Bobrow, M., and Scriver, C., eds. Oxford University Press, New York, pp. 26–41, 1993.Google Scholar
  76. 76.
    Koenig, M., Beggs, A. H., Moyer, M., Scherpf, S., Heindrich, K., Bettecken, T., Meng, G., Muller, C. R., Lindlof, M., and Kaariainen, H. The molecular basis for Duchenne versus Becker muscular dystrophy: correlation of severity with type of deletion. Am. J. Hum. Genet. 45:498, 1989.PubMedGoogle Scholar
  77. 77.
    Monaco, A. P. and Kunkel, L. M. Cloning of the Duchenne/Becker muscular dystrophy locus. Adv. Hum. Genet. 17:61, 1988.PubMedGoogle Scholar
  78. 78.
    Ervasti, J. M. and Campbell, K. P. Membrane organization of the dystrophin-glyco-membrane complex. Cell 66:1121, 1991.PubMedCrossRefGoogle Scholar
  79. 79.
    Gorecki, D. C., Monaco, A. P., Derry, J. M. J., Walker, A. P., Barnard, E. A., and Barnard, P. J. Expression of four alternative transcripts in brain regions regulated by different promotors. Hum. Mol. Genet. 1:505, 1992.PubMedCrossRefGoogle Scholar
  80. 80.
    Koenig, M., Hoffman, E. P., Bertelson, C. J., Monaco, A. P., Feener, C., and Kunkel, L. M. Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and prelimi-nary genomic organization of the DMD gene in normal and affected individuals. Cell 50:509, 1987.PubMedCrossRefGoogle Scholar
  81. 81.
    Coffey, A. J., Roberts, R. G., Green, E. D., Cole, C. G., Butler, R., Anand, R., Giannelli, F., and Bentley, D. R. Construction of a 2.6-Mb contig in yeast artificial chromosomes spanning the human dystrophin gene using an STS-based approach. Genomics 12:474, 1992.PubMedCrossRefGoogle Scholar
  82. 82.
    Worton, R. G. and Brooke, M. H. The X-linked muscular dystrophies, in The Metabolic and Molecular Basis ofInherited Disease, 7th ed., McGraw-Hill, New York, pp. 4195– 4226, 1995.Google Scholar
  83. 83.
    Roberts, R. G., Coffey, A. J., Bobrow, M., Bentley, D. R. Exon structure of the human dystrophin gene. Genomics 16:536, 1993.PubMedCrossRefGoogle Scholar
  84. 84.
    Chamberlain, J. S., Gibbs, R. A., Ranier, J. E., Nguyen, P. N., and Caskey, C. T. Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Res. 16:11141, 1988.Google Scholar
  85. 85.
    Beggs, A. H., Koenig, M., Boyce, F. M., and Kunkel, L. M. Detection of 98% of DMD/ BMD gene deletions by polymerase chain reaction. Hum. Genet. 86:45, 1990.PubMedCrossRefGoogle Scholar
  86. 86.
    Clements, P. R., Fenwick, R. G., Chamberlain, J. S., Gibbs, R. A., de Andrade, M., Chakroborty, R., and Caskey, C. T. Carrier detection and prenatal diagnosis in Duchenne and Becker muscular dystrophy families, using dinucleotide repeat polymorphisms. Am. J. Hum. Genet. 49:951–960, 1991.Google Scholar
  87. 87.
    Beggs, A. H. and Kunkel, L. M. Improved diagnosis of Duchenne/Becker Muscular Dys-trophy. J. Clin. Invest. 85:613–619, 1990.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Myra J. Wick
  • Pamela A. Crifasi
  • Zhenyuan Wang
  • Stephen N. Thibodeau

There are no affiliations available

Personalised recommendations