Advertisement

Quantification of Cells in Culture

  • Arleen Richardson
  • Sergey Fedoroff

Abstract

Cell enumeration using the hemocytometer is applicable when determining the number of cells in a suspension and when the number of samples to be analyzed is relatively small. Hemocytometry is also useful for determining the proportion of singly dispersed cells in a suspension and an estimation of the frequency of viable cells.

Keywords

Hydrolysis Time Fluorescein Diacetate Fast Green Multichannel Pipet Counting Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  1. Bainbridge, D. R. and Macey, M. M. (1983), Hoechst 33258: a fluorescent nuclear counterstain suitable for double-labelling immunofluorescence. J. Immunol. Methods 62, 193–195.PubMedCrossRefGoogle Scholar
  2. Baserga, R. (1989), Measuring parameters of growth, in Cell Growth and Division, Baserga, R., ed., IRL, New York.Google Scholar
  3. Borenfreund, E. and Puerner, J. A. (1985a), A simple quantitative procedure using monolayer cultures for cytotoxicity assays (HTD/NR-90). J. Tissue Culture Methods 9, 7–9.CrossRefGoogle Scholar
  4. Borenfreund, E., Puerner, J. A. (1985), Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol. Lett. 24, 119–124.PubMedCrossRefGoogle Scholar
  5. Borenfreund, E., Babich, H., Martin-Alguacil, N. (1988), Comparisons of two in vitro cytotoxicity assays—the neutral red (NR) and tetrazolium MTT tests. Toxicol. In Vitro 2, 1–6.PubMedCrossRefGoogle Scholar
  6. Branch, D. R. and Guilbert, L. J. (1986), Practical in vitro assay systems for the measurement of hematopoietic growth factors. J. Tissue Culture Methods 10, 101–108.CrossRefGoogle Scholar
  7. Clark, G. (1981), Staining Procedures 4th ed., Williams and Wilkins, Baltimore, MD.Google Scholar
  8. Demalsy, P. and Callebaut, M. (1967), Plain water as a rinsing agent preferable to sulfurous acid after the Feulgen nuclear reaction. Stain Technol. 42, 133–136.PubMedGoogle Scholar
  9. De Tomasi, J. A. (1936), Improving the technic of the Feulgen stain. Stain Technol. 11, 137–144.Google Scholar
  10. Dulbecco, R. and Vogt, M. (1954), Plaque formation and isolation of pure cell lines with poliomyelitis viruses. J. Exp. Med. 99, 167–182.PubMedCrossRefGoogle Scholar
  11. Elias, J. M., Conkling, K., and Makar, M (1972), Cold feulgen hydrolysis: its effect on displacement of tritiated thymidine. Acta Histochem. Cytochem. 5, 125–131.CrossRefGoogle Scholar
  12. Hamilton, L. H. (1956), Errors in blood cell counting. 1. Technical errors. 2. Statistical errors. Can. J. Med. Tech. 18, 8–14.Google Scholar
  13. Hanks, J. H. and Wallace, R. E. (1958), Determination of cell viability. Proc. Soc. Exper. Biol. Med. 98, 188–192.Google Scholar
  14. Harris, M. (1959), Growth measurements on monolayer cultures with an electronic cell counter. Can. Res. 19, 1020–1024.Google Scholar
  15. Hilwig, I. and Gropp, A. (1972), Staining of constitutive heterochromatin in mammalian chromosomes with a new fluorochrome. Exp. Cell Res. 75, 122–126.PubMedCrossRefGoogle Scholar
  16. Jones, K. H. and Senft, J. A. (1985), An improved method to determine cell viability by simultaneous staining with fluorescein diacetate propidium iodide. J. Hist. Cytol. 33, 77–79.CrossRefGoogle Scholar
  17. Kaltenbach, J. P., Kaltenbach, M. H., and Lyons, W. B. (1958), Nigrosin as a dye for differentiating live and dead ascites cells. Exp. Cell Res. 15, 112–117.PubMedCrossRefGoogle Scholar
  18. Kjellstrand, P. T. T. (1977), Temperature and acid concentration in the search for optimum Feulgen hydrolysis conditions. J. Histochem. Cytochem. 25, 129–134.PubMedCrossRefGoogle Scholar
  19. Kolber, M. A., Quinones, R. R., Gress, R. E., and Henkart, P. A. (1988), Measurement of cytotoxicity by target release of the fluorescent dye bis-carboxymethyl-carbosyfluorescein (BCECF). J. Immunol. Meth. 108, 225–264.CrossRefGoogle Scholar
  20. Latt, S. A. and Stetten, G. (1976), Spectral studies on 33258 Hoechst and related bisbenzimidazole dyes useful for fluorescent detection of deoxyribonucleic acid synthesis. J. Histochem. Cytochem. 24, 24–33.PubMedCrossRefGoogle Scholar
  21. McLimans, W. F., Davis, E. V., Glover, F. L., and Rake, G. W. (1957), The submerged culture of mammalian cells: the spinner culture. J. Immunol. 79, 428–433.PubMedGoogle Scholar
  22. Moore, P. L., MacCoubrey, I. C., and Haugland, R. P. (1990), A rapid, pH insensitive, two color fluorescence viability (cytotoxicity) assay. J. Cell Biol. 111, 304 (abstract).Google Scholar
  23. Mullbacher, A., Parish, C. R., and Mundy, J. P. (1984), An improved colorimetric assay for T cell cytotoxicity in vitro. J. Immun. Methods 68, 205–215.CrossRefGoogle Scholar
  24. Parish, C. R., Mullbacher, A. (1983), Automated colorimetric assay for T cell cytotoxicity. J. Immun. Methods 58, 225–237.CrossRefGoogle Scholar
  25. Pevzner, L. Z. (1979), Functional Biochemistry of the Neuroglia. Consultants Bureau, New York.CrossRefGoogle Scholar
  26. Phillips, H. J. and Andrews, R. V. (1959), Some protective solutions for tissue-cultured cells. Exper. Cell Res. 16, 678–682.CrossRefGoogle Scholar
  27. Phillips, H. J. and Terryberry, J. E. (1957), Counting actively metabolizing tissue cultured cells. Exper. Cell Res. 13, 341–347.CrossRefGoogle Scholar
  28. Roehm, N. W., Rodgers, G. H., Hatfield, S. M., and Glasebrook, A. L. (1991), An improved colorimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT. J. Immunol. Methods 142, 257–265.PubMedCrossRefGoogle Scholar
  29. Sanford, K. K., Earle, W. R., Evans, V. J., Walts, H. K., and Shannon, J. E. (1951), The measurement of proliferation in tissue culture by enumeration of cell nuclei. J. Nat. Canc. Inst. 11, 733–795.Google Scholar
  30. Schrek, R. (1944), Studies in vitro on the physiology of normal and of cancerous cells. II. The survival and the glycolysis of cells under anaerobic conditions. Arch. Path. 37, 319–327.Google Scholar
  31. Thornthwaite, J. T. and Leif, R. C. (1978), A permanent cell viability assay using Alcian blue. Stain Technology 53, 199–204.PubMedGoogle Scholar
  32. Waymouth, C. (1956), A rapid quantitative hematocrit method for measuring increase in cell population of strain L (Earle) cells cultivated in serum-free nutrient solutions. J. Nat. Canc. Inst. 17, 305–313.Google Scholar
  33. Yip, D. K. and Auersperg, N. (1972), The dye exclusion test for cell viability: persistence of differential staining following fixation. In Vitro 7, 323–329.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Arleen Richardson
  • Sergey Fedoroff

There are no affiliations available

Personalised recommendations