Advertisement

Testicular Function in Critical Illness

  • Stephen R. Plymate
  • Robert E. Jones
Part of the Contemporary Endocrinology book series (COE, volume 4)

Abstract

Like other regulated endocrine axes, the hypothalamo—pituitary—testicular (HPT) axis in men is subject to modification from external influences. Both acute and chronic illnesses as well as numerous medications can profoundly affect levels of circulating testosterone and can inhibit spermatogenesis (1). In certain instances, such as hemochromatosis, the alteration in gonadal function is a well-recognized concomitant of the disease process, whereas in other circumstances, the apparent modification of gonadal function may simply represent a nonspecific effect of illness on the HPT axis (2). It is generally accepted that virtually any illness, whether acute, self-limited, or chronic, may have an impact on testicular function. The purpose of this chapter is to explore, specifically, the effects of critical illness and medications on the HPT axis. As well as discussing the possible pathologic consequences owing to these modifications of testicular function (3).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dong Q, Hawker F, McWilliam D, Bangah M, Burger H, Handelsman DJ. Circulating immunoreactive inhibin and testosterone levels in men with critical illness. Clin Endocrinol 1992; 36: 399–404.CrossRefGoogle Scholar
  2. 2.
    Cundy T, Butler J, Bomford A, Williams R. Reversibility of hypogonadotropic hypogonadism associated with genetic hemochromatosis. Clin Endocrinol 1993; 38: 617–620.CrossRefGoogle Scholar
  3. 3.
    Plymate S, Paulsen C, McLachlan R. Relationship of serum inhibin levels to FSH and sperm production in normal men and men with a varicocele. J Clin Endocrinol Metab 1992; 74: 859–864.PubMedCrossRefGoogle Scholar
  4. 4.
    Van den Berghe G, de Zegher F, Lauwers P, Veldhuis J. Luteinizing hormone secretion and hypoandrogenaemia in critically ill men: effect of dopamine. Clin Endocrinol 1994; 41: 563–569.CrossRefGoogle Scholar
  5. 5.
    Reincke M, Lehmann R, Karl M, Magiaou A, Chrousos GP, Allolio B. Severe illness:neuroendocrinology. Ann NY Acad Sci 1995; 771: 556–569.PubMedCrossRefGoogle Scholar
  6. 6.
    Goussis O, Pardridge W, Judd H. Critical illness and low testosterone: effects of human serum on testosterone transport into rat brain and liver. J Clin Endocrinol Metab 1983; 56: 710–714.PubMedCrossRefGoogle Scholar
  7. 7.
    Plymate S, Tenover J, Bremner W. Circadian variation in testosterone, sex hormone binding globulin, and calculated non-sex hormone binding globulin bound testosterone in healthy young and elderly men. J Androl 1989; 10: 366–371.PubMedGoogle Scholar
  8. 8.
    Raffi F, Brisseau J, Planchon B, R’emi J, Barrier J, Grolleau J. Endocrine function in 98 HIV-infected patients: a prospective study. AIDS 1991; 5: 729–733.Google Scholar
  9. 9.
    daCunha M, Meistrich M, Fuller L, al. e. Recovery of spermatogenesis after treatment for Hodgkin’s disease: limiting dose of MOPP chemotherapy. J Clin Oncol 1984; 2: 571–577.Google Scholar
  10. 10.
    Semple C, Gray C, Beastall G. Male hypogonadism-a non-specific consequence of illness. Q J Med 1987; 64: 601–607.PubMedGoogle Scholar
  11. 11.
    Jarek MJ, Legare EJ, McDermott MT. Endocrine profiles for outcome prediction from the intensive care unit. Crit Care Med 1996; 21: 543–550.CrossRefGoogle Scholar
  12. 12.
    Woolf P, Hamill R, McDonald J, Lee L, Kelly M. Transient hypogonadotropic hypogonadism caused by critical illness. J Clin Endocrinol Metab 1985; 60: 444–450.PubMedCrossRefGoogle Scholar
  13. 13.
    Blackman M, Weintraub B, Rosen S, Harman S. Comparison of the effects of lung cancer, benign lung disease, and normal aging on pituitary-gonadal function in men. J Clin Endocrinol Metab 1988; 66: 88–95.PubMedCrossRefGoogle Scholar
  14. 14.
    MacAdams M, White R, Chipps B. Reduction in serum testosterone levels during chronic glucocorticoid therapy. Ann Int Med 1986; 104: 648–651.PubMedGoogle Scholar
  15. 15.
    Schneider B, Pickett C, Zwillich C, Weil J, McDermott M, Santen R, Varano L, White, D. Influence of testosterone on breathing during sleep. J Appl Physiol 1986; 61: 618–623.PubMedGoogle Scholar
  16. 16.
    Sandblom R, Matsumoto A, Schoene R, Lee K, Giblin E, Bremner W, Pierson D. Obstructive sleep apnea induced by testosterone administration. N Engl J Med 1983; 308: 508–510.PubMedCrossRefGoogle Scholar
  17. 17.
    Matsumoto A, Sandblom R, Schoene R, Lee K, Giblin E, Pierson D, Bremner W. Testosterone replacement in hypogonadal men:effects on obstructive sleep apnea, respiratory drives, and sleep. Clin Endocrinol 1985; 22: 713–721.CrossRefGoogle Scholar
  18. 18.
    Handelsman D. Hypothalamic-pituitary-gonadal dysfunction in chronic renal failure, dialysis, and renal transplantation. Endoc Rev 1985; 6: 151–182.CrossRefGoogle Scholar
  19. 19.
    Levitan D, Moser S, Goldstein D, Kletzky O, Lobo R, Massry S. Disturbances in the hypothalamic-pituitary-gonadal axis in male patients with acute renal failure. Am J Nephrol 1984; 4: 99–106.PubMedCrossRefGoogle Scholar
  20. 20.
    Shilo S, Livshin Y, Sheshkin J, Spitz I. Gonadal function in Lepromatous Leprosy. Lepr Rev 1981; 52: 127–136.PubMedGoogle Scholar
  21. 21.
    Chlebowski R, Heber D. Hypogonadism in male patients with metastatic cancer prior to chemotherapy. Cancer Res 1981; 42: 2495–2498.Google Scholar
  22. 22.
    Aasebo U, Bremnes R, deJong F, Aakvag A, Slordal L. Pituitary-gonadal dysfunction in male patients with lung cancer. Association with serum inhibin levels. Acta Oncol 1994; 33: 177–180.PubMedCrossRefGoogle Scholar
  23. 23.
    Constine L, Woolf P, Cann D, et al. Hypothalamic-pituitary function after irradiation for brain tumors. N Eng J Med 1983; 328: 87–92.CrossRefGoogle Scholar
  24. 24.
    Baker H, Burger H, deKretser D, et al. A study of the endocrine manifestations of hepatic cirrhosis. Q J Med 1976; 45: 145–178.PubMedGoogle Scholar
  25. 25.
    Griggs R, Pandya S, Florence J, et al. Randomized controlled trial of testosterone in men with myotonic dystrophy. Neurology 1989; 39: 219–222.PubMedCrossRefGoogle Scholar
  26. 26.
    Farthing M, Edwards C, Rees L, Dawson A. Male gonadal dysfunction in coeliac disease: 1. Sexual dysfunction, infertility, and semen quality. Gut 1982; 23: 608–618.PubMedCrossRefGoogle Scholar
  27. 27.
    Farthing M, Edwards C, Rees L, Dawson A. Male gonadal dysfunction in coeliac disease: 3. Pituitary regulation. Clin Endocrinol 1983; 19: 661–671.CrossRefGoogle Scholar
  28. 28.
    Green J, Goble H, Edwards C, Dawson A. Reversible insensitivity to androgens in men with untreated gluren enteropathy. Lancet 1977; 1: 280–282.PubMedCrossRefGoogle Scholar
  29. 29.
    Birnie C, McCleod T, Watkinson G. Incidence of sulfasalazine-induced male infertility. Gut 1981; 22: 452–455.PubMedCrossRefGoogle Scholar
  30. 30.
    Consentino M, Chey W, Takihara H, Cockett A. The effects of sulphasalazine on human male fertility and seminal prostaglandins. J Urol 1984; 57: 682–686.Google Scholar
  31. 31.
    Knigge U, Dejgaard A, Wollesen F, et al. The acute and long term effect of the H2-receptor anta gonists cimetidine and ranitidine on the pituitary-gonadal axis in men. Clin Endocrinol 1983; 118: 307–318.CrossRefGoogle Scholar
  32. 32.
    van Thiel D, Gavaler J, Smith W, Paul G. Hypothalamic-pituitary-gonadal dysfunction in men using cimetidine. N Eng J Med 1979; 300: 1012–1015.CrossRefGoogle Scholar
  33. 33.
    el-Hazami M, Bahakim H, al-Fawaz I. Endocrine functions in sickle-cell anemia patients. J Trop Pediatr 1991; 38: 307–313.CrossRefGoogle Scholar
  34. 34.
    Croxon T, Chapman W, Miller L, et al. Changes in the hypothalamic-pituitary-gonadal axis in human immunodeficiency virus-infected homosexual men. J Clin Endocrinol Metab 1989; 68: 317–321.CrossRefGoogle Scholar
  35. 35.
    de Paepe M, Waxman M. Testicular atrophy in AIDS:a study of 57 autopsy cases. Hum Pathol 1989; 20: 210–214.PubMedCrossRefGoogle Scholar
  36. 36.
    Poretsky L, Can S, Zumoff B. Testicular dysfunction in human immunodeficiency virus-infected men. Metabolism 1995; 44: 946–953.PubMedCrossRefGoogle Scholar
  37. 37.
    Wagner G, Rabkin J, Rabkin R. Illness stage, concurrent medications, and other correlates of low testosterone in men with HIV illness. J Acquired Immune Defic Syndrome Hum Retrovirol 1995; 8: 204–207.Google Scholar
  38. 38.
    Rabkin JG, Rabkin R, Wagner G. Testosterone replacement therapy in HIV illness. Gen Hosp Psychiatry 1995; 17: 37–42.PubMedCrossRefGoogle Scholar
  39. 39.
    Luppa P, Munker R, Nagel D, Weber M, Engelhardt D. Serum androgens in intensive-care patients: correlations with clinical findings. Clin Endocrinol 1991; 34: 305–310.CrossRefGoogle Scholar
  40. 40.
    Spratt DI, Bigos ST, Beitins I, Cox P, Longcope C, Orav J. Both hyper-and hypogonadotroic occur transiently in acute illness: bio-and immunoactive gonado tropins. J Clin Endocrinol Metab 1992.Google Scholar
  41. 41.
    Plymate S, Vaughn G, Mason A, Pruitt B. Central hypogonadism in burned men. Horm Res 1987; 27: 152–158.PubMedCrossRefGoogle Scholar
  42. 42.
    Nadin L, Butler A, Farrell G, Murray M. Pretranslational downregulation of cytochromes P 450 2c11 and 3A2 in male rat livers by tumor necrosis factor alpha.Gastroenterology 1995; 198–205.Google Scholar
  43. 43.
    Hales D. Interleukin-1 inhibits Leydig cell steroidogenesis primarily by decreasing 17 alph-hydroxylase C17–20lyase cytochrome P450 expression. Endocrinology 1992; 131: 2165–2172.PubMedCrossRefGoogle Scholar
  44. 44.
    Warren D, Pasupuleti V, Lu Y, Platler B, Horton R. Tumor necrosis factor and interleukin-1 stimulate testosterone secretion in adulte male rat Leydig cells in vitro. J Andol 1990; 11: 353–360.Google Scholar
  45. 45.
    Amado J, L’opez-Espadas F, Vazquez-Barquero A, Salas J, Lopez-Cordovilla J, Garcia-Unzueta M. Blood levels of cytokines in brain-dead patients: relationship with circulating hormones and acute-phase reactants. Metabolism 1995; 44: 812–816.PubMedCrossRefGoogle Scholar
  46. 46.
    Meikle A, Cardoso de Sousa J, Dacosta N, Bishop D, Samlowski W. Direct and indirect effects of murine interleukin-2, gamma interferon, and tumor necrosis factor on testosterone synthesis on mose Leydig cells. J Androl 1992; 13: 437–443.PubMedGoogle Scholar
  47. 47.
    Barak V, Mordel N, Holzer H, Zajicek G, Treves A, Laufer N. The correlation of interleukin-1 and tumor necrosis factor to oestradiol, progesterone, and testosterone levels in periovulatory follicular fluid of in-vitro fertilization. Hum Reprod 1992; 7: 462–464.PubMedGoogle Scholar
  48. 48.
    Watson M, Newman R, Payne A, Abdelrahim M, Francis G. The effect of macrophage conditioned media on Leydig cell function. Ann Clin Lab Sci 1994; 24: 84–95.PubMedGoogle Scholar
  49. 49.
    Gray A, Feldman HA, McKinley JB, Longcope C. Age, disease, and changing sex hormone levels in middle-aged men: Results of the Massachusetts male aging study. J Clin Endocrinol Metab 1991; 73: 1016–1025.PubMedCrossRefGoogle Scholar
  50. 50.
    Wang C, Chan V, Yeung R. Effect of surgical stress on pituitary-testicular function. Clin Endocrinol 1978; 9: 255–266.CrossRefGoogle Scholar
  51. 51.
    Wang C, Chan V, Yeung R. Effect of acute myocardial infarction on pituitary-testicular function. Clin Endocrinol 1978; 9: 249–253.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Stephen R. Plymate
  • Robert E. Jones

There are no affiliations available

Personalised recommendations