Advertisement

Fatty Acid Regulation of Endocrine Activity

  • Eric P. Widmaier
Chapter

Abstract

The effects of nonesterified fatty acids (NEFA) on endocrine activity are widespread and found in virtually every animal species in which it has been examined. The most potent lipids are generally long-chain unsaturated fats like oleic, linoleic, and arachidonic acids. Not surprisingly, many of the hormones whose secretion and synthesis is under fatty acid (FA) control have potent metabolic actions. For example, NEFA modulate secretion of insulin (hypoglycemic hormone), growth hormone (GH) (hyperglycemic and hyperlipidemic), and glucocorticoids (GC) (hyperglycemic and hyperlipidemic), as well as the hypothalamic-releasing hormones that mediate GH and GC secretion. In most cases, NEFA are inhibitory in endocrine cells, and attenuate secretion of GH, aldosterone, insulin (only with chronic exposure), and somatostatin. On the other hand, NEFA stimulate growth hormone-releasing hormone (GHRH), GC production, and (acutely) insulin release. The mechanisms by which NEFA exert these actions are varied. These lipids inhibit binding of certain hormones like angiotensin II (ATI) to membrane receptors on target cells, and also act intracellularly on these and perhaps other endocrine cells to modulate enzyme activity. NEFA also alter binding of lipophilic hormones to intracellular steroid hormone receptors. Moreover, NEFA may modulate binding of lipophilic hormones to their plasma-binding globulins, thus influencing the ratio of bound/free hormone and changing the amount of “active” (free) hormone available for uptake by cells. In some cases, the effects of NEFA on endocrine cells require intracellular oxidation, suggesting that the actions of the lipids on such cells is indirect and mediated by some intracellular product of FA metabolism. The physiological significance of these actions remains to be fully elucidated. Nonetheless, it is clear that the inhibitory influence of NEFA on lipolytic hormones like GH is part of an intricate feedback loop that contributes to metabolic homeostasis. The actions of NEFA on other hormones, like aldosterone, may be more relevant to pathophysiology, for example in obesity, starvation, critical illness, or diabetes, when circulating levels of NEFAs are elevated and may contribute to some of the symptoms of these disorders.

Keywords

Growth Hormone Free Fatty Acid Oleic Acid Endocrine Cell Endocrine Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed, K. and Thomas, B. S. (1971) The effects of LCFA on sodium plus potassium ion-stimulated adenosine triphosphatase of rat brain. J. Biol. Chem. 246, 103–109.PubMedGoogle Scholar
  2. Alvarez, C. V., Mallo, F., Burguera, B., Cacicedo, L., Dieguez, C., and Casanueva, F. F. (1991) Evidence for a direct pituitary inhibition by free fatty acids of in vivo growth hormone responses to growth hormone-releasing hormone in the rat. Neuroendocrinology 53, 185–189.PubMedCrossRefGoogle Scholar
  3. Baes, M. and Vale, W. W. (1989) Characterization of the glucose dependent release of growth hormone releasing factor and somatostatin from superfused rat hypothalami. Neuroendocrinology 51, 202–209.CrossRefGoogle Scholar
  4. Ball, K. T., Power, G. G., Gunn, T. R., Johnston, B. M., and Gluckman, P. D. (1992) Modulation of growth hormone secretion by thermogenically derived free fatty acids in the perinatal lamb. Endocrinology 131, 337–343.PubMedCrossRefGoogle Scholar
  5. Bassett, N. S. and Gluckman, P. D. (1987) The effect of fatty acid infusion on growth hormone secretion in the ovine fetus: evidence for immaturity of pituitary responsiveness in utero. J. Dev. Physiol. 9, 301–308.PubMedGoogle Scholar
  6. Blackard, W. G., Boylen, C. T., Hinson, T. C., and Nelson, N. C. (1969) Effect of lipid and ketone infusions on insulin-induced growth hormone elevations in rhesus monkeys. Endocrinology 85, 1180–1185.PubMedCrossRefGoogle Scholar
  7. Blackard, W. G., Hull, E. W., and Lopez-S, A. (1971) Effect of lipids on growth hormone secretion in humans. J. Clin. Invest. 50, 1439–1443.PubMedCrossRefGoogle Scholar
  8. Casanueva, E E, Villanueva, L., Dieguez, C., Diaz, Y., Cabranes, J. A., Szoke, B., Scanlon, M. F., Schally, A. V., and Fernandez-Cruz, A. (1987) Free fatty acids block growth hormone (GH)-releasing hormone-stimulated GH secretion in man directly at the pituitary. J. Clin. Endocrinol. Metab. 65, 634–642.PubMedCrossRefGoogle Scholar
  9. Casanueva, E, Villanueva, L., Penalva, A., Vila, T., and Cabezas-Cerrato, J. (1981) Free fatty acid inhibition of exercise induced growth hormone secretion. Horm. Metab. Res. 13, 348–350.PubMedCrossRefGoogle Scholar
  10. Chen, S. G., Kulju, D., Halt, S., and Murakami, K. (1992) Phosphatidylcholine-depen dent protein kinase C activation, effects of cis-fatty acid and diacylglycerol on synergism, autophosphorylation and Ca++ dependency. Biochem. J. 284, 221–226.PubMedGoogle Scholar
  11. Cravatt, B. E, Prospero-Garcia, O., Siuzdak, G., Gilula, N. B., Henriksen, S., Boger, D. L., and Lerner, R. A. (1995) Chemical characterization of a family of brain lipids that induce sleep. Science, 268, 1506–1509.PubMedCrossRefGoogle Scholar
  12. Distel, R. J., Robinson, G. S., and Speigelman, B. M. (1992) Fatty acid regulation of gene expression. J. Biol. Chem. 267, 5937–5941.PubMedGoogle Scholar
  13. Elks, M. L. (1993) Chronic perifusion of rat islets with palmitate suppresses glucose-stimulated insulin release. Endocrinology 133, 208–214.PubMedCrossRefGoogle Scholar
  14. Elliott, M. E. and Goodfriend, T. L. (1993) Mechanism of fatty acid inhibition of aldosterone synthesis by bovine adrenal glomerulosa cells. Endocrinology 132, 2453–2460.PubMedCrossRefGoogle Scholar
  15. Estienne, M. J., Schillo, K. K., Green, M. A., and Boling, J. A. (1989) Free fatty acids suppress growth hormone, but not luteinizing hormone, secretion in sheep. Endocrinology 125, 85–91.PubMedCrossRefGoogle Scholar
  16. Fraser, W. H. and Blackard, W. G. (1977) The effect of lipids on prolactin and growth hormone secretion. Horm. Metab. Res. 9, 389–393.PubMedCrossRefGoogle Scholar
  17. Golay, A., Swislocki, A. L. M., Chen, Y-D. I., and Reaven, G. M. (1987) Relationships between plasma free fatty acid concentration, endogenous glucose production, and fasting hyperglycemia in normal and non-insulin-dependent diabetic individuals. Metabolism 38, 692–696.CrossRefGoogle Scholar
  18. Goodfriend, T. L., Ball, D. L., Elliot, M. E., Chabbi, A., Duong, T., Raff, H., Schneider, E. G., Brown, R. D., and Weinbergers, M. H. (1993) Fatty acids may regulate aldosterone secretion and mediate some of insulin’s effects on blood pressure. Prostaglandins Leukotrienes Essential Fatty Acids 48, 43–50.CrossRefGoogle Scholar
  19. Goodfriend, T. L., Ball, D. L., Elliott, M. E., Morrison, A. R., and Evenson, M. A. (1991) Fatty acids are potential endogenous regulators of aldosterone secretion. Endocrinology 128, 2511–2519.PubMedCrossRefGoogle Scholar
  20. Goodfriend, T. L., Lee, W-M. P., Ball, D. L., and Elliott, M. E. (1995) Specificity and mechanism of fatty acid inhibition of aldosterone secretion. Prostaglandins Leukotrienes Essential Fatty Acids 52, 145–150.CrossRefGoogle Scholar
  21. Gottlicher, M., Widmark, E., Li, Q., and Gustafsson, J.-A. (1992) Fatty acids activate a chimera of the clofibric acid activated receptor and the glucocorticoid receptor. Proc. Natl. Acad. Sci. USA 89, 4653–4657.PubMedCrossRefGoogle Scholar
  22. Hamilton, J. A. (1992) Binding of fatty acids to albumin: a case study of lipid-protein interactions. News Physiol. Sci. 7, 264–270.Google Scholar
  23. Hamilton, J. A., Civelek, V. N., Kamp, F., Tornheim, K., and Corkey, B. E. (1994) Changes in internal pH caused by movement of fatty acids into and out of clonal pancreatic beta cells (HIT). J. Biol. Chem. 269, 20,852–20, 856.Google Scholar
  24. Huang, J. M-C., Xian, H., and Bacaner, M. (1992) Long-chain fatty acids activate calcium channels in ventricular myocytes. Proc. Natl. Acad. Sci. USA 89, 6452–6456.PubMedCrossRefGoogle Scholar
  25. Hunnicutt, J. W., Hardy, R. W., Williford, J., and McDonald, J. M. (1994) Saturated fatty acid-induced insulin resistance in rat adipocytes. Diabetes 43, 540–545.PubMedCrossRefGoogle Scholar
  26. Imaki, T., Shibasaki, T., Masuda, A., Hotta, M., Yamauchi, N., Demura, H., Shizume, K., Wakabayashi, I., and Ling, N. (1986) The effect of glucose and free fatty acids on growth hormone (GH)-releasing factor-mediated GH secretion in rats. Endocrinology 118, 2390–2394.PubMedCrossRefGoogle Scholar
  27. Imaki, T., Shibasaki, T., Shizume, K., Masuda, A., Hotta, M., Kiyosawa, Y., Jibiki, K., Demura, H., Tsushima, T., and Ling, N. (1985) The effect of free fatty acids on growth hormone (GH)-releasing hormone-mediated GH secretion in man. J. Clin. Endocrinol. Metab. 60, 290–293.PubMedCrossRefGoogle Scholar
  28. Irie, M., Sakuma, M., Tsushima, T., Shizume, K., and Nakao, K. (1967) Effect of nicotinic acid administration on plasma growth hormone concentration. Proc. Natl. Acad. Sci. USA, 126, 708–712.Google Scholar
  29. Izawa, T., Mochizuki, T., Komabayashi, T., Suda, K., and Tsuboi, M. (1994) Increase in cytosolic free calcium in corticotropin-stimulated white adipocytes. Am. J. Physiol. 266, E418 - E426.PubMedGoogle Scholar
  30. Jump, D. B., Ren, B., Clarke, S., and Thelen, A. (1995) Effects of fatty acids on hepatic gene expression. Prostaglandins Leukotrienes Essential Fatty Acids 52, 107–112.CrossRefGoogle Scholar
  31. Kato, J. (1989) Arachidonic acid as a possible modulator of estrogen, progestin, androgen, and glucocorticoid receptors in the central and peripheral tissues. J. Steroid Biochem. 34, 219–227.PubMedCrossRefGoogle Scholar
  32. Kennedy, J. A., Nicolson, R., and Wellby, M. L. (1994) The effect of oleic acid on the secretion of thyrotrophin and growth hormone by cultured rat anterior pituitary cells. J. Endocrinol. 143, 557–564.PubMedCrossRefGoogle Scholar
  33. Kirber, M. T., Ordway, R. W., Clapp, L. H., Walsh, J. V., Jr., and Singer, J. J. (1992) Both membrane stretch and fatty acids directly activate large conductance Ca++-activated K+ channels in vascular smooth muscle cells. FEBS Lett. 297, 24–28.PubMedCrossRefGoogle Scholar
  34. Lee, Y., Hirose, H., Ohneda, M., Johnson, J. H., McGarry, J. D., and Unger, R. H. (1994) Beta cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats: impairment in adipocyte-beta cell relationships. Proc. Natl. Acad. Sci. USA 91, 10,878–10, 882.Google Scholar
  35. Lim, C.-F., Docter, R., Visser, T. J., Krenning, E. P., Bernard, B., van Toor, H., de Jong, M., and Henneman, G. (1993) Inhibition of thyroxine transport into cultured rat hepatocytes by serum of nonuremic critically ill patients: effect of bilirubin and non-esterified fatty acids. J. Clin. Endocrin. Metab. 76, 1165–1172.Google Scholar
  36. Lyson, K. and McCann, S. M. (1992) Involvement of arachidonic acid cascade pathways in interleukin-6-stimulated corticotropin-releasing factor release in vitro. Neuroendocrinology 55, 708–713.Google Scholar
  37. Lucke, C., Adelman, N., and Glick, S. M. (1972) The effect of elevated free fatty acids on the sleep-induced human growth hormone peak. J. Clin. Endocrinol. Metab. 35, 407–412.PubMedCrossRefGoogle Scholar
  38. Meikle, A. W., Benson, S. J., Liu, X. H., Boam, W. D., and Stringham, J. D. (1989) Nonesterified fatty acids modulate steroidogenesis in mouse Leydig cells. Am. J. Physiol. 257, E937 - E942.Google Scholar
  39. Mikami, K., Omura, M., Tamura, Y., and Yoshida, S. (1990) Possible site of action of 5-hydroperoxyeicosatetraenoic acid derived from arachidonic acid in ACTH-stimulated steroidogenesis in rat adrenal glands. J. Endocrinol. 125, 89–96.PubMedCrossRefGoogle Scholar
  40. Munck, A., Guyre, P. M., and Holbrook, N. J. (1984) Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocr. Rev. 5, 25 44.Google Scholar
  41. Murakami, K., Chan, S. Y., and Routtenberg, A. (1986) Protein kinase C activation by cis-fatty acid in the absence of Ca++ and phospholipids. J. Biol. Chem. 261, 15,424–15, 429.Google Scholar
  42. Newgard, C. B. and McGarry, J. D. (1995) Metabolic coupling factors in pancreatic beta cell signal transduction. Annu. Rev. Biochem. 64, 689–719.PubMedCrossRefGoogle Scholar
  43. Nishikawa, T., Omura, M., Noda, M., and Yoshida, S. (1994) Possible involvement of lipoxygenase metabolites of arachidonic acid in the regulation of pregnenolone synthesis in bovine adrenocortical mitochondria. J. Biochem. 116, 833–837.PubMedGoogle Scholar
  44. Odio, M. R. and Brodish, A. (1988) Effects of age on metabolic responses to acute and chronic stress. Am. J. Physiol. 254, E617 - E624.PubMedGoogle Scholar
  45. Oomura, Y. (1976) Significance of glucose, insulin and free fatty acids on the hypothalamic feeding and satiety neurons, in Hunger: Basic Mechanisms and Clinical Implications ( Novin, D., Wyrwicka, W., and Bray, G., eds.), Raven, New York, pp. 145–157.Google Scholar
  46. Oomura, Y., Nakamura, T., Sugimori, M., and Yamada, Y. (1975) Effect of free fatty acid on the rat lateral hypothalamic neurons. Physiol. Behay. 14, 483–486.CrossRefGoogle Scholar
  47. Opie, L. H. and Walfish, P. G. (1963) Plasma free fatty acid concentrations in obesity. N. Engl. J. Med. 268, 757–760.PubMedCrossRefGoogle Scholar
  48. Paolisso, G., Gambardella, A., Amato, L., Tortoriello, R., d’Amore, A., Varricchio, M., and D’Onofrio, F. (1995) Opposite effects of short and long term fatty acid infusion on insulin secretion in healthy subjects. Diabetologia 38, 1295–1299.PubMedCrossRefGoogle Scholar
  49. Petrou, S., Ordway, R. W., Kirber, M. T., Dopico, A. M., Hamilton, J. A., Walsh, J. V., and Singer, J. J. (1995) Direct effects of fatty acids and other charged lipids on ion channel activity in smooth muscle cells. Prostaglandins Leukotrienes Essential Fatty Acids, 52, 173–178.CrossRefGoogle Scholar
  50. Prentki, M., Vischer, S., Glennon, M. C., Regazzi, R., Deeney, J. T., and Corkey, B. E. (1992) Malonyl-CoA and long chain acyl-CoA esters as metabolic coupling factors in nutrient induced insulin secretion. J. Biol. Chem. 267, 5802–5810.PubMedGoogle Scholar
  51. Quabbe, H.-J., Bratzke, H.-J., Siegers, U., and Elban, K. (1972) Studies on the relationship between plasma free fatty acids and growth hormone secretion in man. J. Clin. Invest. 51, 2388–2397.PubMedCrossRefGoogle Scholar
  52. Quabbe, H. J., Bumke-Vogt, C., Iglesiaz-Rozas, J. R., Freitag, S., and Breitinger, N. (1991) Hypothalamic modulation of growth hormone secretion in the rhesus monkey, evidence from intracerebroventricular infusion of glucose, free fatty acids, and ketone bodies. J. Clin. Endocrinol. Metab. 73, 765–770.PubMedCrossRefGoogle Scholar
  53. Reddy, G. R, Prasad, M., Sailesh, S., Kumar, Y. V., and Reddanna, R. (1993) Arachidonic acid metabolites as intratesticular factors controlling androgen production. Int. J. Androl. 16, 227–233.PubMedCrossRefGoogle Scholar
  54. Reed, M. J., Beranek, R. W., Cheng, J. D., and James, V. H. T. (1987) The effect of cortisol or ACTH on plasma concentrations of free fatty acids. In Vivo 1, 181–184.PubMedGoogle Scholar
  55. Roncero, C. and Goodridge, A. G. (1992) Hexanoate and octanoate inhibit transcription of the malic enzyme and fatty acid synthase genes in chick embryo hepatocytes in culture. J. Biol. Chem. 267, 14,918–14, 927.Google Scholar
  56. Sako, Y. and Grill, V. E. (1990) A 48 hour lipid infusion in the rat time-dependently inhibits glucose-induced insulin secretion and B cell oxidation through a process likely coupled to fatty acid oxidation. Endocrinology 127, 1580–1589.PubMedCrossRefGoogle Scholar
  57. Saloranta, C., Taskinen, M-R., Widen, E., Harkonen, M., Melander, A., and Groop, L. (1993) Metabolic consequences of sustained suppression of free fatty acids by acipimox in patients with NIDDM. Diabetes 42, 1559–1566.PubMedCrossRefGoogle Scholar
  58. Sarel, I. and Widmaier, E. P. (1995) Stimulation of steroidogenesis in cultured rat adrenocortical cells by unsaturated fatty acids. Am. J. Physiol. 268, R1484 - R1490.PubMedGoogle Scholar
  59. Scheen, A. J., Castillo, M., and Lefebvre, R. J. (1988) Insulin sensitivity in anorexia nervosa: a mirror image of obesity? Diabetes/Metab. Rev. 4, 681–690.CrossRefGoogle Scholar
  60. Schmidt, M. F. G. (1989) Fatty acylation of proteins. Biochim. Biophys. Acta. 988, 411–426.PubMedCrossRefGoogle Scholar
  61. Senaris, R. M., Lewis, M. D., Lago, F., Dominguez, F., Scanlon, M. E, and Dieguez, C. (1992) Stimulatory effect of free fatty acids on growth hormone releasing hormone secretion by fetal rat neurons in monolayer culture. Neurosci. Lett. 135, 80–82.PubMedCrossRefGoogle Scholar
  62. Senaris, R. M., Lewis, M. D., Lago, E, Dominguez, E, Scanlon, M. E, and Dieguez, C. (1993) Effects of free fatty acids on somatostatin secretion, content, and mRNA levels in cortical and hypothalamic fetal rat neurones in monolayer culture. J. Mol. Endocrinol. 10, 207–214.PubMedCrossRefGoogle Scholar
  63. Sloots, J. A., Aitchison, J. D., and Rachubinski, R. A. (1991) Glucose-responsive and oleic acid-responsive elements in the gene encoding the peroxisomal trifunctional enzyme of Candida tropicalis. Gene 105, 129–134.PubMedCrossRefGoogle Scholar
  64. Sumida, C. (1995) Fatty acids, ancestral ligands and modem co-regulators of the steroid hormone receptor cell signalling pathway. Prostaglandins Leukotrienes Essential Fatty Acids 52, 137–144.CrossRefGoogle Scholar
  65. Sztalryd, C. and Kraemer, A B. (1994) Regulation of hormone-sensitive lipase during fasting. Am. J. Physiol. 266, E179 - E185.PubMedGoogle Scholar
  66. Vallette, G., Vanet, A., Sumida, C., and Nunez, E. A. (1991) Modulatory effects of unsaturated fatty acids on the binding of glucocorticoids to rat liver glucocorticoid receptors. Endocrinology 129, 1363–1369.PubMedCrossRefGoogle Scholar
  67. Warnotte, C., Gilon, P., Nenquin, M., and Henquin, J. C. (1994) Mechanisms of the stimulation of insulin release by saturated fatty acids. A study of palmitate effects in mouse beta cells. Diabetes 43, 703–711.PubMedCrossRefGoogle Scholar
  68. Widmaier, E. R. (1992) Metabolic feedback in mammalian endocrine systems. Horm. Metab. Res. 24, 197–200.CrossRefGoogle Scholar
  69. Widmaier, E. P. and Hall, R F. (1985) Protein kinase C in adrenal cells: possible role in regulation of steroid synthesis. Mol. Cell. Endocrinol. 43, 181–188.PubMedCrossRefGoogle Scholar
  70. Widmaier, E. P., Margenthaler, J., and Sarel, I. (1995) Regulation of pituitaryadrenocortical activity by free fatty acids in vivo and in vitro. Prostaglandins Leukotrienes Essential Fatty Acids 52, 179–183.CrossRefGoogle Scholar
  71. Widmaier, E. R, Plotsky, R. M., Sutton, S., and Vale, W. W. (1988) Regulation of corticotropin-releasing factor secretion in vitro by glucose. Am. J. Physiol. 255, E287 — E292.PubMedGoogle Scholar
  72. Widmaier, E. R, Rosen, K., and Abbott, B. (1992) Free fatty acids activate the hypothalamic—pituitary—adrenocortical axis in rats. Endocrinology 131, 2313–2318.PubMedCrossRefGoogle Scholar
  73. Widmaier, E. P., Shah, P., and Lee, G. (1991) Interactions between oxytocin, glucagon, and glucose in normal and streptozotocin-induced diabetic rats. Reg. Pept. 34, 235–249.CrossRefGoogle Scholar
  74. Winter, J. S. D., Gow, K. W., Perry, Y. S., and Greenberg, A. H. (1990) A stimulatory effect of interleukin-1 on adrenocortical cortisol secretion mediated by prostaglandins. Endocrinology 127, 1904–1909.PubMedCrossRefGoogle Scholar
  75. Won, J. G. and Orth, D. N. (1994) Role of lipoxygenase metabolites of arachidonic acid in the regulation of adrenocorticotropin secretion by perifused rat anterior pituitary cells. Endocrinology 135, 1496–1503.PubMedCrossRefGoogle Scholar
  76. Zhou, Y. P. and Grill, V. (1995) Long term exposure to fatty acids and ketones inhibits beta cell functions in human pancreatic islets of Langerhans. J. Clin. Endocrinol. Metab. 80, 1584–1590.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Eric P. Widmaier

There are no affiliations available

Personalised recommendations