Fatty Acid Metabolism in Brain in Relation to Development, Membrane Structure, and Signaling

  • M. Thomas Clandinin
  • Jacqueline Jumpsen


Composition of the brain is unique in its high concentration of lipid and particularly long-chain polyenoic fatty acids of the omega-6 and omega-3 series. Lipids and fatty acids have an important role in the structural integrity of cellular membranes and as messengers in cell signaling systems. Thus, the composition and balance of these molecules in the brain are critical to the proper development and functioning of the nervous system. Research has shown dietary alterations of omega-6 and omega-3 series fatty acids can trigger dramatic alterations in brain lipid composition. These alterations are associated with changes in physical properties of membranes, alterations in enzyme activities, receptors, carrier-mediated transport, and cellular interactions. This chapter discusses the effects of diet on cell membranes and cell signaling systems; brain growth; brain lipid composition and the synthesis of specific brain lipids, including reference to glycolipids and gangliosides; brain fatty acid synthesis; essential fatty acids and brain development; and the effects of deficiency, excess and balance in terms of ratios and absolute amounts. It discusses the response of the developing brain, specifically the phosphoglycerides in brain cells and brain regions, to diet formulations varying in omega-6/omega-3 fatty acid ratios within the range recommended for infant formulas. Thus, even a variation of omega-6 and omega-3 fatty acids between 4:1 and 7:1 can dramatically affect the lipid composition of the developing brain. In this regard it is important to optimize diet-induced alterations during brain development.


Fatty Acid Composition Arachidonic Acid Essential Fatty Acid Docosahexaenoic Acid Fatty Acid Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aeberhard, E. and Menkes, J. H. (1968) Biosynthesis of long-chain fatty acids by subcellular particles of mature brain. J. Biol. Chem. 243, 3834–3840.PubMedGoogle Scholar
  2. Ailing, C., Bruce, A., Karlsson, I., Sapia, O., and Svennerholm, L. (1972) Effect of maternal essential fatty acid supply on fatty acid composition of brain, liver, muscle, and serum in 21-day-old rats. J. Nutr. 102, 773–782.Google Scholar
  3. Alling, C., Bruce, A., Karlsson, I., and Svennerholm, L. (1974) The effect of different dietary levels of essential fatty acids in lipid concentrations and fatty acid composition in rat cerebrum during maturation. J. Neurochem. 23, 1263–1270.PubMedGoogle Scholar
  4. Anderson, G. J., Connor, W. E., and Corliss, J. D. (1990) Docosahexaenoic acid is the preferred dietary n-3 fatty acid for the development of the brain and retina. Pediatr. Res. 27, 89–97.PubMedGoogle Scholar
  5. Anderson, R. E., Benolken, R. M., Dudley, P. A., Landis, D. J., and Wheeler, T. G. (1974) Polyunsaturated fatty acids of photoreceptor membranes. Exp. Eye Res. 18, 205–213.PubMedGoogle Scholar
  6. Anderson, R. E. and Maude, M. B. (1970) Phospholipids of bovine outer segments. Biochem. 9, 3624–3628.Google Scholar
  7. Anding, R. A. and Hwang, D. H. (1986) Effects of dietary linoleate on the fatty acid composition of brain lipids in rats. Lipids 21, 697–701.PubMedGoogle Scholar
  8. Ando, S., Chang, N. C., and Yu, R. K. (1978) High-performance thin-layer chromatography and densitometric determination of brain ganglioside compositions of several species. Anal. Biochem. 89, 437–450.PubMedGoogle Scholar
  9. Anggard, E. (1988) Biosynthesis and metabolism in the brain, in Prostaglandins: Biology and Chemistry of Prostaglandins and Related Eicosanoids ( Curtis-Prior, ed.), Churchill-Livingstone, Edinburgh, UK, pp. 381–385.Google Scholar
  10. Anonymous. (1986) Combined EFA deficiency in a patient on long-term TPN. Nutr. Rev. 44, 301–305.Google Scholar
  11. Ansell, G. B. (1973) Phospholipids and the nervous system, in Form and Function of Phospholipids (Anse11, G. B., Hawthorne, J. N., and Dawson, R. M. C., eds.), Elsevier Scientific, Amsterdam, pp. 377–422.Google Scholar
  12. Ansell, G. B. and Metcalfe, R. E (1971) Studies on the CDP-ethanolamine-2,2diglyceride ethanolaminephosphototransferase of rat brain. J. Neurochem. 18, 647–665.PubMedGoogle Scholar
  13. Ansell, G. B. and Spanner, S. (1968) The metabolism of [Me-14C] choline in the brain of the rat in vivo. Biochem. J. 110, 201–206.PubMedGoogle Scholar
  14. Aveldano, M. I. (1988) Phospholipid species containing long and very long polyenoic fatty acids remain with rhodopsin after hexane extraction of photoreceptor membranes. Biochemistry 27, 1229–1239.PubMedGoogle Scholar
  15. Aveldano, M. I. and Bazan, N. G. (1983) Molecular species of phosphatidylcholine, -ethanolamine, -serine and -inositol in microsomal and photoreceptor membranes of bovine retina. J. Lipid Res. 24, 620–627.PubMedGoogle Scholar
  16. Aveldano, M. I., Pasquare de Garcia, S. J., and Bazan, N. G. (1983) Biosynthesis of molecular species of inositol, choline, serine, and ethanolamine glycerophospholipids in the bovine retina. J. Lipids Res. 24, 628–638.Google Scholar
  17. Axelrod, J., Burch, R. M., and Jelsema, C. L. (1988) Receptor-mediated activation of phospholipase A2 via GTP binding proteins: arachidonic acid and its metabolites as second messengers. TINS 11, 117–123.PubMedGoogle Scholar
  18. Baker, R. R. and Thompson, W. (1972) Positional distribution and turnover of fatty acids in phosphatidic acid, phosphoinositides, phosphatidylcholine and phosphatidylethanolamine in rat brain in vivo. Biochim. Biophys. Acta 270, 489–503.PubMedGoogle Scholar
  19. Barany, M., Chang, Y. C., Anus, C., Rustan, T., and Frey, W. H. (1985) Increased glycerol-3-phosphorylcholine in post-mortem Alzheimer’s brain. Lancet 1, 517.Google Scholar
  20. Barkai, A. I. and Murthy, L. R. (1989) Modulation of arachidonate turnover in cerebral phospholipids. Ann. NY Acad. Sci. 559, 56–73.PubMedGoogle Scholar
  21. Bazan, H. E. P., Ridenour, B., Birkle, D. L., and Bazan, N. G. (1986a) Unique metabolic features of docosahexaenoate metabolism related to functional roles in brain and retina, in Phospholipid Research and the Nervous System ( Horrocks, L. A., Freysz, L., and Toffano, G. eds.), Liviana, Springer-Verlag, Berlin, Germany, pp. 67–78.Google Scholar
  22. Bazan, N. G., Reddy, T. S., Bazan, H. E. P., and Birkle, D. L. (1986b) Metabolism of arachidonic and docosahexaenoic acids in the retina. Prog. Lipid Res. 25, 595–606.PubMedGoogle Scholar
  23. Bazan, N. G., Reddy, T. S., Redmond, T. M., Wiggert, B., and Chader, G. J. (1985) Endogenous fatty acids are covalently and non-covalently bound to interphotoreceptor retinoid-binding protein in the monkey retina. J. Biol. Chem. 260, 13,677–13, 680.Google Scholar
  24. Bell, R. L., Kennerly, D. A., Stanford, N., and Majerus, P. W. (1979) Diglyceride lipase: a pathway for arachidonate release from human platelets. Proc. Natl. Acad. Sci. USA 76, 3238–3241.PubMedGoogle Scholar
  25. Benjamins, J. A. and Agranoff, B. W. (1969) Distribution and properties of CDPdiglyceride: inositol transferase from brain. J. Neurochem. 16, 513–527.PubMedGoogle Scholar
  26. Bernsohn, J. and Cohen, S. R. (1972) Polyenoic fatty acid metabolism of phosphogylcerides in developing brain, in Malnutrition and the Developing Brain, Ciba Foundation Symposium, Elsevier, Amsterdam, pp. 159–178.Google Scholar
  27. Berra, B., Ciampa, M., Debernardi, G., Manto, M., and Zambotti, V. (1976) Gangliosides and glycoproteins in brain of rats fed on different fats. Lipids 1, 227–235.Google Scholar
  28. Berra, B., Lindi, C., Omodeo-Salè, F., Beltrame, D., and Cantone, A. (1981) Effect of matemal diet on ganglioside distribution in fetal rat brain. J. Nutr. 111, 1980–1984.PubMedGoogle Scholar
  29. Berridge, M. (1993) Inositol triphosphate and calcium signalling. Nature 361, 315–325.PubMedGoogle Scholar
  30. Birch, D. G., Birch, E. E., Hoffman, D. R., and Uauy, R. (1992a) Retinal development in very-low-birth weight infants fed diets differing in omega-3 fatty acids. Invest. Opthalmol. Vis. Sci. 33, 2365–2376.Google Scholar
  31. Birch, E. E., Birch, D. G., Hoffman, D. R., and Uauy, R. (1992b) Dietary essential fatty acid supply and visual acuity development. Invest. Opthalmol. Vis. Sci. 33, 3242–3253.Google Scholar
  32. Bjerve, K. S., Fisher, S., and Alme, K. (1989) Alpha-linolenic acid deficiency in man: effect of ethyl linoleate and erythrocyte fatty acid composition and biosynthesis of prostanoids. Am. J. Clin. Nutr. 46, 570–576.Google Scholar
  33. Boothe, R. G., Dobson, V., and Teller, D. Y. (1985) Postnatal development of vision in human and nonhuman primates. Ann. Rev. Neurosci. 8, 495–545.PubMedGoogle Scholar
  34. Borggreven, J. M., Daemen, F. J., and Bonting, S. L. (1970) Biochemical aspects of the visual process. VI. The lipid composition of native and hexane-extracted cattle rod outer segments. Biochim. Biophys. Acta 202, 374–381.PubMedGoogle Scholar
  35. Bourre, J. M., Durand, G., Pascal, G., and Youyou, A. (1989a) Brain cell and tissue recovery in rats made deficient in n-3 fatty acids by alteration of dietary fat. J. Nutr. 119, 15–22.PubMedGoogle Scholar
  36. Bourre, J. M., Francois, M., Youyou, A., Dumont, O., Piciotti, M., Pascal, G., and Durand, G. (1989b) The effects of dietary a-linolenic acid on the composition of nerve membranes, enzymatic activity, amplitude of electrophysiological parameters, resistance to poisons and performance of learning tasks in rats. J. Nutr. 119, 1880–1892.PubMedGoogle Scholar
  37. Bourre, J. M., Pascal, G., Durand, G., Masson, M., Dumont, O., Piciotti, M. (1984) Alterations in the fatty acid composition of rat brain cells (neurons, astrocytes and oligodenrocytes) and of subcellular fractions (myelin and synaptosomes) induced by a diet devoid of n-3 fatty acids. J. Neurochem. 43, 342–348.PubMedGoogle Scholar
  38. Bourre, J. M., Pollet, S., Paturneau-Jouas, M., and Baumann, N. (1977) Saturated and mono-unsaturated fatty acid biosynthesis in brain: relation to development and dismyelinating mutant mice. Adv. Exp. Med. Biol. 83, 103–109.PubMedGoogle Scholar
  39. Bradford, P. G., Marinetti, G. V., and Abood, L. G., (1983) Stimulation of phospholipase A2 and secretion of catecholamines from brain synaptosomes by potassium and A23187. J. Neurochem. 41, 1684–1693.PubMedGoogle Scholar
  40. Bremer, J., Figard, P. H., and Greenberg, D. M. (1960) The biosynthesis of choline and its relation to phospholipid metabolism. Biochim. Biophys. Acta 43, 477–488.Google Scholar
  41. Bremer, J. and Greenberg, D. M. (1961) Methyl-transferring enzyme system of microsomes in the biosynthesis of lecithin (phosphatidylcholine). Biochim. Biophys. Acta 46, 205–216.Google Scholar
  42. Brenkert, A. and Radin, N. S. (1972) Synthesis of galactosyl ceramide and glucosyl ceramide by rat brain: assay procedures and changes. Brain Res. 36, 183–193.PubMedGoogle Scholar
  43. Brenner, R. R. (1981) Nutritional and hormonal factors influencing desaturation of essential fatty acids. Prog. Lipid Res. 20, 41–47.PubMedGoogle Scholar
  44. Brenner, R. R. and Peluffo, R. O. (1966) Effect of saturated and unsaturated fatty acids on the desaturation in vitro of palmitic, stearic, oleic, linoleic and linolenic acids. J. Biol. Chem. 241, 5213–5219.PubMedGoogle Scholar
  45. Burr, G. O. and Burr, M. M. (1929) A new deficiency disease produced by the right exclusion of fat from the diet. J. Biol. Chem. 82, 345–367.Google Scholar
  46. Burton, R. M., Garcia-Bunuel, L., Golden, M., and Balfour, Y. (1963) Incorporation of radioactivity of D-Glucosamine-1-c14, D-Glucose-1 X14, D-Galactose-1-c14 and C-Serine-3–14C into rat brain glycolipids. Biochemistry 2, 580–585.PubMedGoogle Scholar
  47. Byrne, M. C., Farooq, M., Sbaschnig-Agler, M., Norton, W. T., and Ledeen, R. W. (1988) Ganglioside content of astroglia and neurons isolated from maturing rat brain: consideration of the source of astroglial gangliosides. Brain Res. 46, 87–97.Google Scholar
  48. Carlson, S. E., Carver, J. D., and House, S. G. (1986) High fat diets varying in ratios of polyunsaturated to saturated fatty acid and linoleic to linolenic acid: a comparison of rat neural and red cell membranes phospholipids. J. Nutr. 116, 718–725.PubMedGoogle Scholar
  49. Carlson, S. E., Werkman, S. H., Rhodes, P. G., and Tolley, E. A. (1993) Visual-acuity development in healthy preterm infants: effect of marine-oil supplementation. Am. J. Clin. Nutr. 58, 35–42.PubMedGoogle Scholar
  50. Chapman, D. (1972) The role of fatty acids in myelin and other important brain structures, in Malnutrition and the Developing Brain Ciba Foundation Symposium, Elsevier, Amsterdam, pp. 31–72.Google Scholar
  51. Cinader, B., Clandinin, M. T., Hosokawa, T., and Robblee, N. (1983) Dietary fat alters the fatty acid composition of lymphocyte membranes and the rate at which suppressor capacity is lost. Immunol. Lett. 6, 331–337.PubMedGoogle Scholar
  52. Clandinin, M. T., Chappell, J. E., Heim, T., Swyer, P. R., and Chance, G. W. (1981) Fatty acid utilization in perinatal de novo synthesis of tissues. Early Hum. Dev. 5, 355–366.PubMedGoogle Scholar
  53. Clandinin, M. T., Chappell, J. E., Leong, S., Heim, T., Swyer, P. R., and Chance, G. W. (1980a) Extrauterine fatty acid accretion in infant brain: implications for fatty acid requirements. Early Hum. Dev. 4 /2, 131–138.PubMedGoogle Scholar
  54. Clandinin, M. T., Chappell, J. E., Leong, S., Heim, T., Swyer, P. R., and Chance, G. W. (1980b) Intrauterine fatty acid accretion rates in human brain: implications for fatty acid requirements. Early Hum. Dev. 4 /2, 121–129.PubMedGoogle Scholar
  55. Clandinin, M. T., Chappell, J. E., and Van Aerde, J. E. (1989) Requirements of newborn infants for long-chain polyunsaturated fatty acids. Acta Pediatr. Scand. Suppl. 351, 63–71.Google Scholar
  56. Clandinin, M. T., Field, C. J., Hargreaves, K., Morson, L., and Zsigmond, E. (1985) Role of diet fat in subcellular structure and function. Can. J. Physiol Pharmacol. 63, 546–556.PubMedGoogle Scholar
  57. Clarke, E. A., Leach, K. L., Trpkampwslo, J. Q., and Lee, V. M. Y. (1991) Characterization and differential distribution of the three major human protein kinase C isozymes (PKCa, PKC(3, and PKCy) of the central nervous system in normal and Alzheimer’s disease brains. Lab. Invest. 64, 3511.Google Scholar
  58. Cohen, S. R. and Bernsohn, J. (1978) The in vivo incorporation of linolenic acid into neuronal and glial cells and myelin. J. Neurochem. 30, 661–669.PubMedGoogle Scholar
  59. Coleman, R. and Bell, R. M. (1978) Evidence that biosynthesis of phosphatidylethanolamine, phosphatidylcholine, and triacyglycerol occurs on the cytoplasmic side of microsomal vesicles. J. Cell Biol. 76, 245–253.PubMedGoogle Scholar
  60. Connor, W. E., Neuringer, M., Barstad, L., and Lin, D. S. (1984) Dietary deprivation of linolenic acid in rhesus monkeys: Effects on plasma and tissue fatty acid composition and on visual function. Trans. Assoc. Am. Phys. 97, 1–9.PubMedGoogle Scholar
  61. Connor, W. E., Neuringer, M., and Lin, D. S. (1985) The incorporation of docosahexaenoic acid into the brain of monkeys deficient in w-3 essential fatty acids. Clin. Res. 33, 598a.Google Scholar
  62. Connor, W. E., Neuringer, M., and Reisbdelderick, S. (1991) Essentiality of w-3 fatty acids: evidence from the primate model and implications for human nutrition. World Rev. Nutr. Diet. 66, 118–132.PubMedGoogle Scholar
  63. Cook, H. W. (1978) In vitro formation of polyunsaturated fatty acids by desaturation in rat brain: some properties of the enzymes in developing brain and comparisons with liver. J. Neurochem. 30, 1327–1334.PubMedGoogle Scholar
  64. Cook, H. W. (1981) Metabolism of triacylglycerol in developing rat brain. Neurochem. Res. 6, 1217–1229.PubMedGoogle Scholar
  65. Cook, H. W. (1982) Chain elongation in the formation of polyunsaturated fatty acids by brain: some properties of the microsomal system. Arch. Biochem. Biophys. 214, 695–704.PubMedGoogle Scholar
  66. Cook, H. W. and Spence, M. W. (1974) Biosynthesis of fatty acids in vitro by homogenate of developing rat brain: Desaturation and chain elongation. Biochim. Biophys. Acta 369, 129–141.PubMedGoogle Scholar
  67. Cook, H. W. and Spence, M. W. (1987) Studies of the modulation of essential fatty acid metabolism by fatty aids in cultured neuroblastoma and glial cells. Biochim. Biophys. Acta 918, 217–229.PubMedGoogle Scholar
  68. Cooper, M. F. and Webster, G. R. (1970) The differentiation of phospholipase Al and A2 in rat and human nervous tissues. J. Neurochem. 17, 1543–1554.PubMedGoogle Scholar
  69. Crawford, M. A., Hall, B., Laurance, B. M., and Munhambo, A. (1976) Milk lipids and their variability. Curr. Med. Res. Opinion 4 (Suppl. 1), 33–43.Google Scholar
  70. Crawford, M. A. and Sinclair, A. J. (1972) Nutritional influences in the evolution of the mammalian brain, in Malnutrition and the Developing Brain, Ciba Foundation Symposium, Elsevier, Amsterdam, pp. 267–292.Google Scholar
  71. Cuzner, M. L. and Davison, A. N. (1968) The lipid composition of rat brain myelin and subcellular fractions during development. Biochem. J. 106, 29–34.PubMedGoogle Scholar
  72. Das, G. D. (1977) Gliogenesis during early embryonic development in the rat. Experientia, 33, 1648–1649.PubMedGoogle Scholar
  73. Davison, A. N. (1965) Brain sterol metabolism. Adv. Lipid Res. 3, 171–196.PubMedGoogle Scholar
  74. DeGeorge, J. J., Morell, P., and Lapetina, E. G. (1986) Possible glial modulation of neuronal activity by eicosanoids and phosphoinositide metabolites, in Phospholipid Research and the Nervous System: Biochemical and Molecular Pharmacology Fidia Research Series, vol. 14 ( Horrocks, L A., Freysz, L., and Toffano, G., eds.), Liviana, Springer-Verlag, Berlin, pp. 49–55.Google Scholar
  75. DeGeorge, J. J., Ousley, A. H., McCarthy, K. D., Lapetina, E. G., and Morell, P. (1987) Acetylcholine stimulates selective liberation and re-esterification of arachidonate and accumulation of inositol phosphates and glycerophosphoinositol in C62B glioma cells. J. Biol. Chem. 262, 8077–8083.PubMedGoogle Scholar
  76. Derry, D. M. and Wolfe, L. S. (1967) Gangliosides in isolated neurons and glial cells. Science 158, 1450–1452.PubMedGoogle Scholar
  77. Desijaru, T. (1972) Effect of intraventricularly administered prostaglandin E, on the electrical activity of cerebral cortex and behaviour in the unanesthetized monkey. Prostaglandins 3, 143–151.Google Scholar
  78. Dobbing, J. (1972) Vulnerable periods of brain development, in Lipids, Malnutrition and the Developing Brain, Ciba Foundation Symposium, Elsevier, Amsterdam, pp. 9–20.Google Scholar
  79. Dobbing, J. and Sands, J. (1974) Comparative aspects of the brain growth spurt. Early Hum. Dev. 3 /1, 79–83.Google Scholar
  80. Dowling, J. E. and Boycott, B. B. (1966) Organization of the primate retina: electron microscopy. Proc. Roy. Soc. Lond. B 166, 80–111.Google Scholar
  81. Dreyfus, H., Harth, S., Massarelli, R., and Louis, J. C. (1981) Mechanisms of differentiation in cultured neurons: involvement of gangliosides, in Gangliosides in Neurological and Neuromuscular Function, Development and Repair ( Rappaport, M. M., and Gorio, A. eds.), Raven, New York, pp. 151–170.Google Scholar
  82. Dreyfus, H., Louis, J. C., Harth, S., and Mandel, P. (1980) Gangliosides in cultured neurons. Neuroscience 5, 1647–1655.PubMedGoogle Scholar
  83. Enslen, M., Milon, H., and Malnoë, A. (1991) Effect of low intake of n-3 fatty acids during development on brain phospholipid fatty acid composition and exploratory behaviour in rats. Lipids 26, 203–208.PubMedGoogle Scholar
  84. Farooqui, A. A., Anderson, D. K., and Horrocks, L. A. (1993) Effect of glutamate and its analogs on diacylglycerol and monoacylglycerol lipase activities of neuron-enriched cultures. Brain Res. 604, 180–184.PubMedGoogle Scholar
  85. Farooqui, A. A. and Horrocks, L. A. (1991) Excitatory amino acid receptors, neural membrane phospholipid metabolism and neurological disorders. Brain Res. Rev. 16, 171–191.PubMedGoogle Scholar
  86. Farooqui, A. A., Liss, L., and Horrocks, L. A. (1988) Neurochemical aspects of Alzheimer’s disease: involvement of membrane phospholipids. Metab. Brain Dis. 3, 19–35.PubMedGoogle Scholar
  87. Farrell, R. M., Gutcher, G. R., Palta, M., and Demets, D. (1988) Essential fatty acid deficiency in premature infants. Am. J. Clin. Nutr. 48, 220–229.PubMedGoogle Scholar
  88. Felder, C. C., Kanterman, R. Y., Ma, A. L., and Axelrod, J. (1990) Serotonin stimulates phospholipase A2 and the release of arachidonic acid in hippocampal neurons by a type 2 serotonin receptor that is independent of inositol phospholipid hyrolysis. Proc. Natl. Acad. Sci. USA 87, 2187–2191.PubMedGoogle Scholar
  89. Fishman, M. A., Madyastha, R, and Prensky, A. L. (1971) The effect of undernutrition on the development of myelin in the rat central nervous system. Lipids 6, 458–465.PubMedGoogle Scholar
  90. Fishman, P. H. and Brady, R. O. (1976) Biosynthesis and function of gangliosides. Science 194, 906–915.PubMedGoogle Scholar
  91. Fleisler, S. J. and Anderson, R. E. (1983) Chemistry and metabolism of lipids in the vertebrate retina. Prog. Lipid Res. 22, 79–131.Google Scholar
  92. Foot, M., Cruz, T. F., and Clandinin, M. T. (1982) Influence of dietary fat on the lipid composition of rat brain synaptosomal and microsomal membranes. Biochem. J. 208, 631–641.PubMedGoogle Scholar
  93. Foot, M., Cruz, T. F., and Clandinin, M. T. (1965) Effect of dietary lipid on synaptosomal acetylcholinesterase activity. Biochem. J. 211, 507–509.Google Scholar
  94. Foote, L. J., Allen, R. J., and Agranoff, B. W. (1965) Fatty acids in esters and cerebrosides of human brain in phenylketonuria. J. Lipid Res. 6, 518–524.PubMedGoogle Scholar
  95. Freeman, E. J., Terrian, D. M., and Dorman, R. V. (1990) Presynaptic facilitation of glutamate release from isolated hippocampal mossy fiber nerve endings by arachidonic acid. Neurochem. Res. 15, 743–750.PubMedGoogle Scholar
  96. Friedman, Z. (1980) Essential fatty acids revisited. Am. J. Dis. Child. 134, 397–408.PubMedGoogle Scholar
  97. Fulco, A. J. and Mead, J. F. (1961) The biosynthesis of lignoceric, cerebronic and nervonic acids. J. Biol. Chem. 236, 2416–2420.PubMedGoogle Scholar
  98. Gaiti, A., Brunetti, M., Piccinin, L., and Woelk, H. (1982) The synthesis in vivo of choline and ethanolamine phosphoglycerides in different brain areas during aging. Lipids 17, 291–296.PubMedGoogle Scholar
  99. Gaiti, A., Sitkievicz, D., Brunetti, M., and Porcellati, G. (1981) Phospholipid metabolism in neuronal and glial cells during aging. Neurochem. Res. 6, 13–22.PubMedGoogle Scholar
  100. Galli, C. and Cecconi, D. R. (1967) Lipid changes in rat brain during maturation. Lipids 2, 76–82.PubMedGoogle Scholar
  101. Gammeltoft, S., Ballotti, R., Kowalski, A., Wetermark, B., and Van Obberghen, E. (1988) Expression of two types of receptor for insulin-like growth factors in human malignant glioma. Cancer Res. 48, 1233–1237.PubMedGoogle Scholar
  102. Gan-Elepano, M. and Mead, J. F. (1978) The function of phospholipase A2 in the metabolism of membrane lipids. Biochem. Biophys. Res. Commun. 83, 247–251.PubMedGoogle Scholar
  103. Gilmore, D. P. and Shaikh, A. A. (1972) The effect of prostaglandin E2 in inducing sedation in the rat. Prostaglandins 2, 143–151.PubMedGoogle Scholar
  104. Gottfries, C. G. (1990) Neurochemical aspects of dementia disorders. Dementia 1, 56–64.Google Scholar
  105. Greenwood, C. E. and Craig, R. E. A. (1987) Dietary influences on brain function: implications during periods of neuronal maturation, in Current Topics in Nutrition and Disease, Vol. 16 ( Rassin, D. K., Haber, B., and Drujan, B., eds.), Liss, New York, pp. 159–216.Google Scholar
  106. Hakomori, S. (1970) Cell density-dependent changes of glycolipid concentrations in fibroblasts and loss of this response in virus-transformed cells. Proc. Natl. Acad. Sci. USA 67, 1741–1747.PubMedGoogle Scholar
  107. Hannah, J. and Campagnoni, A. T. (1987) Effects of essential fatty acid deficiency on mouse brain development. Dev. Neurosci. 9, 120–127.PubMedGoogle Scholar
  108. Hargreaves, K. M. and Clandinin, M. T. (1987a) Phosphatidylethanolamine methyltransferase: evidence for influence of diet fat on selectivity of substrate for methylation in rat brain synaptic plasma membranes. Biochem. Biophys. Acta. 918, 97–105.PubMedGoogle Scholar
  109. Hargreaves, K. M. and Clandinin, M. T. (1987b) Phosphocholinetransferase activity in plasma membrane: effect of diet. Biochem. Biophys. Res. Commun. 145, 309–315.PubMedGoogle Scholar
  110. Hargreaves, K. M. and Clandinin, M. T. (1988) Dietary control of diacylphos- phatidylethanolamine species in brain. Biochem. Biophys. Acta 962, 98–104.PubMedGoogle Scholar
  111. Hargreaves, K. M. and Clandinin, M. T. (1989) Coordinate control of CDP-choline and phosphatidylethanolamine methyltransferase pathways for phosphatidylcholine biosynthesis occurs in response to change in diet fat. Biochem. Biophys. Acta, 1001, 262–267.PubMedGoogle Scholar
  112. Hargreaves, K. M. and Clandinin, M. T. (1990) Dietary lipids in relation to postnatal development of the brain. Upslal. J. Med. Sci. 48 (Suppl.), 79–95.Google Scholar
  113. Harwood, J. L. and Hawthorne, J. N. (1969) The properties and subcellular distribution of phosphatidylinositol kinase in mammalian. Biochim. Biophys. Acta 171, 75–88.PubMedGoogle Scholar
  114. Hedqvist, P. (1973) Autonomic neurotransmission, in The Prostaglandins ( Ramwell, P. W., ed.), Plenum, New York, pp. 101–129.Google Scholar
  115. Hertting, G., Seregi, A., and Förstermann, U. (1985) Formation and functions of prostaglandin in the central nervous system in rodents. Adv. Prostaglandin Thromboxane Leukot. Res. 15, 573–576.PubMedGoogle Scholar
  116. Hillier, K. and Templeton, W. W. (1980) Regulation of noradrenaline overflow in rat cerebral cortex by prostaglandin E2. Br. J. Pharmacol. 70, 469–473.PubMedGoogle Scholar
  117. Hollingsworth, E. B. and Patrick, G. A. (1985) The effects produced by prostaglandin D2 on serotonin turnover and release and tryptophan uptake. Pharmacol. Biochem. Behay. 22, 371–375.Google Scholar
  118. Holman, R. T. (1964) Nutritional and metabolic interrelationships between fatty acids. Fed. Proc. 23, 1062–1067.PubMedGoogle Scholar
  119. Holman, R. T. (1986) Nutritional and biochemical evidences of acyl interaction with respect to essential polyunsaturated fatty acids. Prog. Lipid Res. 25, 29–39.PubMedGoogle Scholar
  120. Holman, R. T., Johnson, S. B., and Hatch, T. F. (1982) A case of human linoleic acid deficiency involving neurological abnormalities. Am. J. Clin. Nutr. 35, 617–623.PubMedGoogle Scholar
  121. Holub, B. J. (1978) Differential utilization of 1-palmitoyl and 1-stearoyl homologues of various unsaturated 1,2-diacyl-sn-glycerols for phosphatidylcholine and phosphatidylethanolamine synthesis in rat liver microsomes. J. Biol. Chem. 253, 691–696.PubMedGoogle Scholar
  122. Holub, B. J. and Kuksis, A. (1971) Structural and metabolic interrelationships among glycerophosphatides of rat liver in vivo. Can. J. Biochem. 49, 1347–1356.PubMedGoogle Scholar
  123. Horrocks, L. A. and Radominska-Pyrek, A. (1972) Enzymic synthesis of ethanolamine plasmalogens from 1-alkyl-2-acyl-sn-glycero-3(32p)-phosphoryethanolamines by microsomes from rat brain. FEBS Lett. 22, 190–192.PubMedGoogle Scholar
  124. Horrocks, L. A., Spanner, S., Mozzi, R., Fu, S. C., D’Amato, R. A., and Krakowka, S. (1978) Plasmalogenase is elevated in early demyelinating lesions. Adv. Exp. Med. Biol. 100, 423–438.PubMedGoogle Scholar
  125. Horrocks, L. A. (1989) Sources for brain arachidonic acid uptake and turnover in glycerophospholipids. Ann. NY Acad. Sci. 559, 17–24.PubMedGoogle Scholar
  126. Horton, E. W. (1964) Actions of prostaglandin El, E2 and E3 on the central nervous system. Br. J. Pharmacol. 22, 189–192.Google Scholar
  127. Hoshi, M., Williams, M., and Kishimoto, Y. (1973) Characterization of brain cerebrosides at early stages of development in the rat. J. Neurochem. 21, 709–712.PubMedGoogle Scholar
  128. Innis, S. M. and Clandinin, M. T. (1981) Dynamic modulation of mitochondrial inner-membrane lipids in rat heart by dietary fat. Biochem. J. 193, 155–167.PubMedGoogle Scholar
  129. Innis, S. M., Nelson, C. M., and King, D. J. (1994) Lack of relationship between dietary or blood lipid docosahexaenoic acid and development of visual acuity in term gestation infants. FASEB ‘84, 2460, April 24–28, Anaheim, CA.Google Scholar
  130. Irvine, R. F. (1982) How is the level of free arachidonic acid controlled in mammalian cells? Biochem. J. 204, 3–16.PubMedGoogle Scholar
  131. Ito, A., Sito, N., Hirata, M., Kose, A., Tsujino, T., Yoshihara, C., Ogna, K., Kishimoto, A., Nishizuka, Y., and Tanaka, C. (1990) Immunocytochemical localization of the alpha subspecies of protein kinase C in rat brain. Proc. Natl. Acad. Sci. USA 87, 3185–3199.Google Scholar
  132. Iwamoto, N., Kobayashi, K., and Kosaka, K. (1989) The formation of prostaglandin in the postmortem cerebral cortex of Alzheimer-type dementia patients. J. Neurol. 236, 80–84.PubMedGoogle Scholar
  133. Jumpsen, J. (1994) Physiological changes in diet fat composition alters fatty acid content of phosphoglycerides in neuronal and glial cells during brain development in the rat. MSc thesis, University of Alberta, Edmonton, Canada.Google Scholar
  134. Jumpsen, J. and Clandinin, M. T. (1995) Brain Development: Relationship to Dietary Lipid and Lipid Metabolism. AOCS, Champaign, IL.Google Scholar
  135. Kai, M., Salway, J. G., and Hawthorne, J. N. (1968) The diphosphoinositide kinase of rat brain. Biochem. J. 106, 791–801.PubMedGoogle Scholar
  136. Kai, M., White, G. L., and Hawthorne, J. N. (1966) The phosphatidylinositol kinase of rat brain. Biochem. J. 101, 328–337.PubMedGoogle Scholar
  137. Kanfer, J. N. (1972) Base exchange reactions of the phospholipids in rat brain particles. J. Lipid Res. 13, 468–476.PubMedGoogle Scholar
  138. Kannagi, R., Nudelmann E., and Hakomori, S. I. (1982) Possible role of ceramide in defining structure and function of membrane glycolipids. Proc. Natl. Acad. Sci. USA 79, 3470–3474.PubMedGoogle Scholar
  139. Kanterman, R. Y., Felder, C. C., Brenneman, D. E., Ma, A. L., Fitzgerald, S., and Axelrod, J. (1990) Alpha 1-adrenergic receptor mediates arachidonic acid release in spinal cord neurons independent of inositol phospholipid turnover. J. Neurochem. 54, 1225–1232.PubMedGoogle Scholar
  140. Karlsson, I. (1975) Effects of different dietary levels of essential fatty acids on the fatty acid composition of ethanolamine phosphoglycerides in myelin and synaptosomal plasma membranes. J. Neruochem. 25, 101–107.Google Scholar
  141. Karlsson, I. and Svennerholm, L. (1978) Biochemical development of rat forebrains in severe protein and essential fatty acid deficiencies. J. Neurochem. 31, 657–662.PubMedGoogle Scholar
  142. Kishimoto, Y., Davis, W. E., and Radin, N. S. (1965) Turnover of the fatty acids of rat brain gangliosides, glycerophosphatides, cerebrosides, and sulfatides as a function of age. J. Lipid Res. 6, 525–531.PubMedGoogle Scholar
  143. Klenck E. (1942)Über die ganglioside, eine neue gruppe von zuckerhaltigen gehrinlipoiden. Hoppe Seylers Z. Physiol. Chem. 273, 76–86.Google Scholar
  144. Knowles, A. (1982) The biomechanical aspects of vision, in The Senses ( Barlow, H. B. and Mollen, J. D., eds.), Cambridge University Press, New York, pp. 82–101.Google Scholar
  145. Kobayashi, M. and Kanfer, J. N. (1991) Solubilization and purification of rat tissue phospholipase D, in Methods in Enzymology ( Dennis, E. A., ed.), Academic, San Diego, CA, pp. 575–583.Google Scholar
  146. Kracun, I., Rosner, H., Cosovic, C., and Stavljenic, A. (1984) Topographical atlas of the gangliosides in the adult human brain. J. Neurochem. 43, 979–989.PubMedGoogle Scholar
  147. Kracun, I., Rosner, H., Drnovsek, V., Vukelic, Z., Cosovic, C., Trbojevic-Cepe, M., and Kubat, M. (1992) Gangliosides in the human brain development and aging. Neurochem. Int. 20, 421–431.PubMedGoogle Scholar
  148. Kuhn, D. C. and Crawford, M. (1986) Placental essential fatty acid transport and prostaglandin synthesis. Prog. Lipid Res. 25, 345–353.PubMedGoogle Scholar
  149. Kumar, J. S. S. and Menon, P. (1993) Effect of diabetes on levels of lipid peroxides and glycolipids in rat brain. Metabolism 42, 1435–1439.PubMedGoogle Scholar
  150. Lamptey, M. S. and Walker, B. L. (1996) A possible essential role for dietary linolenic acid in the development of the young rat. J. Nutr. 106, 86–93.Google Scholar
  151. Lamptey, M. S. and Walker, B. L. (1978) Learning behaviour and brain lipid composition in rats subjected to essential fatty acid deficiency during gestation, lactation, and growth. J. Nutr. 108, 358–367.PubMedGoogle Scholar
  152. Lands, W. E. M., Inoue, M., Sugiura, Y, and Okuyama, H. (1982) Selective incorporation of polyunsaturated fatty acids into phosphatidylcholine by rat liver microsomes. J. Biol. Chem. 257, 14,968–14, 972.Google Scholar
  153. Lapetina, E. G., Billah, M. M., and Cuatrecasas, P. (1981) The initial action of thrombin on platelets. Conversion of phosphatidylinositol to phosphatidic acid preceding the production of arachidonic acid. J. Biol. Chem. 256, 5037–5040.PubMedGoogle Scholar
  154. Leaf, A. and Weber, P. C. (1988) Cardiovascular effects of n-3 fatty acids. NEJM 318, 549–557.PubMedGoogle Scholar
  155. LeKim, D., Betzing, H., and Stoffel, W. (1973) Studies in vivo and in vitro on the methylation of phosphatidyl-N, N-dimenthylethanolamine to phosphatidylcholine in rat liver. Hoppe Seylers Z. Physiol. Chem. 354, 437–444.PubMedGoogle Scholar
  156. Lindgren, J. A., Hokfelt, T., Dahlen, S. E., Patrono, C., and Samuelsson, B. (1984) Leukotrienes in the rat central nervous system. Proc. Natl. Acad. Sci. USA 81, 6212–6216.PubMedGoogle Scholar
  157. Machlin, L. J. (1984) Vitamin E, in Handbook of Vitamins: Nutritional, Biochemical and Clinical Aspects ( Machlin, L. J., ed.), Marcel Dekker, New York, pp. 99–146.Google Scholar
  158. Martinez, M., (1989) Dietary Polyunsaturated fatty acids in relation to neural development in humans, in Dietary co-3 and co-6 Fatty Acids: Biological Effects and Nutritional Essentiality ( Galli, C. and Simopoulos, A. P., eds.), Plenum, New York, pp. 123–133.Google Scholar
  159. Martinez, M. and Ballabriga, A. (1987) Effects of parenteral nutrition with high doses of linoleate on the developing human liver and brain. Lipids 23, 133–138.Google Scholar
  160. Martins, F. M., Wennberg, A., Meurling, S., Kihlberg, R., and Lindmark, L. (1984) Serum lipids and fatty acid composition of tissues in rats on total parenteral nutrition (TPN). Lipids 19, 728–737.PubMedGoogle Scholar
  161. Masserini, M., Palestini, P., Vernerando, B., Fiorilli, A., Acquotti, D., and Tettamanti, G. (1988) Interactions of proteins with ganglioside-enriched microdomains on the membrane: the lateral phase separation of molecular species of GD1a ganglioside, having homogenous long-chain base composition, is recognized by vibrio cholerae sialidase. Biochemistry 27, 7973–7978.PubMedGoogle Scholar
  162. Mayes, P. (1993) Lipids of physiologic significance, in Harpers Biochemistry, 23rd ed., Appleton and Lange, Norwalk, CT, pp. 134–145.Google Scholar
  163. McCaman, R. E. (1962) Intermediary metabolism of phospholipids in brain tissue (microdetermination of choline phosphokinase). J. Biol. Chem. 237, 672–676.Google Scholar
  164. McCormick, J. H., Neill, W. A., and Sim, A. K. (1977) Immunosuppressive effect of linoleic acid. Lancet 2, 508–515.PubMedGoogle Scholar
  165. McMurchie, E. J. (1988) Dietary lipids and the regulation of membrane fluidity and function, in Advances in Membrane Fluidity, vol. 3 ( Aloia, R. C., Curtain, C. C., and Gordon L. M., eds.), Liss, New York, pp. 189–237.Google Scholar
  166. Miller, S. L. and Morrell, P. (1978) Turnover of phosphatidylcholine in microsomes and myelin in brains of young and adult rats. J. Neurochem. 31, 771–777.PubMedGoogle Scholar
  167. Mo, N., Ammari, R., and Dun, N. J. (1985) Prostaglandin El inhibits calcium-dependent potentials in mammalian sympathetic neurons. Brain Res. 334, 325–329.PubMedGoogle Scholar
  168. Mohrhauer, H. and Holman, R. T. (1963) Alteration of the fatty acid composition of brain lipids by varying levels of dietary essential fatty acids. J. Neurochem. 10, 523–530.PubMedGoogle Scholar
  169. Moore, S. A. (1993) Cerebral endothelium and astrocytes in supplying docosahexaenoic acid to neurons. Adv. Exp. Med. Biol. 331, 229–233.PubMedGoogle Scholar
  170. Moore, S. A., Yoder, E., Murphy S., Dutton G. R., and Spector, A. A. (1991) Astrocytes, not neurons, produce docosahexaenoic acid (22:6 w-3) and arachidonic acid (20:4 w-6). J. Neurochem. 56, 518–524.PubMedGoogle Scholar
  171. Moore, S. A., Yoder, E., and Spector, A. A. (1990) role of the blood—brain barrier in the formation of long-chain w-3 and w-6 fatty acids from essential fatty acid precursors. J. Neurochem. 55, 391–402.Google Scholar
  172. Morgane, P. J., Austin-Lafrance, R., Bronzino, J., Tonkiss, J., Diaz-Cintra, S., Cintra, L., Kemper, T., and Galler, J. R. (1993) Prenatal malnutrition and development of the brain. Neurosci. Biobehay. Rev. 17, 91–128.Google Scholar
  173. Morson, L. and Clandinin, M. T. (1986) Diets varying in linoleic and linolenic acid content alter liver plasma membrane lipid composition and glucagon-stimulated adenylate eyclase activity. J. Nutr. 116, 2355–2362.PubMedGoogle Scholar
  174. Mozzi, R., Siepi, D., Adreoli, V., and Porcellati, G. (1982) Phospholipid synthesis by interconversion reactions in brain tissue, in Biochemistry of SAM and Related Compounds ( Usdin, E., Broschardt, R. T., and Creveling, C. R. eds.), MacMillan, New York, pp. 129–138.Google Scholar
  175. Nakada, T. and Kwee, I. L. (1990) Elevation of unsaturated fatty acids in brain membrane phospholipids in Alzheimer’s disease. Soc. Neurosci. Abs. 16, 281.Google Scholar
  176. Needleman, P., Raz, A., Minkes, M. S., Ferrendelli, J. A., and Sprecher, H. (1979) Triene prostaglandins: prostacyclin and thromboxane biosynthesis and unique biological properties. Proc. Natl. Acad. Sci. USA 76, 944–948.PubMedGoogle Scholar
  177. Neelands, P. J. and Clandinin, M. T. (1983) Diet fat influences liver plasma-membrane lipid composition and glucagon-stimulated adenylate cyclase activity. Biochem. J. 212, 573–583.PubMedGoogle Scholar
  178. Neuringer, M. and Connor, W. E. (1986) n-3 Fatty acids in the brain and retina: evidence for the essentiality. Nutr. Rev. 44, 285–294.Google Scholar
  179. Neuringer, M. and Connor, W. E. (1987) The importance of dietary n-3 fatty acids in the development of the retina and nervous system, in Proceedings of the AOCS Short Course on Polyunsaturated Fatty Acids and Eicosanoids ( Lands, W. E. M., ed.), AOCS, Champaign, IL.Google Scholar
  180. Neuringer, M., Connor, W. E., Lin, D. S., Barstad, L., and Luck, S. (1986) Biochemical and functional effects of prenatal and postnatal o.)-3 fatty acid deficiency on retina and brain in rhesus monkeys. Proc. Natl. Acad. Sci. USA 83, 4021–4025.PubMedGoogle Scholar
  181. Neuringer, M., Connor, W. E., and Luck, S. J. (1985) Omega-3 fatty acids in the retina. Invest. Opthalmol. Vis. Sci. 26 (Suppl.), 31.Google Scholar
  182. Neuringer, M., Connor, W. E., VanPatten, C., and Barstad, L. (1984) Dietary omega-3 fatty acid deficiency and visual loss in infant rhesus monkeys. J. Clin. Invest. 73, 272–276.PubMedGoogle Scholar
  183. Nielsen, J. C., Maude, M. B., Hughes, H., and Anderson, R. E. (1986) Rabbit photoreceptor outer segments contain high levels of docosahexaenoic acid. Opthalmol. Vis. Sci. 27, 261–264.Google Scholar
  184. Nishino, S., Mignot, E., Fruhstorfer, B., Dement, W. C., and Hayaishi, O. (1989) Prostagalandin E2 and its methyl ester reduce cataplexy in canine narcolepsy. Proc. Natl. Acad. Sci. USA 86, 2483–2487.PubMedGoogle Scholar
  185. Norton, W. T., Poduslo, S. E., and Suzuki, K. (1966) Subacute sclerosing leukoencephalitis. II. Chemical studies including abnormal myelin and an abnormal ganglioside pattern. J. Neuropathol. Exp. Neurol. 25, 582–597.PubMedGoogle Scholar
  186. O’Brien, J. S., Fillerup, D. L., and Mead, J. F. (1964) Quantification and fatty acid and fatty aldehyde composition of ethanolamine, choline and serine glycerophosphatides in human cerebral grey and white matter. J. Lipid Res. 5, 329–338.PubMedGoogle Scholar
  187. O’Brien, J. S. and Sampson, E. L. (1965) Lipid composition of the normal human brain: gray matter, white matter, and myelin. J. Lipid Res. 6, 537–544.PubMedGoogle Scholar
  188. Oderfeld-Nowak, B., Casamenti, F., and Pepeu, G. (1993) Gangliosides in the repair of brain cholinergic neurons. Acta Biochim. Polonica 40, 395–404.Google Scholar
  189. Omodeo-Salè, F., Mariani, C., and Berra, B. (1990) Effect of maternal fatty acid deficiency on lipid content and composition of rat liver during prenatal development. Cell. Mol. Biol. 35, 379–390.Google Scholar
  190. Palmer, M. R., Mathews, W. R., Hoffer, B. J., and Murphy, R. C. (1981) Electrophysiological response of cerebellar Purkinje neurons to leukotrine D4 and B4. J. Pharmacol. Exp. Ther. 219, 91–96.PubMedGoogle Scholar
  191. Passwell, J. H., David, R., and Katznelson, D. (1976) Pigment deposition in the reticuloendothelial system after fat emulsion infusion. Arch. Dis. Child. 51, 366–367.PubMedGoogle Scholar
  192. Pettegrew, J. W., Moossy, J., Withers, G., McKeag, D., and Panchalingam, K. (1988) 31P nuclear magnetic resonance study of the brain in Alzheimer’s disease. J. Neuropathol. Exp. Neurol. 47, 235–248.Google Scholar
  193. Piomelli, D. (1994) Eicosanoids in synaptic transmission. Crit. Rev. Neurobiol. 8, 65–83.PubMedGoogle Scholar
  194. Poddubiuk, Z. M. and Kleinrok, Z. (1976) A comparison of the central actions of prostaglandins A1, E1, E2, Fla and Fla in the rat. II. The effect of intraventricular prostaglandins on the action of some drugs on the level and turnover of biogenic amines in the rat brain. Psychopharmacology 50, 95–102.PubMedGoogle Scholar
  195. Poincelot, R. P. and Zull, J. E. (1969) Phospholipid composition and extractability of light- and dark-adated bovine retinal rod outer segments. Vis. Res. 9, 647–651.PubMedGoogle Scholar
  196. Porcellati, G., Arienti, G., Pirotta, M., and Giorgini, D. (1971) Base-exchange reactions for the synthesis of phospholipids in nervous tissue: the incorporation of serine and ethanolamine into the phospholipids of isolated brain microsomes. J. Neurochem. 18, 1395–1417.PubMedGoogle Scholar
  197. Prottey, C., Salway, J. G., and Hawthorne, J. N. (1968) The structure of enzymically produced diphosphoinositide and triphosphoinositide. Biochim. Biophys. Acta 164, 238–251.PubMedGoogle Scholar
  198. Purvis, J. M., Clandinin, M. T., and Hacker, R. R. (1982) Fatty acid accretion during prenatal brain growth in the pig. A model for fatty acid accretion in human brain. Comp. Biochem. Physiol. 72B, 195–199.Google Scholar
  199. Purvis, J. M., Clandinin, M. T., and Hacker, R. R. (1983) Chain elongation-desaturation of linoleic acid during the development of the pig. Implications for the supply of polyenoic fatty acids to the developing brain. Comp. Biochem. Physiol. 75B, 199–204.Google Scholar
  200. Radominska-Pyrek, A. and Horrocks, L. A. (1972) Enzymic synthesis of 1-alkyl2-acyl-sn-glycero-3 phosphorylethanolamines by the CDP-ethanolamine: 1-radyl-2-acyl-sn-glycerol ethanolaminephosphotransferase from microsomal fraction of rat brain. J. Lipid Res. 13, 580–587.PubMedGoogle Scholar
  201. Reddy, T. S. and Bazan, N. G. (1985) Synthesis of docosahexaenoyl-arachidonyland palmitoylcoenzyme A in ocular tissues. Exp. Eye Res. 41, 87–95.PubMedGoogle Scholar
  202. Reddy, T. S., Birkle, D. L., Packer, A. J., Dobard, P., and Bazan, N. G. (1986) Fatty acid composition and arachidonic acid metabolism in vitreous lipids from canine and human eyes. Curr. Eye Res. 5, 441–447.PubMedGoogle Scholar
  203. Reimann, W., Steinhauer, H. B., Hedler, L., Starke, K., and Hertting, G. (1981) Effect of prostaglandins D2, E2 and Fla on catecholamine release from slices of rat and rabbit brain. Eur. J. Pharmacol. 69, 421–427.PubMedGoogle Scholar
  204. Rivers, J. P. W., Sinclair, A. J., and Crawford, M. A. (1975) Inability of the cat to desaturate essential fatty acids. Nature 258, 171–173.PubMedGoogle Scholar
  205. Roberts, P. J. and Hillier, K. (1976) Facilitation of noradrenaline release from rat brain synaptosomes by prostaglandin E2. Brain Res. 112, 425–428.PubMedGoogle Scholar
  206. Rodier, P. M. (1980) Chronology of neuron development: animal studies and their clinical implications. Dev. Med. Child Neurol. 22, 525–545.PubMedGoogle Scholar
  207. Rosner, H. and Rahmann, H. (1987) Ontogeny of vertebrate gangliosides, in Gangliosides and Modulation of Neuronal Function ( Rahmann, H., ed.), Springer-Verlag, Berlin, pp. 373–390.Google Scholar
  208. Rossiter, R. J. (1966) Biosynthesis of phospholipids and sphingolipids in the nervous system, in Nerve as a Tissue ( Rodahl, K. and Issekutz, B., eds.), Harper and Row, New York, pp. 175–194.Google Scholar
  209. Rouser, G., Yamamoto, A., and Kritchevsky, G. (1971) Cellular membranes. Structure and regulation of lipid class composition species differences, changes with age, and variations in some pathological states. Arch. Int. Med. 127, 1105–1121.Google Scholar
  210. Rowe, C. E. (1969) The measurement of triglyceride in brain and the metabolism of brain triglyceride in vivo. J. Neurochem. 16, 205–214.PubMedGoogle Scholar
  211. Rutishauser, U. (1989) Polysialic acid as a regulator of cell interactions. in Neurobiology of Glycoconjugate ( Margolis, R. U. and Margolis, R. K., eds.), Plenum Press, New York, pp. 367–382.Google Scholar
  212. Salway, J. G., Harwood, J. L., Kai, M., White, G. L., and Hawthorne, J. N. (1968) Enzymes of phosphoinositide metabolism during rat brain development. J. Neurochem. 15, 221–226.PubMedGoogle Scholar
  213. Samuelsson, B. (1964) Identification of smooth muscle-stimulating factor in bovine brain prostaglandins and related factors 25. Biochim. Biophys. Acta 84, 218–219.PubMedGoogle Scholar
  214. Samuelsson, B. (1986) Leukotriens and other lipoxygenase products. Prog. Lipid Res. 25, 13–18.PubMedGoogle Scholar
  215. Samuelsson, B., Goldyne, M., Granström, E., Hamberg, M., Hammarström, S., and Malmsten, C. Prostaglandins and thromboxanes. Ann. Rev. Biochem. 47, 1097–1129.Google Scholar
  216. Sanders, T. A. B. and Younger, K. M. (1981) The effect of dietary supplements of omega-3 polyunsaturated fatty acids on the fatty acid composition of platelets and plasma choline phosphoglycerides. Br. J. Nutr. 45, 613–616.PubMedGoogle Scholar
  217. Sastry, P. S. (1985) Lipids of the nervous tissue: composition and metabolism. Prog. Lipid Res. 24, 69–176.PubMedGoogle Scholar
  218. Sbaschnig-Agler, M., Pfenninger, K. H., and Ledeen, R. W. (1988) Gangliosides and other lipids of the growth cone membrane. J. Neurochem. 51, 212–220.PubMedGoogle Scholar
  219. Schaad, N. C., Magistretti, R T., and Schorderet, M. (1991) Prostanoids and their role in cell-cell interactions in the central nervous system. Neurochem. Int. 18, 303–322.PubMedGoogle Scholar
  220. Schaad, N. C., Schorderet, M., and Magistretti, R J. (1987) Prostaglandins and the synergism between VIP and noradrenaline in the cerebral cortex. Nature 328, 637–640.PubMedGoogle Scholar
  221. Schaad, N. C., Schorderet, M., and Magistretti, R J. (1987) The accumulation of cAMP elecited by vasoactive intestinal peptide (VIP) is potentiated by noradrenaline, histamine, baclofen, phorbol esters and ouabain in mouse cerebral cortical slices: Studies on the role of arachidonic. J. Neurochem. 53, 941–951.Google Scholar
  222. Schwartz, R. D., Yu, X., Wagner, J., Ehrmann, M., and Mileson, B. E. (1992) Cellular regulation of the benzodiazepine/GABA receptor: arachidonic acid, calcium and cerebral ischemid. Neuropsychopharmacology 6, 119–125.PubMedGoogle Scholar
  223. Schweitzer, P., Madamba, S., and Siggins, G. R. (1990) Arachidonic acid metabolites as mediators of somatostatin-induced increase of neuronal M-current. Nature 346, 464.PubMedGoogle Scholar
  224. Scott, B., Lew, J., Clandinin, M. T., and Cinader, B. (1989) Dietary fat influences electric membrane properties of neurons in cell culture. Cell. Mol. Neurobiol. 9, 105–113.PubMedGoogle Scholar
  225. Scott, B. L., Teddy, T. S., and Bazan, N. G. (1987) Docosahexanenoate metabolism and fatty-acid composition in developing retinas of normal and rd mutant mice. Exp. Eye Res. 44, 101–113.PubMedGoogle Scholar
  226. Separovic, D. and Dorman, R. V. (1993) Prostaglandins Fla synthesis in the hippocampal mossy fiber synaptosomal preparation. II. Effects of receptor activation. Prostaglandins Leukot. Essent. Fatty Acids 49, 877–884.PubMedGoogle Scholar
  227. Sharma, H. S., Olsson, Y., Nyberg, F., and Dey, P. K. (1993) Prostaglandins modulate alterations of microvascular permeability, blood flow, edema and serotonin levels following spinal cord injury: an experimental study in the rat. Neuroscience 57, 443–449.PubMedGoogle Scholar
  228. Shatz, C. J. (1990) Impulse activity and the patterning of connections during CNS development. Neuron 57, 745–756.Google Scholar
  229. Shein, H., Britva, A., Hess, H. H., and Selkoe, D. J. (1970) Isolation of hamster brain astroglia by in vitro cultivation and subcutaneous growth and content of cerebroside, ganglioside, RNA and DNA. Brain Res. 19, 497–501.PubMedGoogle Scholar
  230. Simopoulos, A. (1991) Omega-3 fatty acids in health and disease and in growth and development. Am. J. Clin. Nutr. 54, 438–463.PubMedGoogle Scholar
  231. Sinclair, A. J. (1975) Incorporation of radioactive polyunsaturated fatty acids into liver and brain of developing rat. Lipids 10, 175–184.PubMedGoogle Scholar
  232. Sjöstrand, J. (1965) Proliferative changes in glial cells during nerve regeneration. Z. Zellforsch Mikrosk. Anat. 68, 481–493.PubMedGoogle Scholar
  233. Snyder, F., Blank, M. L., and Malone, B. (1970) Requirement of cytidine derivatives in the biosynthesis of 0-alkyl phospholipids. Req. J. Biol. Chem. 245, 4016–4018.Google Scholar
  234. Spector, A. A. (1992) Fatty acids in human biology: past and future, in Polyunsaturated Fatty Acids in Human Nutrition, vol. 28 ( Bracco, U. and Deckelbaum, R. J., eds.), Nestle Nutrition Workshop Series, Raven., New York, pp. 1–12.Google Scholar
  235. Spector, A. A. and Yorek, M. A. (1985) Membrane lipid composition and cellular function. J. Lipid Res. 26, 1015–1035.PubMedGoogle Scholar
  236. Stoffel, W. and LeKim, D. (1971) Studies on the biosynthesis of plasmalogens. Precursors in the biosynthesis of plasmalogens: on the stereo-specificity of the biochemical dehydrogenation of the 1–0-alkylglyceryl to the 1–0-alk-1’enylglycerylether bond. Hoppe Seylers Z. Physiol. Chem. 352, 501–511.PubMedGoogle Scholar
  237. Stoffel, W., LeKim, D., and Heyn, G. (1971) Metabolism of sphingosine bases. XIV. Sphinganine (dihydrosphingosine), and effective donor of the alk-1-enyl chain of plasmalogens. Hoppe Seylers Z. Physiol. Chem. 351, 875–883.Google Scholar
  238. Stokes, C. E. and Hawthorne, J. N. (1987) Reduced phosphoinositide concentrations in anterior temporal cortex of Alzheimer-diseased brains. J. Neurochem. 48, 1018–1021.PubMedGoogle Scholar
  239. Strittmatter, W. J., Hirata, F., and Axelrod, J. (1979) Phospholipid methylation unmasks cryptic beta-adrenergic receptors in rat reticulocytes. Science 204, 1205–1207.PubMedGoogle Scholar
  240. Stubbs, C. D. and Smith, A. D. (1984) The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim. Biophys. Acta 79, 89–137.Google Scholar
  241. Subbarao, K. O., Richardson, J. S., and Ang, L. C. (1990) Autopsy samples of Alzheimer’s cortex show increased peroxidation in vitro. J. Neurochem. 55, 342–345.Google Scholar
  242. Suh, M., Wierzibicki, T., and Clandinin, M. T. (1994) Dietary fat alters membrane composition in rod outer segments in normal and diabetic rats: Impact on content of very long-chain (C 24) polyenoic fatty acids. Biochim. Biophys. Acta 1214, 62–64.Google Scholar
  243. Sun, G. Y. (1970) Composition of actyl groups in the neutral glycerides from mouse brain. J. Neurochem. 17, 445–446.PubMedGoogle Scholar
  244. Sun, G. Y. and Foudin, L. L. (1985) Phospholipid composition and metabolism in the developing and aging nervous system, in Phospholipids in Nervous Tissue ( Eichberg, J. ed), Wiley, New York, pp. 79–133.Google Scholar
  245. Sun, G. M. and Yau, T. M. (1976) Changes in acyl group composition of diacylglycerophosphorylethanolamine, alkenylacyl-glycerophosphorylethanolamine and diacyl-glycerophosphorylcholine in myelin and microsomal fractions of mouse brain during development. J. Neurochem. 26, 291–295.PubMedGoogle Scholar
  246. Suzuki, K. (1965) The pattern of mammaliam brain gangliosides. III. Regional and developmental differences. J. Neurochem. 12, 969–979.Google Scholar
  247. Svennerholm, L. (1957) Quantitative estimation of sialic acids. II. A colorimetric resorcinol-hydrochloric acid method. Biochim. Biophys. Acta 64, 604–614.Google Scholar
  248. Svennerholm, L. (1980) Ganglioside designation, in Structure and Function of Gangliosides ( Svennerholm, L., Mandel, P., Dreyfus, H., and Urban, R. eds.), Plenum, New York, p. 11.Google Scholar
  249. Svennerholm, L., Ailing, C., Bruce, A., Karlsson, I., and Sapia, 0. (1972) Effects on offspring of maternal malnutrition in the rat, in Lipids, Malnutrition and the Developing Brain, Ciba Foundation Symposium, Elsevier, Amsterdam, pp. 141–157.Google Scholar
  250. Svennerholm, L., Boström, K., Fredman, P., Mânsson, J. E., Rosengren, B., and Rynmark, B. M. (1989) Human brain gangliosides: developmental changes from early fetal stage to advanced stage. Biochim. Biophys. Acta 1005, 109–117.PubMedGoogle Scholar
  251. Svennerholm, L., Fredman, R, Jungbjer, B., Mânsson, J. E., and Rynmark, B. M. (1987) Large alterations in ganglioside and neutral glycosphingolipid patterns in brains from cases with infantile neuronal ceroid lipofuscinosis/ polyunsaturated fatty acid lipidosis. J. Neurochem. 49, 1772–1783.PubMedGoogle Scholar
  252. Svennerholm, L. and Gottfries, C. G. (1994) Membrane lipids, selectively diminished in Alzheimer brains, suggest synapse loss as a primary event in early-onset form (type I) and demyelination in late-onset form (type II). J. Neurochem. 62, 1039–1047.PubMedGoogle Scholar
  253. Svennerholm, L. and Ställberg-Stenhagen, S. (1968) Changes in the fatty acid composition of cerebrosides and sulfatides of human nervous tissue with age. J. Lipid Res. 9, 215–225.PubMedGoogle Scholar
  254. Svennerholm, L. and Vanier, M. T. (1978) Lipid and fatty acid composition of human cerebral myelin during development. Adv. Exp. Med. Biol. 100, 27–41.PubMedGoogle Scholar
  255. Sweeley, C. C. and Siddiqui, B. (1977) Chemistry of mammalian glycolipids, in The Glycoconjugates, vol. 1 ( Horowitz, M. I. and Pigman, W., eds.), Academic, New York, pp. 459–540.Google Scholar
  256. Tahin Q. S., Blum, M., and Carafoli, E. (1981) The fatty acid composition of subcellular membranes of rat liver, heart and brain: diet-induced modifications. Eur. J. Biochem. 121, 5–13.PubMedGoogle Scholar
  257. Taki, T. and Kanfer, J. N. (1978) A phospholipid serine base exchange enzyme. Biochim. Biophys. Acta. 528, 309–317.PubMedGoogle Scholar
  258. Tamai, Y., Ohtami, Y., and Miru, S. (1980) in Neuropsychiatric Disorders in the Elderly, (Hirano, A. and Miyoshi, K., eds.), Igaku-Shoin, Tokyo, pp. 193–196.Google Scholar
  259. Tamai, Y. and Yamakawa, T. (1968) On the glucocerebroside in the brain of old patients. Jpn. J. Exp. Med. 38, 143–144.PubMedGoogle Scholar
  260. Templeton, W. W. (1988) Prostanoid actions on transmitter release, in Prostaglandins: Biology and Chemistry of Prostaglandins and Related Eicosanoids ( Curtis-Prior, ed.), Churchill-Livingstone, Edinburgh, UK, pp. 402–410.Google Scholar
  261. Terrian, D. M., Rea, M. A., and Dorman, R. V. (1988) Relationship between prostaglandin synthesis and release of acidic amino acid neurotransmitters. Aviat. Space Environ. Med. Nov., A2 - A9.Google Scholar
  262. Tinoco, J. (1982) Dietary requirements and functions of a-linolenic acid in animals. Prog. Lipid Res. 21, 1–45.PubMedGoogle Scholar
  263. Todo, T., Shitara, N., Nakamura, H., Takakura, K., Tomonaga, M., and Ikeda, K. (1990) Astrocytic localization of the immunoreactivity for protein kinase C isoenzyme (type III) in human brain. Brain Res. 517, 351–353.PubMedGoogle Scholar
  264. Traiffort, E., Ruat, M., Arrang, J. M., Leurs, R., Piomelli, D., and Schwartz, J. C. (1992) Expression of a cloned rat histamine H2 receptor mediating inhibition of arachidonate release and activation of cAMP accumulation. Proc. Natl. Acad. Sci. USA 89, 2649–2653.PubMedGoogle Scholar
  265. Trewhella, M. A. and Collins, F. D. (1973) Pathways of phosphatidylcholine biosynthesis in rat liver. Biochim. Biophys. Acta. 296, 51–61.PubMedGoogle Scholar
  266. Uauy, R. D., Birch, D., Birch, E., and Hoffman, D. R. (1990) Effect of dietary w-3 fatty acids on eye and brain development in very low birth weight neonates. Ped. Res. 28, 485–492.Google Scholar
  267. Uauy, R. D., Birch, E., Birch, D., and Peirano, P. (1992) Visual and brain function measurements in studies of n-3 fatty acid requirements of infants. J. Pediatr. 120, 77–90.Google Scholar
  268. Van Aerde, J., Duerkson, D., Chan, G., Thomson, A. B. R., and Clandinin, M. T. (1993) Physiologically modifying the fatty acid (FA) composition of intravenous (IV) lipid emulsions to stimulate milk FA reduces cholestasis induced by total parenteral nutrition (TPN). Clin. Invest. Med. 16, A34, 64.Google Scholar
  269. vanEchten, G. and Sandhoff, K. (1989) Modulation of ganglioside biosynthesis in primary cultured neurons. J. Neurochem. 52, 207–214.Google Scholar
  270. Vanier, M. T., Holm, M., Mansson, J. E., and Svennerholm, L. The distribution of lipids in the human nervous system. V. Gangliosides and allied neutral glycolipids of infant brain. J. Neurochem. 21, 1375–1384.Google Scholar
  271. Wainwright, P. E., Huang, Y. S., Bulman-Fleming, B., Mills, D. E., Redden, P., and McCutcheon, D. (1991) The role of n-3 essential fatty acids in brain and behavioural development: a cross-fostering study in the mouse. Lipids 26, 37–45.PubMedGoogle Scholar
  272. Waite, M. (1987) Phospholipases C and phospholipases D of mammalian cells, in The Phospholipases in Handbook of Lipid Research, vol. 5 ( Hanahan, D. J., ed.), Plenum, New York, pp. 135–153.Google Scholar
  273. Weber, P. C. (1987) n-3 fatty acids and the eicosanoid system, in Fat Production and Consumption-Technologies and Nutritional Implications, Series A: Life Sciences, vol. 131 (Galli, C. and Fedeli, E., eds.), Plenum, New York, pp. 123–130.Google Scholar
  274. Weber, P. C., Fischer, S., vonSchacky C., Lorenz, R., and Strasser, T. (1986) Dietary omega-3 polyunsaturated fatty acids and eicosanoid formation in man. Prog. Lipid Res. 25, 273–276.PubMedGoogle Scholar
  275. Wheeler, T. G., Benolken, R. M., and Anderson, R. E. (1975) Visual membranes: specificity of fatty acid precursors for the electrical response to illumination. Science 188, 1312–1314.PubMedGoogle Scholar
  276. White, H. L. and Stine, L. (1984) Arachidonate lipoxygenase activity in rat brain synaptosomal preparations. Soc. Neurosci. Abs. 10, 1130.Google Scholar
  277. Wiegandt, H. (1985) Gangliosides, in Glycolipids ( Wiegandt, H., ed.), Elsevier Science, Amsterdam, pp. 199–260.Google Scholar
  278. Winick, M. (1970) Nutrition and nerve cell growth. Fed. Proc. 29, 1510–1515.PubMedGoogle Scholar
  279. Wolfe, L. S. (1989) Prostaglandins, thromboxanes, leukotriens and other derivatives of carbon-20 unsaturated fatty acids. J. Neurochem. 38, 1–14.Google Scholar
  280. Wolfe, L. S., Rostworowski, K., and Pappius, H. M. (1976) The endogenous biosynthesis of prostaglandins by brain tissue in vitro. Can. J. Biochem. 54, 629–640.PubMedGoogle Scholar
  281. Wykle, R. L. (1977) Lipid Metabolism in Mammals (Snyder, F., ed.), Plenum, New York.Google Scholar
  282. Yamamoto, N., Hashimoto, A., and Takemoto, Y. (1988) Effect of the dietary a-linolenate/linoleate balance on lipid compositions and learning ability of rats. H. Discrimination process, extinction process, and glycolipid compositions. J. Lipid Res. 28, 144–151.Google Scholar
  283. Yamanaka, W. K., Clemens, G. W., and Hutchison, M. L. (1980) Essential fatty acid deficiency in humans. Prog. Lipid Res. 19, 187–215.PubMedGoogle Scholar
  284. Yavin, E. and Zeigler, B. P. (1977) Regulation of phospholipid metabolism in differentiating cells from rat brain cerebral hemispheres in culture. J. Biol. Chem. 252, 260–267.PubMedGoogle Scholar
  285. Yehuda, S. (1987) Nutrients, brain biochemistry, and behavior: a possible role for the neuronal membrane. Int. J. Neurosci. 35, 21–36.PubMedGoogle Scholar
  286. Yohe, H. C., Roark, D. E., and Rosenberg, A. (1976) C-20 sphingosine as a deter- mining factor in aggregating of gangliosides. J. Biol. Chem. 251, 7083–7087.PubMedGoogle Scholar
  287. Youyou, A., Durand, G., Pascal, G., Piciotti, M., Dumont, O., and Bourre, J. M. (1986) Recovery of altered fatty acid composition induced by diet devoid of n-3 fatty acids in myelin, synaptosomes, mitochondria, and microsomes of developing rat brain. J. Neurochem. 46, 224–228.PubMedGoogle Scholar
  288. Yu, R. K., Ledeen, R. W., and Eng, L. F. (1974) Ganglioside abnormalities in multiple sclerosis. J. Neurochem. 23, 169–174.PubMedGoogle Scholar
  289. Yu, R. K., Macala, L. J., Taki, T., Weinfeld, H. M., and Yu, F. S. (1988) Developmental changes in ganglioside composition and synthesis in embryonic rat brain. J. Neurochem. 50, 1825–1829.PubMedGoogle Scholar
  290. Zamenhof S. and vanMarthens, E. (1978) Nutritional influences on prenatal brain development, in Early Influences ( Gottlieb, G., ed.), Academic, New York, pp. 149–186.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • M. Thomas Clandinin
  • Jacqueline Jumpsen

There are no affiliations available

Personalised recommendations