Advertisement

Physiological Role of Fatty Acids in Infancy

Effect of Dietary Fat on Brain Fatty Acids and Learning Ability in Infancy
  • Akie Yonekubo
Chapter

Abstract

Breast milk is the best source of nutrition for infant growth and development. However, there are cases where breast feeding can not be performed because of insufficient breast milk or social environment. In this case, infant formula is the only source of nutrition. Therefore, the quality of infant formula must be equivalent for growth and development to that of breast-fed infants.

Keywords

Infant Formula Swimming Test Safety Platform Brain Fatty Acid Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agostoni, C., Riva, E., Bellu, R., Trojan, S., Luotti, D., and Giovannini, M. (1994) Effects of diet on the lipid and fatty acid status of full-term infants at 4 months. J. Am. College Nutr. 13, 658–664.Google Scholar
  2. Agostoni, C., Trojan, S., Bellu, R., Riva, E., and Giovannini, M. (1995) Neurodevelopmental quotient of healthy term infants at 4 months and feeding practice: the role of long-chain polyunsaturated fatty acids. Pediat. Res. 38, 262–266.PubMedCrossRefGoogle Scholar
  3. Anding, R. H. and Hwang, D. H. (1986) Effects of dietary linolenate on the fatty acid composition of brain lipids in rats. Lipids 21, 697–701.PubMedCrossRefGoogle Scholar
  4. Bazan, N. G. (1990) Supply of n-3 polyunsaturated fatty acids and their significance in the central nervous system, in Nutrition and the Brain ( Wurtman R. J. and Wurtman, J. J., eds.), Raven, New York.Google Scholar
  5. Bernsohn, J. and Spitz, F. J. (1974) Linoleic-linolenic acid dependency of some brain membrane-bound enzymes after lipid deprivation in rats. Biochem. Biophys. Res. Commun. 57, 293–298.PubMedCrossRefGoogle Scholar
  6. Bitman, J., Wood, L., Hamosh, P., and Mehta, N. R. (1983) Comparison of the lipid composition of breast milk from mothers of term and preterm infants. Am. J. Clin. Nut. 38, 300–312.Google Scholar
  7. Burr, G. O. and Burr, M. M. (1929) A new deficiency disease produced by the rigid exclusion of fat from the diet. J. Biol. Chem. 82, 345–367.Google Scholar
  8. Carlson, S. E., Carver, J. D., and House, S. G. (1986) High fat diets varying in ratios of polyunsaturated to saturated fatty acid, linoleic to linolenic acid. J. Nutr. 116, 718–725.PubMedGoogle Scholar
  9. Carlson, S. E., Cooke, R. J., Rhodes, R. G., Peeples, J. M., Werkman, S. H., and Tolley, E. A. (1991) Long-term feeding of formulas high in linolenic acid and marine oil to very low weight infants: phospholipid fatty acids. Pediatr. Res. 30, 404–412.PubMedCrossRefGoogle Scholar
  10. Carlson, S. E., Rhodes, P. G., Rao, U. S., and Goldgar, D. E. (1987) Effect of fish oil supplementation on the n-3 fatty acid content of red blood cell membranes in preterm infants. Pediatr. Res. 21, 507–510.PubMedCrossRefGoogle Scholar
  11. Charnick, J. S., McLennan, R. L., Abeywardena, M. Y., and Russell, G. R. (1985) Altered levels of n-6/n-3 fatty acids in rat heart and storage fat following variable dietary intake of linoleic acid. Ann. Nutr. Metab. 29, 279–288.CrossRefGoogle Scholar
  12. Choi, Y. S., Goto, S., Ikeda, I., and Sugano, M. (1989) Effect of dietary n-3 polyunsaturated fatty acids on cholesterol synthesis and degradation in rats of different ages. Lipids 24, 40–50.Google Scholar
  13. Connor, W. E., Neuringer, M., and Cin, D. S. (1990) Dietary effects on brain fatty acid composition: the reversibility of n-3 fatty acid deficiency and turnover of docosahexaenoic acid in the brain, erythrocytes, and of plasma rhesus monkeys. J. Lipid Res. 31, 237–247.PubMedGoogle Scholar
  14. Coscina, D. V., Yehuda, S., Dixon, L. M., Kish, S., and Leprohon-Greenwood, C. E. (1986) Learning is improved by a soybean oil diet in rat. Life Sci. 38, 1789–1794.PubMedCrossRefGoogle Scholar
  15. Crawford, M. A., Doyle, W., Williams, G., and Drury, R. J. (1989) The role of fats and EFAs for energy and cell structures in the growth of fetus and neonate, in The Role of Fats in Human Nutrition 2nd ed. ( Vergroesen, A. J. and Crawford, M., eds.), Academic, London, pp. 81–115.CrossRefGoogle Scholar
  16. Crawford, M. A., Hassam, A. G., and Rivers, J. P. W. (1978) Essential fatty acid requirements in infancy. Am. J. Clin. Nutr. 31, 2181–2185.PubMedGoogle Scholar
  17. Dobbing, J. and Sands, J. (1979) Comparative aspects of the brain growth spurt. Early Hum. Dey. 3, 79–83.CrossRefGoogle Scholar
  18. Enslen, M., Milon, H., and Malnoe, A. (1991) Effects of low intake of n-3 fatty acids during development on brain phospholipid fatty acid and exploratory behavior in rats. Lipids 26, 203–208.PubMedCrossRefGoogle Scholar
  19. Fiennes, R. N., Sinclair, A. J., and Crawford, M. A. (1973) Essential fatty acid studies in primates: linoleic acid requirements of capuchins. J. Med. Primate 2, 155–169.Google Scholar
  20. Fritsche, K. L. and Johnston, P. V. (1988) Rapid autoxidation of fish oil in diets without added antioxidants. J. Nutr. 118, 425, 426.Google Scholar
  21. Folch, J., Lee, M., Meath, J. A., and LeBarron, F. N. (1951) Preparation of lipids extracts from brain tissue. J. Biol. Chem. 191, 833–841.PubMedGoogle Scholar
  22. Fujimoto, K., Kanno, T., Koga, H., Onodera, M., Hirono, H., Nishikawa, M., and Maruyama, K. (1993) Effects of n-3 fatty acid deficiency during pregnancy and lactation on learning ability of rats, in Advances in Polyunsaturated Fatty Acid Research ( Yasugi, T., Nakamura, H., and Soma, M., eds.), Excerpta Medica, Amsterdam, pp. 257–260.Google Scholar
  23. Galli, C., White, H. B., and Paoletti, R. (1971) Lipid alterations and their reversion in the central nervous system of growing rats deficient in essential fatty acids. Lipids 6, 378–387.PubMedCrossRefGoogle Scholar
  24. Gibson, R. A. and Kneebone, G. M. (1981) Fatty acid composition of human colostrum and mature breast milk. Am. J. Clin. Nut. 34, 252–257.Google Scholar
  25. Goodnight, S. H., Harris, W. S., Conner, W. E., and Illingworth, D. R. (1982) Polyunsaturated fatty acids, hyperlipemia, and thrombosis. Arteriosclerosis 2, 87–113.PubMedCrossRefGoogle Scholar
  26. Goodnight, S. H., Illingworth, D. R., and Connor, W. E. (1990) Fish oil in hypertriglyceridemia: a dose-response study. Am. J. Clin. Nutr. 51, 399–406.PubMedGoogle Scholar
  27. Hoffmann, D. R. and Uauy, R. (1992) Essentiality of dietary n-3 fatty acids or premature infants: plasma and red blood cell fatty acid composition. Lipids 27, 886–895.CrossRefGoogle Scholar
  28. Holman, R. T., Johnson, S. B., and Hatch, T. F. (1982) A case of human linoleic acid deficiency involving neurological abnormalities. Am. J. Clin. Nutr. 35, 617–623.PubMedGoogle Scholar
  29. Houwelinger, A. C. V., Kester, A. D. M., and Hornstra, G. (1989) Effect of moderate fish intake on platelet aggregation and ATP release in human blood. Nutr. Res. 9, 1187–1196.CrossRefGoogle Scholar
  30. Innis, S. M. (1991) Essential fatty acids in growth and development. Prog. Lipid Res. 30, 39–103.PubMedCrossRefGoogle Scholar
  31. Lamptey, M. S. and Walker, B. L. (1976) A possible essential role for dietary linolenic acid in the development of the young rat. J. Nutr. 106, 86–93.PubMedGoogle Scholar
  32. Lamptey, M. S. and Walker, B. L. (1978) Learning behavior and brain lipid composition in rat subjected to essential fatty acid deficiency during gestation, lactation and growth. J. Nutr. 108, 358–367.PubMedGoogle Scholar
  33. Lee, J. H., Sugano, M., and Ide, T. (1988) Effects of various combination of w 3 and w 6 polyunsaturated fats with saturated fat on serum lipids and eicosanoid production in rats. J. Nutr. Sci. Vitaminol. 34, 117–129.PubMedCrossRefGoogle Scholar
  34. Lemarchal, P. (1978) Role biologique de lacide linolenique. Rev. Fr. Corps Fras 25, 303–308.Google Scholar
  35. Leray, C. and Pelletier, X. (1987) Thin-layer chromatography of human platelet phospholipids with fatty analysis. J. Chromatog. 420, 411–416.CrossRefGoogle Scholar
  36. Markrides, M., Neumann, M. A., Simmer, K., and Gibson, R. A. (1995) Erythrocyte fatty acids of term infants fed either breast milk, standard formula, or formula supplemented with long-chain polyunsaturates. Lipids 30, 941–948.CrossRefGoogle Scholar
  37. Mills, D. E., Ward, R. P., and Toung, C. (1988) Effects of prenatal and early postnatal fatty acid supplementation on behavior. Nutr. Res. 8, 273–286.CrossRefGoogle Scholar
  38. Mohrhauer, H. and Holman, R. T. (1963) Alteration of the fatty acid composition of brain lipids by varying levels of dietary essential fatty acids. J. Neurochem. 10, 523–530.PubMedCrossRefGoogle Scholar
  39. Nassar, B. A., Huang, Y. S., Manku, M. S., Das, U. N., Morse, N., and Horrobin, D. F. (1986) The influence of dietary manipulation with w-3 and w-6 fatty acids on liver and plasma phospholipid fatty acids in rates. Lipids 21, 652–656.PubMedCrossRefGoogle Scholar
  40. Nestle, P. J. (1986) Fish oil attenuates the cholesterol induced rise in lipoprotein cholesterol. Am. J. Clin. Nutr. 43, 752–757.Google Scholar
  41. Neuringer, M., Conner, W. E., Petten, C. V., and Barstad, L. (1984) Dietary omega-3 fatty acid deficiency and visual loss in infant rhesus monkeys. J. Clin. Invest. 73, 272–276.PubMedCrossRefGoogle Scholar
  42. Ohmoto, S. (1990) Effects of n-3 fatty acid supplemented formula on the n-3 and n-6 fatty acid content of red blood cell membrane in low-birth-weight infants. J. Jpn. Pediatr. Soc. 94, 224–234.Google Scholar
  43. Pascaud, M. and Strouve-Vallet, C. (1985) Desaturation of 14C linoleic acid by the rat fetus. Ann. Nutr. Metab. 23, 63–64.CrossRefGoogle Scholar
  44. Rahm, J. J. and Holman, R. T. (1964) Effects of linoleic acid upon the metabolism of linolenic acid. J. Nutr. 84, 15–19.PubMedGoogle Scholar
  45. Ruiter, A., Jongbloed, A. W., van Gent, C. M., Danse, L. H. J. C., and Metz, S. H. M. (1978) The influence of dietary mackerel oil on the condition of organs and on blood lipid composition in the young growing pig. Am. J. Clin. Nutr. 31, 2159–2166.PubMedGoogle Scholar
  46. Sanders, T. A. B., Mistry, M., and Naismith, D. J. (1984) The influence of a maternal diet rich in linoleic acid on brain and retinal docosahexaenoic acid in the rat. Br. J. Nutr. 51, 57–66.PubMedCrossRefGoogle Scholar
  47. Sanders, T. A. B. and Naismith, D. J. (1980) The metabolism of a-linolenic acid by the foetal rat. Br. J. Nutr. 44, 205–208.PubMedCrossRefGoogle Scholar
  48. Sanders, T. A. B. and Rana, S. K. (1987) Composition of the metabolism of linoleic and linolenic acids in the fetal rat. Ann. Nutr. Metab. 31, 349–353.PubMedCrossRefGoogle Scholar
  49. Sanders, T. A. B. and Younger, K. M. (1981) The effects of dietary supplements of w-3 polyunsaturated fatty acids on the fatty acid composition of plates and plasma choline phosphoglycerides. Br. J. Nutr. 45, 613–616.PubMedCrossRefGoogle Scholar
  50. Simopoulos, A. P. (1989) Summary of the NATO advanced research workshop on dietary w 3 and to 6 fatty acids: biological effects and nutritional essentiality. J. Nutr. 119, 521–528.PubMedGoogle Scholar
  51. Sinclair, A. J. and Crawford, M. A. (1973) The effect of a low-fat maternal diet on neonatal rats. Br. J. Nutr. 29, 127–137.PubMedCrossRefGoogle Scholar
  52. Scott, B. L. and Bazan, N. G. (1989) Membrane docosahexaenoate is supplied to the developing brain and retina by the liver. Proc. Natl. Acad. Sci. USA 86, 2903–2907.PubMedCrossRefGoogle Scholar
  53. Tinoco, J., Babcock, R., Hincenbergs, I., Medwadowski, B., and Miljanich, P. (1978) Linolenic acid deficiency: changes in fatty acid patterns in female and male rats raised on a linolenic acid-deficient diet for two generations. Lipids 13, 6–17.PubMedCrossRefGoogle Scholar
  54. Tinoco, J., Babcock, R., Hincenbergs, I., Medwadowski, B., Miljanich, P., and Williams, M. A. (1979) Linolenic acid deficiency. Lipids 14, 166–173.PubMedCrossRefGoogle Scholar
  55. Tou, J. S. (1980) Acylation of docosahexaenoic acid into phospholipids by intact human neutrophils. Lipids 21, 324–327.CrossRefGoogle Scholar
  56. Voss, A., Reinhart, M., Sankarappa, S., and Sprecher, H. (1991) The metabolism of 7, 10, 13, 16, 19-docosapentaenoic acid to 4, 7, 10, 13, 16, 19-docosahexaenoic acid in rat liver is independent of 0 4-desaturase. J. Biol. Chem. 266, 19995–20000.PubMedGoogle Scholar
  57. Wainwright, P. E., Huang, Y. S., Bulman-Fleming, B., Mills, D. E., Redden, P., and Cutcheon, D. (1991) The role of n-3 essential fatty acids in brain and behavioral development: a cross fostering study in the mouse. Lipids 26, 37–45.PubMedCrossRefGoogle Scholar
  58. Walker, B. L. (1967) Maternal diet and brain fatty acids in young rats. Lipids 2, 467–500.CrossRefGoogle Scholar
  59. Wickwire, M. A., Craig-Schmidt, M. C., Weete, J. D., and Faircloth, S. A. (1987) Effect of maternal dietary linoleic acid and trans-octadecenoic acid on the fatty acid composition and prostaglandin content of raw milk. J. Nutr. 117, 232–241.PubMedGoogle Scholar
  60. Yamamoto, N., Saitoh, M., Moriuchi, A., Nomura, M., and Okuyama, H. (1987) Effect of dietary a-linolenate/linoleate balance on brain lipid compositions and learning ability of rats. J. Lipid Res. 28, 144–151.PubMedGoogle Scholar
  61. Yeh, Y. Y., Winters, B. L., and Yeh, S. M. (1990) Enrichment of n-3 fatty acids of suckling by maternal dietary menhaden oil. J. Nutr. 120, 436 443.Google Scholar
  62. Yonekubo, A., Kanno, T., Takahashi, K., Koyanagi, N., Nozaki, Y., and Yamamoto, Y. (1994b) Effects of dietary fish oil on polyunsaturated fatty acid desaturation in fetal and postnatal rats. Biosci. Bioetechnol. Biochem. 58, 802–806.CrossRefGoogle Scholar
  63. Yonekubo, A., Honda, S., Hagiwara, M., Okano, M., and Yamamoto, Y. (1990) The effects of dietary fish oil on the serum lipids and fatty acid composition of rats. Agricul. Biol. Chem. 54, 1829–1833.CrossRefGoogle Scholar
  64. Yonekubo, A., Honda, S., Okano, M., Takahashi, K., and Yamamoto, Y. (1993a) Dietary fish oil alters rat milk composition and liver and brain fatty acid composition of fetal and neonatal rats. J. Nutr. 123, 1703–1708.PubMedGoogle Scholar
  65. Yonekubo, A., Honda, S., Okano, M., Takahashi, K., and Yamamoto, Y. (1994a) Effects of dietary fish oil during the fetal and postnatal periods on the learning ability of postnatal rats. Biosci. Bioetechnol. Biochem. 58, 799–801.CrossRefGoogle Scholar
  66. Yonekubo, A., Honda, S., Okano, M., and Yamamoto, Y. (1993b) Effects of dietary safflower oil or soybean oil on the milk composition of the maternal rat, and tissue fatty acid composition and learning ability of postnatal rats. Biosci. Biotechnol. Biochem. 57, 253–259.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Akie Yonekubo

There are no affiliations available

Personalised recommendations