Essential Fatty Acids and Behavior

Is There a Role for the Eicosanoids?
  • Patricia E. Wainwright


The brain is high in lipid, a large proportion of which consists of polyunsaturated fatty acids (PUFA), particularly arachidonic acid ([AA], 20:4 n-6) and docosahexaenoic acid ([DHA], 22:6 n-3) (reviewed in Sastry, 1985). These long-chain PUFA are either obtained directly from the diet or are synthesized from their 18-carbon dietary precursors, 18:2 (n-6) (linoleic acid [LA]) and 18:3 (n-3) (α-linolenic acid [LNA]). LA and LNA are termed essential fatty acids (EFA) because, unlike plants, animals are unable to insert double bonds at the n-3 and n-6 position, and are therefore dependent for their needs on dietary supply. Besides their role as integral structural components of cell membranes, PUFA make an important contribution to regulatory function by acting as a source of the eicosanoids, of which the prostaglandins (PG) are a major component. In humans, the PUFA accrue rapidly in the brain during the third trimester and early postnatal period (Crawford et al., 1981), when the rate of brain growth is maximal, and consequently most vulnerable to nutritional deficits (Dobbing, 1990). Dietary EFA deficiency is associated with reproductive failure, and various other pathological symptoms, including retardation of growth and development, that can be prevented by supplementation with LA or AA (reviewed in Innis, 1991).


Essential Fatty Acid Inescapable Shock Medial Preoptic Area Morris Maze Dietary Essential Fatty Acid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbey, H. and Howard, E. (1973) Statistical procedures in developmental studies on species with multiple offspring. Dev. Psychobiol. 6, 329–335.PubMedCrossRefGoogle Scholar
  2. Agranoff, B. W. and Fisher, M. D. (1994) Phosphoinositides, in Basic Neurochemistry ( Siegel, G. J., Agranoff, B. W., Albers, R. W., and Molinoff, P. B., eds.), Raven, New York, pp. 417–428.Google Scholar
  3. Agranoff, B. W. and Uhler, M. D. (1994) Learning and memory, in Basic Neurochemistry ( Siegel, G. J., Agranoff, B. W., Albers, R. W., and Molinoff, P. B., eds.), Raven, New York, pp. 1025–1044.Google Scholar
  4. Anggard, E. (1988) Biosynthesis and metabolism in the brain, in Prostaglandins: Biology and Chemistry of Prostaglandins and Related Eicosanoids ( Curtis Prior, P. B., ed.), Churchill-Livingstone, Edinburgh, UK, pp. 381–385.Google Scholar
  5. Anton, R. F. and Randall, C. L. (1987) Central nervous system prostaglandin and ethanol. Alcohol. Clin. Exp. Res. 11, 10–18.PubMedCrossRefGoogle Scholar
  6. Bazan, N. G., Allan, G., and Rodriguex de Turco, E. B. (1993) Role of phospholipase A2 and membrane-derived lipid second messengers in membrane function and transcriptional activation of genes: implications in cerebral ischemia and neuronal excitability, in Neurobiology of Ischemic Brain Damage. Prog. Brain Res. (Kogure, K., Hossmann, K.-A., and Siesjo, B. K., eds.), 96, 247–257.Google Scholar
  7. Benolken, R. M., Anderson, R. E., and Wheeler, T. G. (1973) Membrane fatty acids associated with the electrical response in visual excitation. Science 182, 1253–1254.PubMedCrossRefGoogle Scholar
  8. Besedovsky, H., del Rey, A., Sorkin, E., and Dinarello, C. (1986) Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones. Science 233, 652–654.PubMedCrossRefGoogle Scholar
  9. Bhattacharya, S. K., Dasgupta, G., and Sen, A. P. (1989). Prostaglandins modulate central serotonergic neurotransmission. Indian J. Exp. Biol. 27, 393–398.PubMedGoogle Scholar
  10. Birch, E. E., Birch, D. G., Hoffman, D. R., and Uauy, R. (1992a) Dietary essential fatty acid supply and visual acuity development. Invest. Opthalmol. Vis. Sci. 33, 3242–3249.Google Scholar
  11. Brich, E. E., Birch, D. G., Hoffman, D. R., and Uauy, R. (1992b) Retinal development in very-low-birth weight infants fed diets differing in omega-3 fatty acids. Invest. Opthalmol. Vis. Sci. 33, 2365–2376.Google Scholar
  12. Bliss, T. V. P. and Collinridge, G. L. (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39.PubMedCrossRefGoogle Scholar
  13. Bluthé, R. M., Crestani, F., Kelley, K. W., and Dantzer, R. (1992) Mechanisms of the behavioral effects of interleukin-1: role of Prostaglandins and CRF, in Ontogenetic and Phylogenetic Mechanisms of Neuroimmunomodulation: From Molecular Biology to Psychosocial Sciences (Fabris, N., Jankovic, B. D., Markovic, B. M., and Spector, N. H., eds.), Ann. NY Acad. Sci. 650, 268–275.Google Scholar
  14. Bourre, J.-M., Bonneil, M., Chaudiére, J., Clément, M., Dumont, O., Durand, G., Lafont, H., Nalbone, G., Pascal, G., and Piciotti, M. (1992) Structural and functional importance of dietary polyunsaturated fatty acids in the nervous system, in Neurobiology of Essential Fatty Acids Advances in Experimental Biology and Medicine, vol. 318 ( Bazan, N. G., Murphy, M., and Toffano, G., eds.), Plenum, New York, pp. 211–229.CrossRefGoogle Scholar
  15. Bourre, J.-M., Francois, M., Youyou, A., Dumont, O., Piciotti, M., Pascal, G., and Durand, G. (1989) The effects of dietary a-linolenic acid on the composition of nerve membranes, enzymatic activity, amplitude of electrophysiological parameters, resistance to poisons and performance of learning tasks in rats. J. Nutr. 119, 1880–1892.PubMedGoogle Scholar
  16. Bourre, J.-M., Pascal, G., Durand, G., Masson, M., Dumont, O., and Piciotti, M. (1984) Alterations in the fatty acid composition of rat brain cells (neurons, astrocytes and oligodendrocytes) and of subcellular fractions (myelin and synaptosomes) induced by a diet devoid of n-3 fatty acids. J. Neurochem. 43, 342–348.PubMedCrossRefGoogle Scholar
  17. Briese, E. and Cabanac, M. (1991) Stress hyperthermia: physiological arguments that it is a fever. Physiol. Behay. 49, 1153–1157.CrossRefGoogle Scholar
  18. Brown, M. L., Marshall, L. A., and Johnston, P. V. (1984) Alterations in cerebral and microvascular prostaglandin synthesis by manipulation of dietary essential fatty acids. J. Neurochem. 43, 1392–1400.PubMedCrossRefGoogle Scholar
  19. Buck, L. B., Firestein, S., and Margolskee, R. F. (1994) Olfaction and taste in vertebrates: molecular and organizational strategies underlying chemosensory perception, in Basic Neurochemistry ( Siegel, G. J., Agranoff, B. W., Wayne Albers, R., and Molinoff, P. B., eds.), Raven, New York, pp. 157–177.Google Scholar
  20. Butler, P. D., Weiss, J. M., Stout, J. C., and Nemeroff, C. B. (1990) Corticotropinreleasing factor produces fear-enhancing and behavioral activating effects following infusion into the locus coeruleus. J. Neurosci. 10, 176–183.PubMedGoogle Scholar
  21. Campbell, W. B. (1991) Lipid-derived autocoids: eicosanoids and platelet-activating factor, in Goodman and Gilman’s: The Pharmacological Basis of Therapeutics, 8th ed. ( Goodman-Gilman, A. G., Rall, T. W., Nies, A. S., and Taylor, P., eds.), Perga-mon, New York, pp. 600–617.Google Scholar
  22. Carlson, S., Werkman, S. H., Rhodes, P. G., and Tolley, E. A. (1993) Visual acuity development in healthy preterm infants: effects of marine oil supplementation. Am. J. Clin. Nutr. 58, 35–42.PubMedGoogle Scholar
  23. Cassone, V. M. (1990) Effects of melatonin on vertebrate circadian systems. Trends Neurosci. 11, 457–464.CrossRefGoogle Scholar
  24. Chiu E. K. Y. and Richardson J. S. (1985) Behavioral and neurochemical aspects of prostaglandins in brain function. Gen. Pharmacol. 16, 163–175.PubMedCrossRefGoogle Scholar
  25. Clandinin, M. T., Field, C. J., Hargreaves, K., Morson, L., and Zsigsmond, E. (1985) Role of diet fat in subcellular structure and function. Can. J. Physiol. Pharmacol. 63, 546–556.PubMedCrossRefGoogle Scholar
  26. Connor, W. E., Neuringer, M., and Lin, D. S. (1990) Dietary effects on brain fatty acid composition: the reversibility of n-3 fatty acid deficiency and turnover of docosahexaenoic acid in the brain, erythrocytes and plasma of rhesus monkeys. J. Lipid Res. 31, 237–247.PubMedGoogle Scholar
  27. Cook, H. W. (1991) Fatty acid desaturation and chain elongation in eucaryotes, in Biochemistry of Lipids, Lipoproteins and Membranes ( Vance, D. E. and Vance, J., eds.), Elsevier, Amsterdam, pp. 141–169.Google Scholar
  28. Crawford, M. A., Hassam, A. G., and Stevens, P. A. (1981) Essential fatty acid requirements in pregnancy and lactation with special reference to brain development. Prog. Lipid Res. 20, 31–40.PubMedCrossRefGoogle Scholar
  29. Crestani, F., Seguy, E, and Dantzer, R. (1991) Behavioral effects of peripherally injected interleukin-1: role of prostaglandins. Brain Res. 542, 330–335.PubMedCrossRefGoogle Scholar
  30. Crnic, L. S. and Segall, M. A. (1992a) Prostaglandins do not mediate interferonalpha effects on mouse behavior. Physiol. Behay. 51, 349–352.CrossRefGoogle Scholar
  31. Crnic, L. S. and Segall, M. A. (1992b) Behavioral effects of mouse interferons-a and -y and human interferon-a in mice. Brain Res. 590, 277–284.PubMedCrossRefGoogle Scholar
  32. Dantzer, R., Bluthé, R.-M., and Kelley, K. W. (1991) Androgen-dependent vasopressinergic neurotransmission attenuates interleukin-1–induced sickness behavior. Brain Res. 557, 115–120.PubMedCrossRefGoogle Scholar
  33. Davis, G. W. and Murphey, R. K. (1994) Long-term regulation of short-term transmitter release properties: retrograde signalling and synaptic development. Trends Neurosci. 17, 9–13.PubMedCrossRefGoogle Scholar
  34. Delion, S., Chalon, S., Herault, J., Guilloteau, D., Besnard, J.-C., and Durand, G. (1994) Chronic dietary alpha-linolenic acid deficiency alters dopaminergic and serotoninergic neurotransmission in rats. J. Nutr. 124, 2466–2476.PubMedGoogle Scholar
  35. Devane, W. A., Hanus, L., Breuer, A., Pertwee, R. G., Stevenson, L. A., Griffin, G., Gibson, D., Mandelbaum, A., Etinger, A., and Mechoulam, R. (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258, 1946–1949.PubMedCrossRefGoogle Scholar
  36. Dingledine, R. and McBain, C. J. (1994) Excitatory amino acid transmitters, in Basic Neurochemistry ( Siegel, G. J., Agranoff, B. W., Wayne Albers, R., and Molinoff, P. B., eds.), Raven, New York, pp. 367–387.Google Scholar
  37. Dobbing, J. (1990) Vulnerable periods in developing brain, in Brain, Behaviour and Iron in the Infant Diet ( Dobbing, J., ed.) Springer-Verlag, New York, pp. 1–25.Google Scholar
  38. Dunn, A. J. (1993) Role of cytokines in infection-induced stress, in CorticotropinReleasing Factor and Cytokines: Role in the Stress Response (Taché, Y. and Rivier, C., eds.), Ann. N.Y. Acad. Sci. 697, 189–202.Google Scholar
  39. Enslen, M., Milon, H., and Malnoé, A. (1991) Effect of low intake of n-3 fatty acids during development on brain phospholipids, fatty acid composition and exploratory behavior in rats. Lipids 26, 203–208.PubMedCrossRefGoogle Scholar
  40. Epand, R. M. and Lester, D. S. (1990) The role of membrane biophysical properties in the regulation of protein kinase C activity. Trends Pharmacol. Sci. 11, 317–320.PubMedCrossRefGoogle Scholar
  41. Exton, M. S., Lightfoot, J. B., Stanton, M. W., Bull, D. F., King, M. G., and Husband, A. J. (1995) Behaviorally conditioned anorexia: role of gastric emptying and prostaglandins. Physiol. Behay. 58, 471–476.CrossRefGoogle Scholar
  42. Fagioli, I., Baroncini, P., Ricour, C., and Salzarulo, P. (1989) Decrease of slow-wave sleep in children with prolonged absence of essential lipids intake. Sleep 12, 495–499.PubMedGoogle Scholar
  43. Förstermann, U., Heldt, R., and Hertting, G. (1983) Effects of intracerebroventricular administration of prostaglandin D2 on behavior, blood pressure and body temperature compared to prostaglandins E2 and F2 alpha. Psychopharmacology 80, 365–370.PubMedCrossRefGoogle Scholar
  44. Francés, H., Monier, C., and Bourre, J.-M. (1995) Effects of dietary alpha-linolenic acid deficiency on neuromuscular and cognitive functions in mice. Life Sci. 57, 1935–1947.PubMedCrossRefGoogle Scholar
  45. Frankland, P. W. and Ralph, M. R. (1995) Circadian modulation in the rat acoustic startle circuit. Behay. Neurosci. 109 43–48. Google Scholar
  46. Galef, B. G., Jr. (1988) Communication of information concerning distant diets in a social, central-place foraging species: rattus norvegicus, in Social Learning: Psychological and Biological Perspectives (Zentall T R. and Galef, B. G., Jr., eds.), Erlbaum, Hillsdale, NJ, pp. 119–139. Google Scholar
  47. Galli, C., Marangoni, F., and Petroni, A. (1992) Modulation of arachidonic acid metabolism in cultured rat astroglial cells by long-chain n-3 fatty acids, in Neurobiology of Essential Fatty Acids ( Bazan, N. G., Murphy, M. G., and Toffano, G., eds.), Plenum, New York, pp. 115–120.CrossRefGoogle Scholar
  48. Galli, C., Trzeciak, H. I., and Paoletti, R. (1971) Effects of dietary fatty acids on the fatty acid composition of brain ethanolamine phosphoglyceride: reciprocal replacement of n-6 and n-3 polyunsaturated fatty acids. Biochim. Biophys. Acta 248, 449–454.CrossRefGoogle Scholar
  49. George, F. R. (1989) The role of arachidonic acid metabolites in mediating ethanol self-administration and intoxication, in Arachidonic Acid Metabolism in the Nervous System (Barkai, A. I., and Bazan N. G. eds.), Ann. N.Y. Acad. Sci. 559, 382–391.Google Scholar
  50. George, F. R. and Collins, A. C. (1979) Prostaglandin synthetase inhibitors antagonize the depressant effects of ethanol. Pharmacol. Biochem. Behay. 10, 865–869.CrossRefGoogle Scholar
  51. George, F. R., Jackson, S. J., and Collins, A. C. (1981) Prostaglandin synthetase inhibitors antagonize the sedative hypnotic-induced hypothermia. Psychopharmacology 74, 241–244.PubMedCrossRefGoogle Scholar
  52. Golski, S., Olds, J., Mishkin, M., Olton, D. S., and Alkon, D. L. (1995) Protein kinase C in the hippocampus is altered by spatial but not cued discriminations: a component task analysis. Brain Res. 676, 53–62.PubMedCrossRefGoogle Scholar
  53. Greenough, W. T. (1976) Enduring brain effects of differential experience and training, in Neural Mechanisms of Learning and Memory ( Rosenzweig, M. R. and Bennett, E. L., eds.), MIT Press, Cambridge, MA, pp. 255–278.Google Scholar
  54. Greenwood, C. E. and Winocur, G. (1996) Cognitive impairment in rats fed high fat diets: a specific effect of saturated fatty acid intake. Behay. Neurosci. 110, 451–459.CrossRefGoogle Scholar
  55. Griebel, G., Moreau, J.-L., Jenck, E, Martin, J. R., and Misslin, R. (1993) Some critical determinants of the behaviour of rats in the elevated plus-maze. Behay. Proc. 29, 37–48.CrossRefGoogle Scholar
  56. Hansen, H. S. (1983) Dietary essential fatty acids and in vivo prostaglandin production in mammals. World Review Nutr. Diet 42, 102–134.Google Scholar
  57. Hart, B. L. (1988) Biological basis of the behavior of sick animals. Neurosci. Biobehay. Rev. 12, 123–137.CrossRefGoogle Scholar
  58. Hayaishi, O. (1989) Prostaglandin D2 and sleep, in Arachidonic Acid Metabolism in the Nervous System: Physiological and Pathological Significance (Barkai, A. I. and Bazan, N. G., eds.), Ann. N.Y. Acad. Sci. 559, 374–381.Google Scholar
  59. Hayaishi, O. (1991) Molecular mechanisms of sleep wake regulation: roles of prostaglandins D2 and E2. FASEB J. 5, 2575–2581.PubMedGoogle Scholar
  60. Hellerstein, M. K., Meydani, S. N., Meydani, M., Wu, K., and Dinarello, C. A. (1989) Interleukin-1–induced anorexia in the rat: Influence of prostaglandins. J. Clin. Invest. 84, 228–235.PubMedCrossRefGoogle Scholar
  61. Hoffman, D. R., Birch, E. E., Birch, D. G., and Uauy, R. (1993) Effects of supplementation with w3 long-chain polyunsaturated fatty acids on retinal and cortical development in premature infants. Am. J. Clin. Nutr. 57 (Suppl.), 808S - 812S.Google Scholar
  62. Hoffmann, H. J. and Balschun, D. (1992) Circadian differences in maze performance of C57B1 /6 Ola mice. Behay. Proc. 27, 77–83.CrossRefGoogle Scholar
  63. Hollingsworth, E. B. and Patrick, G. A. (1984) Sedation produced by prostaglandins is not a nonspecific fatty acid effect. Psychopharmacology 84, 423–425.CrossRefGoogle Scholar
  64. Horrobin, D. F. (1987) Essential fatty acids, prostaglandins, and alcoholism: an overview. Alcohol. Clin. Exp. Res. 11, 2–9.PubMedCrossRefGoogle Scholar
  65. Horrobin, D. F. and Manku, M. S. (1980) Possible role of prostaglandin El in the affective disorders and in alcoholism. Br. Med. J. 1363–1366.Google Scholar
  66. Huether, S. E. (1996) The digestive system, in Understanding Pathophysiology, ( Huether, S. E. and McCance, K. L., eds.), Mosby, St. Louis, MO, pp. 917–943.Google Scholar
  67. Innis, S. (1991) Essential fatty acids in growth and development. Prog. Lipid Res. 30, 39–103.PubMedCrossRefGoogle Scholar
  68. Ioue, M., Crofton, J. T., and Share, L. (1990) Interactions between the brain reninangiotensin system and brain prostanoids in the control of vasopressin secretion. Exp. Brain Res. 83, 1313–136.Google Scholar
  69. Kennedy, M. B. (1989) Regulation of neuronal function by calcium. Trends Neurosci. 12, 417–420.PubMedCrossRefGoogle Scholar
  70. Kenney, N. K. and Epstein, A. N. (1978) Antidipsogenic role of the E-prostaglandins. J. Comp. Physiol. Psychol. 92, 204–219.PubMedCrossRefGoogle Scholar
  71. Kent, S., Bluthe, R.-M., Kelley, K. W., and Dantzer, R. (1992) Sickness behavior as a new target for drug development. Trends Pharmacol. Sci. 13, 24–28.PubMedCrossRefGoogle Scholar
  72. Kim H.-Y., Sawazaki, S., and Salem, N., Jr. (1991) Lipoxygenation in rat brain? Biochem. Biophys. Res. Comm. 174, 729–734.PubMedCrossRefGoogle Scholar
  73. Kinsella, J. E., Broughton, K. S., and Whelan, J. W. (1990) Dietary unsaturated fatty acids: interactions and possible needs in relation to eicosanoid synthesis. J. Nutr. Biochem. 1, 123–141.PubMedCrossRefGoogle Scholar
  74. Kuby, J. (1994) Immunology. Freeman, New York.Google Scholar
  75. Lamptey, M. S. and Walker, B. L. (1976) A possible essential role for dietary linolenic acid in the development of the young rat. J. Nutr. 106, 86–93.PubMedGoogle Scholar
  76. Lands, W. E., Morris, A., and Libelt, B. (1990) The function of essential fatty acids, in Health Effects of Dietary Fatty Acids ( Nelson, G. J., ed.), American Oil Chemists Society, Champaign, IL, pp. 21–41.Google Scholar
  77. Larkin, L. A. (1995) Effects of dietary n-3 deficiency on working memory in B6D2F2 mice. Unpublished Honours thesis, Department of Health Studies and Gerontology, University of Waterloo, Ontario, Canada.Google Scholar
  78. Levine, A. S. and Morley, J. E. (1981) The effects of prostaglandins on food intake in rats. Pharmacol. Biochem. Behay. 15, 735–738.CrossRefGoogle Scholar
  79. Maier, S. F. and Watkins, L. R. (1995) Intracerebroventricular interleukin-1 receptor antagonist blocks the enhancement of fear conditioning and interference with escape produced by inescapable shock. Brain Res. 695, 279–282.PubMedCrossRefGoogle Scholar
  80. Makrides, M., Simmer, K., Goggin, M., and Gibson, R. A. (1993) Erythrocyte docosahexaenoic acid correlates with the visual response of healthy, term infants. Pediatr. Res. 34, 425–427.Google Scholar
  81. Malenka, R. C. and Nicoll, R. A. (1993) NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms. Trends Neurosci. 16, 521–526.PubMedCrossRefGoogle Scholar
  82. Manku, M. S., Oka, M., and Horrobin, D. F. (1979) Differential regulation of the formation of prostaglandins and related substances from arachidonic acid and from dihomogammalinolenic acid. 1. Effects of ethyl alcohol. Prostaglandins Med. 3, 119–128.PubMedCrossRefGoogle Scholar
  83. Marshall, L. A. and Johnson, P. V. (1982) Modulation of tissue prostaglandin synthesizing capacity by increased ratios of dietary alpha-linolenic to linoleic acid. Lipids 17, 905–913.PubMedCrossRefGoogle Scholar
  84. Martinez-Gomez, M., Cruz, Y., Salas, M., Hudson, R., and Pacheco, R. (1994) Assessing pain threshold in the rat: changes with estrus and time of day. Physiol. Behay. 55, 651–657.CrossRefGoogle Scholar
  85. Merrill, A. H. (1989) Lipid modulators of cell function. Nutri. Rev. 47, 161–169.CrossRefGoogle Scholar
  86. Meydani, M., Meydani, S. M., Shapiro, A. C., McCauley, J. B., and Blumberg, J. B. (1991) Influence of dietary fat, vitamin E, ethoxyquin and indomethacin on the synthesis of prostaglandin E2 in brain regions of mice. J. Nutr. 121, 438–444.PubMedGoogle Scholar
  87. Meydani, S. M. (1990) Dietary modulation of cytokine production and biologic functions. Nutr. Rev. 48, 361–369.PubMedCrossRefGoogle Scholar
  88. Mills, D. E., Prkachin, K. M., Harvey, K. A., and Ward, R. P. (1989) Dietary fatty acid supplementation alters stress reactivity and performance in man. J. Hum. Hypertens. 3, 111–116.PubMedGoogle Scholar
  89. Mills, D. E. and Ward, R. P. (1984) Attenuation of stress-induced hypertension by gamma linolenic acid in rats. Proc. Soc. Exp. Biol. Med. 176, 32–37.PubMedGoogle Scholar
  90. Mills, D. E. and Ward, R. P. (1986a) Effects of eicosapentaenoic acid on cardiovascular responses to stress. Proc. Soc. Exp. Biol. Med. 182, 127–131.PubMedGoogle Scholar
  91. Mills, D. E. and Ward, R. P. (1986b) Effects of essential fatty acid administration on cardiovascular responses to stress in rats. Lipids 21, 139–142.PubMedCrossRefGoogle Scholar
  92. Milton, A. S. (1989) Thermoregulatory actions of eicosanoids in the central nervous system with particular regard to the pathogenesis of fever, in Arachidonic Acid Metabolism in the Nervous System: Physiological and Pathological Significance (Barkai A. I. and Bazan N. G., eds.), Ann. N.Y. Acad. Sci. 559, 392–409.Google Scholar
  93. Mohrhauer, H. and Holman, R. T. (1963) Alteration of the fatty acid composition of brain lipids by varying levels of dietary essential fatty acids. J. Neurochem. 10, 523–530.PubMedCrossRefGoogle Scholar
  94. Moltz, H. (1990) E-series prostaglandins and arginine vasopressin in the modulation of male sexual behavior. Neurosci. Biobehay. Rev. 14, 109–115.CrossRefGoogle Scholar
  95. Morris, R. G. M. (1981) Spatial localisation does not require the presence of local cues. Learn. Motivation 12, 239–260.CrossRefGoogle Scholar
  96. Moussard, C., Alber, D., Mozer, J. L., and Henry, J. C. (1994) Effect of chronic REM sleep deprivation on pituitary, hypothalamus and hippocampus PGE2 and PGD2 biosynthesis in the mouse. Prostaglandins Leukotrienes Essential Fatty Acids 5, 369–372.CrossRefGoogle Scholar
  97. Murphy, M. G. (1990) Dietary fatty acids and membrane protein function. J. Nutri. Biochem. 1, 68–79.CrossRefGoogle Scholar
  98. Murphy, S. and Pearce, B. (1988) Eicosanoids in the CNS: sources and effects. Prostaglandins Leukotrienes Essential Fatty Acids: Rev. 31, 165–170.Google Scholar
  99. Mutsumura, H., Honda, K., Goh, Y., Ueno, R., Sakai, T., Inoue, S., and Hayaishi, O. (1989) Awaking effect of prostaglandin E2 in freely moving rats. Brain Res. 481, 242–249.CrossRefGoogle Scholar
  100. Naito, K., Osama, H., Ueno, R., Hayaishi, O., Honda, K., and Inoue, S. (1988) Suppression of sleep by prostaglandin synthesis inhibitors in unrestrained rats. Brain. Res. 453, 329–336.PubMedCrossRefGoogle Scholar
  101. Nakashima, Y., Yuasa, S., Hakamizu, Y., Okuyama, H., Ohhara, T., Kameyama, T., and Nabeshima, T. (1993) Effect of a high linoleate and a high alpha-linolenate diet on general behavior and drug sensitivity in mice. J. Lipid Res. 34, 239–247.PubMedGoogle Scholar
  102. Nassar, B. A., Manku, M. S., Huang, Y-S., Jenkins, D. K., and Horrobin, D. F. (1987) The influence of dietary marine oil (Polepa) and evening primrose oil (Efamol) on prostaglandin production by the rat mesenteric vasculature. Prostaglandins Leukotrienes Med. 26, 253–263.CrossRefGoogle Scholar
  103. Nestler, E. J. and Duman, R. S. (1994) G proteins and cyclic nucleotides in the nervous system, in Basic Neurochemistry ( Siegel, G. J., Agranoff, B. W., Wayne Albers, R., and Molinoff, P. B., eds.), Raven, New York, pp. 429–448.Google Scholar
  104. Nestler, E. J. and Greengard, P. (1994) Protein phosphorylation and the regulation of neuronal function, in Basic Neurochemistry ( Siegel, G. J., Agranoff, B. W., Wayne Albers, R., and Molinoff, P. B., eds.), Raven, New York, pp. 449–474.Google Scholar
  105. Neuringer, M. (1993) The relationship of fatty acid composition to function in the retina and visual system, in Lipids, Learning and the Brain: Fats in Infant Formula, Report of the 103rd Ross Conference on Pediatric Research ( Dobbing, J., ed.), Ross Laboratories, Columbus, OH, pp. 134–158.Google Scholar
  106. Neuringer, M., Connor, W. E., Lin, D. S., Barstad, L., and Luck, S. (1986) Biochemical and functional effects of prenatal and postnatal o3 fatty acid deficiency on retina and brain in rhesus monkeys. Proc. Nat. Acad. Sci. USA 83, 4021–4025.PubMedCrossRefGoogle Scholar
  107. Nishihara, I., Minami, T., Uda, R., Ito, S., Hyodo, M., and Hayaishi, O. (1995) Effect of NMDA receptor antagonists on prostaglandin E2–induced hyperalgesia in conscious mice. Brain Res. 677, 138–144.Google Scholar
  108. Nishikawa, M., Kimura, S., and Akaike, N. (1994) Facilitatory effect of docosahexaenoic acid on N-methyl-D-aspartate response in pyramidal neurons of rat cerebral cortex. J. Physiol. 475, 83–93.PubMedGoogle Scholar
  109. Olton, D. S. and Papas, B. C. (1979) Spatial memory and hippocampal function. Neuropsychologia 17, 669–682.PubMedCrossRefGoogle Scholar
  110. Ono, N., Saito, R., Abiru, T., Matsushita, Y., and Kamya, H. (1988) Effect of aspirin on haloperidol-induced cataleptic behavior in mice. Neuropharmacology 27, 327–329.PubMedCrossRefGoogle Scholar
  111. Onoe, H., Ueno, R., Fujita, I., Nishino, H., Oomura, Y., and Hayaishi, O. (1988) Prostaglandin D2, a cerebral sleep-inducing substance in monkeys. Proc. Nat. Acad. Sci. USA. 5, 4082–4086.CrossRefGoogle Scholar
  112. Ordway, R. W., Singer, J. J., and Walsh, J. V., Jr. (1991) Direct regulation of ion channels by fatty acids. Trends Neurosci. 14, 96–100.Google Scholar
  113. Peeler, D. F. (1995) Shuttlebox performance in BALB/cByJ, C57/6ByJ and C X B recombinant inbred mice: environmental and genetic determinants and constraints. Psychobiology 23, 161–168.Google Scholar
  114. Piomelli, D. and Greengard, P. (1990) Lipoxygenase metabolites of arachidonic acid in neuronal transmembrane signalling Trends Pharmacol. Sci. 11, 367–373.PubMedCrossRefGoogle Scholar
  115. Poddubiuk, Z. M. (1976) A comparison of the central actions of prostaglandins Al, El, E2, Flalpha and F2alpha in the rat. I. Behavioural, antinociceptive and anticonvulsant actions of intraventricular prostaglandins in the rat. Psychopharmacology 50, 89–94.PubMedCrossRefGoogle Scholar
  116. Poddubiuk, Z. M. and Kleinrok, Z. (1976) A comparison of the central actions of prostaglandins Al, El, E2, Flalpha and F2alpha in the rat. H. The effect of intra-ventricular prostaglandin on the action of some drugs and on the level and turnover of biogenic amines in the rat brain. Psychopharmacology 50, 95–102.PubMedCrossRefGoogle Scholar
  117. Porsolt, R. D., Bertin, A., and Jalfre, M. (1977) Behavioral despair in mice: a primary screening test for antidepressants. Arch. Int. Pharmacodyn. Ther. 229, 327–336.PubMedGoogle Scholar
  118. Potts, W. J., East, P. F., and Mueller, R. A. (1974) Behavioral effects, in The Prostaglandins, vol. 2, ( Ramwell, P. W., ed.), Plenum, New York, pp. 157–173.CrossRefGoogle Scholar
  119. Rawlins, J. N. P. and Deacon, R. M. J. (1993) Further developments of maze procedures, in Behavioural Neuroscience: A Practical Approach (Sahgal, A., ed.), Oxford University Press, New York, pp. 95–106.Google Scholar
  120. Reisbick, S., Neuringer, M., Connor, W. E., and Barstad, L. (1992) Postnatal deficiency of omega-3 fatty acids in monkeys: fluid intake and urine concentration. Physiol. Behay. 51, 473–479.CrossRefGoogle Scholar
  121. Reisbick, S., Neuringer, M., Connor, W. E., and Iliff-Sizemore, S. (1991) Increased intake of water and NaC1 solutions in omega-3 fatty acid deficient monkeys. Physiol. Behay. 55, 231–239.CrossRefGoogle Scholar
  122. Reisbick, S., Neuringer, M., Hasnain, R., and Connor, W. E. (1990) Polydipsia in rhe- sus monkeys deficient in omega-3 fatty acids. Physiol. Behay. 47, 315–323.CrossRefGoogle Scholar
  123. Reisbick, S., Neuringer, M., Hasnain, R., and Connor, W. E. (1994) Home cage behavior of rhesus monkeys with long-term deficiency of omega-3 fatty acids. Physiol. Behay. 55, 231–239.CrossRefGoogle Scholar
  124. Relton, J. K., Strijbos, P. J. L. M., Cooper, A. L., and Rothwell, N. J. (1993) Dietary n-3 fatty acids inhibit ischaemic and excitotoxic brain damage in the rat. Brain Res. Bull. 32, 223–226.Google Scholar
  125. Ritz, M. C., George, F. R., and Collins, A. C. (1981) Indomethacin antagonizes ethanol-induced but not pentobarbital-induced behavioral activation. Subs t. Alcohol Actions Misuse 2, 289–299.Google Scholar
  126. Rivier, C. (1993) Effect of peripheral and central cytokines on the hypothalamicpituitary-adrenal axis of the rat, in Corticotropin-Releasing Factor and Cytokines: Role in the Stress Response (Taché, Y. and Rivier, C., eds.), Ann. N.Y. Acad. Sci. 697, 97–105.Google Scholar
  127. Rothwell, N. J. (1992) Eicosanoids, thermogenesis and thermoregulation. Prostaglandins Leukotrienes Essential Fatty Acids 46, 1–7.CrossRefGoogle Scholar
  128. Rotrosen, J., Mandio, D., Segarnick, L., Traficante, L. J., and Gershon, S. (1980) Ethanol and Prostaglandin El: biochemical and behavioral interactions. Life Sci. 26, 1867–1876.PubMedCrossRefGoogle Scholar
  129. Roullet, P. and Lasalle, J.-M. (1990) Genetic variation, hippocampal mossy fibre distribution, novel reactions and spatial representation in mice. Behay. Brain Res. 41, 61–69.CrossRefGoogle Scholar
  130. Rusak, B., Abe, H., Mason, R., Piggins, H. D., and Ying, S.-W. (1993) Neurophysiological analysis of circadian rhythm entrainment. J. Biol. Rhythms 8 (Suppl.), S39–S45.PubMedGoogle Scholar
  131. Sastry, P. S. (1985) Lipids of nervous tissue: composition and metabolism. Prog. Lipid Res. 24, 69–176.PubMedCrossRefGoogle Scholar
  132. Scales, W. E. and Kluger, M. J. (1987) Effect of antipyretic drugs on circadian rhythm in body temperature of rats. Am. J. Physiol. 253, R306–R313.PubMedGoogle Scholar
  133. Segall, M. and Crnic, L. S. (1990) A test of conditioned taste aversion with mouse interferon-alpha. Brain Behay. Immun. 4, 223–231.CrossRefGoogle Scholar
  134. Segarnick, D. J., Mandio Cordasco, D., and Rotrosen, J. (1983) Biochemical and behavioral interactions between prostaglandin E1 and alcohol, in Clinical Uses of Essential Fatty Acids ( Horrobin, D. R., ed.), Eden, Montreal, pp. 175–189.Google Scholar
  135. Simmet, T. and Peskar, B. A. (1990) Lipoxygenase products of polyunsaturated fatty acid metabolism in the central nervous system: biosynthesis and putative function. Pharmacol. Res. 22, 667–682.PubMedCrossRefGoogle Scholar
  136. Sinclair, A. J. (1975) Incorporation of radioactive polyunsaturated fatty acids into liver and brain of developing rat. Lipids 10, 175–184.PubMedCrossRefGoogle Scholar
  137. Singer R., Harker, C. T., Vander, A. J., and Kluger, M. J. (1988) Hyperthermia induced by open-field stress is blocked by salicylate. Physiol. Behay. 36, 1179–1182.CrossRefGoogle Scholar
  138. Smith, W. L., Borgeat, P., and Fitzpatrick, F. A. (1991) The eicosanoids: cycloxygenase, lipoxygenase, and epoxygenase pathways, in Biochemistry of Lipids, Lipoproteins and Membranes ( Vance, D. E. and Vance, J., eds.), Elsevier, Amsterdam, pp. 297–325.Google Scholar
  139. Sprecher, H. (1992) Interconversions between 20– and 22–carbon n-3 and n-6 fatty acids via 4–desaturase independent pathways, in Essential Fatty Acids and Eicosanoids ( Sinclair, A. and Gibson, R., eds.), American Oil Chemists Society, Champaign, IL, pp. 18–22.Google Scholar
  140. Squire, L. (1992) Memory and the hippocampus: a synthesis from findings with rats, monkeys and humans. Psychol. Rev. 99, 195–231.PubMedCrossRefGoogle Scholar
  141. Sri Kantha, S., Matsumura, H., Kubo, E., Kawase, K., Takahata, R., Serhan, C. N., and Hayaishi, O. (1994) Effects of prostaglandin D2, lipoxins and leukotrienes on sleep and brain temperature of rats. Prostaglandins Leukotrienes Essential Fatty Acids 51, 87–93.Google Scholar
  142. Stevens, L. J., Zentall, S. S., Deck, J. L., Abate, M. L., Watkins. B. A., Lipp, S. R., and Burgess, J. R. (1995) Essential fatty acid metabolism in boys with attention-deficit hyperactivity disorder. Am. J. Clin. Nutr. 62, 761–768.Google Scholar
  143. Stewart, C. A. and Morris, R. G. M. (1993) The watermaze, in Behavioural Neuroscience: A Practical Approach (Sahgal, A., ed.), Oxford University Press, New York, pp. 107–121.Google Scholar
  144. Strupp, B. J. and Levitsky, D. A. (1984) Social preference of food preferences in adult hooded rats (Rattus norvegicus). J. Comp. Psychol. 98, 257–266.CrossRefGoogle Scholar
  145. Strupp, B. J. and Levitsky, D. A. (1995) Enduring cognitive effects of early malnutrition: a theoretical appraisal. J. Nutr. 125, 2221S - 2232S.PubMedGoogle Scholar
  146. Templeton, W. (1988) Prostanoid actions on transmitter release, in Prostaglandins: Biology and Chemistry of Prostaglandins and Related Eicosanoids ( Curtis Prior, P. B., ed.), Churchill-Livingstone, Edinburgh, UK, pp. 402–410.Google Scholar
  147. Tinoco, J. (1982) Dietary requirements and functions of a-linolenic acid in animals. Prog. Lipid Res. 21, 1–45.PubMedCrossRefGoogle Scholar
  148. Tinoco, J., Babcock, R., Hincenbergs, I., Medwadowski, B., and Miljanich, P. (1978) Linolenic acid deficiency: changes in fatty acid patterns in female and male rats raised on a linolenic add-deficient diet for two generations. Lipids 13, 6–17.PubMedCrossRefGoogle Scholar
  149. Uauy, R. D., Birch, D. G., Birch, E. E., Tyson, J. E., and Hoffmann, D. R. (1990) Dietary omega-3 fatty acids in retinal function of very-low-birth-weight neonates. Pediatr. Res. 28, 485–492.PubMedCrossRefGoogle Scholar
  150. Umezawa, M., Ohta, A., Tojo, H., Yagi, H., Hokosawa, M., and Takeda, T. (1995) Dietary a-linolenate/linoleate balance influences learning and memory in the senescence-accelerated mouse (SAM). Brain Res. 669, 225–233.Google Scholar
  151. Valsecchi, P. and Galef, B. G. (1989) Social influences on the food preferences of house mice (Mus Musculus). Int. J. Comp. Psycho!. 2, 245–256.Google Scholar
  152. Vance, D. E. (1991) Phospholipid metabolism and cell signalling in eucaryotes, in Biochemistry of Lipids, Lipoproteins and Membranes (Vance D. E. and Vance, J., eds.), Elsevier, Amsterdam, pp. 205–239.Google Scholar
  153. Wainwright, P. E. (1992) Do essential fatty acids play a role in brain and behavioral development? Neurosci. Biobehay. Rev. 16, 193–205.CrossRefGoogle Scholar
  154. Wainwright, R E., Huang, Y.-S., Bulman-Fleming, B., Mills, D. E., Redden, P., and McCutcheon, D. (1991) The role of n-3 fatty acids in brain and behavioral development: a cross-fostering study in the mouse. Lipids 26, 37–45.PubMedCrossRefGoogle Scholar
  155. Wainwright, R E., Huang, Y.-S., Bulman-Fleming, B., Dalby, D., Mills, D. E., Redden, R, and McCutcheon, D. (1992) The effects of dietary n-3/n-6 ratio on brain development in the mouse: a dose response study with long chain n-3 fatty acids. Lipids 27, 98–103.PubMedCrossRefGoogle Scholar
  156. Wainwright, R E., Huang, Y.-S., Bulman-Fleming, B., Lévesque, S., and McCutcheon, D. (1994a) The effects of dietary fatty acid composition combined with environmental enrichment on brain and behavior in mice. Behay. Brain Res. 60, 125–136.CrossRefGoogle Scholar
  157. Wainwright, P. E., Huang, Y.-S., Coscina, D., V., Lévesque, S., and McCutcheon, D. (1994b) Brain and behavioral effects of dietary n-3 deficiency in mice: a three generational study. Dev. Psychobiol. 27, 467–487.Google Scholar
  158. Wainwright, P. E., Huang, Y-S., Lévesque, S., Mutsaers, L., McCutcheon, D., Balcaen, P., and Hammond, J. (1996) Effects of dietary gamma-linolenic acid and prenatal ethanol on mouse brain and behavior. Pharmacol. Biochem. Behay. 53, 843–852.CrossRefGoogle Scholar
  159. Weber, P. C. (1988) Membrane phospholipid modification by dietary n-3 fatty acids: effects on eicosanoid formation and cell function, in Biological Membranes: Aberrations in Membrane Structure and Function ( Karnovsky, M. L., Leaf, A., and Bolls, L. C., eds.), Liss, New York, pp. 101–104.Google Scholar
  160. Wheeler, T. G., Benolken, R. M. and Anderson, R. E. (1975) Visual membranes: specificity of fatty acid precursors for the electrical response to illumination. Science 188, 1312–1314.PubMedCrossRefGoogle Scholar
  161. Wiertelak, E. P., Furness, L. E., Watkins, L. R., and Maier, S. F. (1994) Illness-induced hyperalgesia is mediated by a spinal NMDA-nitric oxide cascade. Brain Res. 664, 9–16.PubMedCrossRefGoogle Scholar
  162. Williams, J. H., Errington, M. L., Lynch, M. A., and Bliss, T. V. P. (1989) Arachidonic acid induces a long-term activity-dependent enhancement of synaptic transmission in the hippocampus. Nature 341, 739–742.Google Scholar
  163. Wolfe, L. S. and Horrocks, L. A. (1994) Eicosanoids, in Basic Neurochemistry ( Siegel, G. J., Agranoff, B. W., Wayne Albers, R., and Molinoff, P. B., eds.), Raven, New York, pp. 475–490.Google Scholar
  164. Wong, K. L., Murakami, K., and Routtenberg, A. (1989) Dietary cis-fatty acids that increase protein Fl phosphorylation enhance spatial memory. Brain Res. 505, 302–305.PubMedCrossRefGoogle Scholar
  165. Yamamoto, N., Saitoh, M., Moriuchi, A., Nomura, M., and Okuyama, H. (1987) Effect of dietary a-linolenate/linoleate balance on brain lipid compositions and learning ability of rats. J. Lipid Res. 28, 144–151.PubMedGoogle Scholar
  166. Yamamoto, N., Hashimoto, A., Takemoto, Y, Okuyama, H., Nomura, M., Kitajima, R., Togashi, T., and Tamai, Y. (1988) Effect of the dietary a-linolenate/linoleate balance on lipid compositions and learning ability of rats. II. Discrimination process, extinction process, and glycolipid compositions. J. Lipid Res. 29, 1013–1021.PubMedGoogle Scholar
  167. Yamamoto, N., Okinawa, Y., Mori, S., Nomura, N., and Okuyama, H. (1991) Effects of a high-linoleate and a high-alpha-linolenate diet on the learning ability of aged rats. J. Gerontol. Biol. Sci. 46, B17 — B22.Google Scholar
  168. Yehuda, S. (1989) Behavioral effects of dietary fats, in Health Effects of Fish and Fish Oils ( Chandra, R. K., ed.), ARTS Biomedical Publishers and Distributors, St. Johns, Newfoundland, pp. 327–335.Google Scholar
  169. Yehuda, S., Leprohon-Greenwood, C. E., Dixon, L. M., and Coscina, D. V. (1986) Effects of dietary fat on pain threshold, thermoregulation and motor activity in rats. Pharmacol. Biochem. Behay. 24, 1775–1777.CrossRefGoogle Scholar
  170. Yehuda, S. and Carasso, R. L. (1993) Modulation of learning, pain thresholds, and thermoregulation in the rat by preparations of free purified alpha-linolenic and linoleic acids: determonation of the optimals c 3–to-w6 ratio. Proc. Nat. Acad. Sci. USA 90, 10,345–10, 349.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Patricia E. Wainwright

There are no affiliations available

Personalised recommendations