Fatty Acids, Phospholipids, and Schizophrenia

  • David F. Horrobin


The basic reasons for considering the possibility that lipid abnormalities may be important in psychiatric disorders are reviewed in detail in Chapter 7. In brief, lipids are required for the normal structures of all neural membranes. Lipid structure is an important determinant of the final tertiary structure of membrane associated proteins such as receptors, ion channels, and adenosine triphophatases. The potential influence of apparently minor variations in lipid structure on membrane protein function is well illustrated by the work of Witt and Nielsen (1994). They demonstrated that the addition of two carbon atoms to a fatty acid (FA) chain, or the insertion of a double bond into a FA, could substantially change the amount of benzodiazepine bound to a receptor. This is likely to be a general principle: Relatively small changes in membrane lipid structure can lead to consequential changes in tertiary protein structure and therefore in the function of a wide variety of membranebound and membrane-associated proteins.


Essential Fatty Acid Tardive Dyskinesia Essential Fatty Acid Deficiency PLA2 Activity Membrane Protein Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berry-Kravis, E., Freedman, S. B., and Dawson, G. (1984) Specific receptor-mediated inhibition of cyclic AMP synthesis by dopamine in a neuroblastoma X brain hybrid cell line NCB-20. J. Neurochem. 43, 413–420.PubMedCrossRefGoogle Scholar
  2. Blobe, G. C., Khan, W. A., and Hannun, Y. A. (1995) Protein kinase C: cellular target of the second messenger arachidonic acid? Prostaglandins Leukotrienes Essential Fatty Acids 52, 129–136.CrossRefGoogle Scholar
  3. Bourgignon, A. (1984) Trial of evening primrose oil in the treatment of schizophrenia. L’Encephale 10, 241–250.Google Scholar
  4. Brenner, R. R. (1981) Nutritional and hormonal factors influencing desaturation of essential fatty acids. Prog. Lipid Res. 20, 41–48.PubMedCrossRefGoogle Scholar
  5. Brus, R., Herman, Z. S., Szkilnik, R., and Cichon, R. (1983) Effect of prostaglandins on chloropromazine induced catalepsy in mice. Biomed. Biochim. Acta 42, 1211–1244.PubMedGoogle Scholar
  6. Christensen, O. and Christensen, E. (1988) Fat consumption and schizophrenia. Acta Psychiatr. Scand. 78, 587–591.PubMedCrossRefGoogle Scholar
  7. Davidson, B., Kurstjens, N. P., Patton, J., and Cantrill, R. C. (1988) Essential fatty acids modulate apomorphine activity at dopamine receptors in cat caudate slices. Eur. J. Pharmacol. 149, 317–322.PubMedCrossRefGoogle Scholar
  8. Davis, G. C., Buchsbaum, M. S., van Kammen, D. P., and Bunney, W. E. (1979). Analgesia to pain stimuli in schizophrenics and its reversal by naltrexone. Psychiatry Res. 1, 61–69.PubMedCrossRefGoogle Scholar
  9. Di Marzo, V. and Piomelli, D. (1992) Participation of prostaglandin E2 in dopamine D2 receptor-dependent potentiation of arachidonic response. J. Neurochem. 59, 379–382.PubMedCrossRefGoogle Scholar
  10. Gattaz, W. F., Hubner, C. V. K., and Nevalainen, T. J. (1990) Increased serum phospholipase A2 activity in schizophrenia: a replication study. Biol. Psychiatry 28, 495–501.PubMedGoogle Scholar
  11. Glen, A. I. M., Cooper, S. J., Rybakowski, J., Vaddadi, K., Brayshaw, N., and Horrobin, D. F. (1996) Membrane fatty acids, niacin flushing and clinical parameters. Prostaglandins Leukotrienes Essential Fatty Acids in press.Google Scholar
  12. Glen, A. I. M., Glen, E. M. T., Horrobin, D. F., Vaddadi, K. S., Spellman, M., Morse-Fisher, N., Ells, K., and Shinner, F. S. (1994) A red cell abnormality in a subgroup of schizophrenic patients: evidence for two diseases. Schizophr. Res. 12, 53–61.PubMedCrossRefGoogle Scholar
  13. Hinsberger, A., Williamson, P. C., Carr, T., Stanley, J., Drost, D., Densmore, M., MacFabe, G., and Montemurro, D. (1995) MM volumetric measures and 31P MRS in schizophrenia. Schizophr. Res. 15, 83–84.CrossRefGoogle Scholar
  14. Horrobin, D. F. (1977) Schizophrenia as a prostaglandin deficiency disease. Lancet i, 1936–1937.Google Scholar
  15. Horrobin, D. F. (1979) Schizophrenia: reconciliation of the dopamine, prostaglandin and opiod concepts and the role of the pineal. Lancet i, 529–531.Google Scholar
  16. Horrobin, D. F. (1980) Niacin flushing, prostaglandin E and evening primrose oil. A possible objective test for monitoring therapy in schizophrenia. J. Orthomol. Psychiatry 9, 33–34.Google Scholar
  17. Horrobin, D. F. (1990) Gamma-linolenic acid. Rev. Contemp. Pharmacother. 1, 1–41.Google Scholar
  18. Horrobin, D. F. (1992a) Nutritional and medical importance of gamma-linolenic acid. Progr. Lipid Res. 31, 163–192.CrossRefGoogle Scholar
  19. Horrobin, D. F. (1992b) The relationship between schizophrenia and essential fatty acids and eicosanoid production. Prostaglandins Leukotrienes Essential Fatty Acids 46, 71–77.CrossRefGoogle Scholar
  20. Horrobin, D. F., Ally, A. I., Karmali, R. A., Karmazyn, M., Manku, M. S., and Morgan, R. O. (1978) Prostaglandins and schizophrenia: further discussion of the evidence. Psychol. Med. 8, 43–48.PubMedCrossRefGoogle Scholar
  21. Horrobin, D. F., Glen, A. I. M., and Hudson, C. J. (1995) Possible relevance of phospholipid abnormalities and genetic interactions in psychiatric disorders: the relationship between dyslexia and schizophrenia. Med. Hypothesis 45, 605–613.CrossRefGoogle Scholar
  22. Horrobin, D. F., Glen, A. I. M., and Vaddadi, K. (1994). The membrane hypothesis of schizophrenia. Schizophr. Res. 13, 195–207.PubMedCrossRefGoogle Scholar
  23. Horrobin, D. F., Manku, M. S., Morse-Fisher, N., Vaddadi, K. S., Courtney, P., Glen, A. I. M., Glen, E., Spellman, M., and Bates, C. (1989) Essential fatty acids in plasma phospholipids in schizophrenics. Biol. Psychiatry 25, 562–568.PubMedCrossRefGoogle Scholar
  24. Huang, Y. S., Horrobin, D. F., Watanabe, Y., Bartlett, M. E., and Simmons, V. A. (1990) Effects of dietary linoleic acid on growth and liver phospholipid fatty acid composition in intact and gonadectomized rats. Biochem. Arch. 6, 47–54.Google Scholar
  25. Hudson, C. J., Kennedy, J. L., Gotowiec, A., Lin, A., King, N., Gojtan, K., Macciardi, E, Skorecki, K., Meltzerl, H. Y, Warsh, J. J., and Horrobin, D. R (1996) Genetic variant near cytosolic phospholipase A2 associated with schizophrenia. Schizophr. Res. in press.Google Scholar
  26. Hudson, C. J., Lin, A., Cogan, S., and Warsh, J. J. (1995) Clinical detection of altered prostaglandin function in schizophrenia sub-type. Schizophr. Res. 15, 60.CrossRefGoogle Scholar
  27. Iacono, W. G. and Beiser, M. (1992) Where are the woman in the first-episode studies of schizophrenia? Schizophr. Bull. 18, 471–480.PubMedCrossRefGoogle Scholar
  28. Kaiya, H., Horrobin, D. F., Manku, M. S., and Morse-Fisher, N. (1991) Essential and other fatty acids in schizophrenic individuals from Japan. Biol. Psychiatry 30, 357–562.PubMedCrossRefGoogle Scholar
  29. Lin, A. and Hudson, C. J. (1996) The niacin challenge test in schizophrenia: past, present and future. Prostaglandins Leukotrienes Essential Fatty Acids in press.Google Scholar
  30. Lipper, S. and Werman, D. S. (1977) Schizophrenia and intercurrent physical illness: a critical review of the literature. Compr. Psychiatry 18, 11–22.PubMedCrossRefGoogle Scholar
  31. Morrow, J. D., Awad, J. A., Oates, J. A., and Roberts, L. J. (1992) Identification of skin as a major site of prostaglandin D2 release following oral administration of niacin in humans. J. Invest. Dermatol., 98, 812–815.PubMedCrossRefGoogle Scholar
  32. Murray, R. M., O’Callaghan, E., Castle, D. J., and Lewis, S. W. (1992) A neuro-developmental approach to the classification of schizophrenia. Schizophr. Bull. 319–332.Google Scholar
  33. Myers, P. R., Blosser, J., and Shain, W. (1978) Neurotransmitter modulation of prostaglandin-El stumulated increases in cyclic AMP. II. Characterisation of a cultured neuronal cell line treated with dibutyryl cyclic AMP. Biochem. Pharmacol. 27, 1173–1177.PubMedCrossRefGoogle Scholar
  34. Oka, M., Manku, M. S., and Horrobin, D. F. (1981) Interactions between dopamine and prostaglandins on vascular reactivity of noradrenaline: dopamine inhibits the action of PGE1. Prostaglandins Med. 7, 267–280.PubMedCrossRefGoogle Scholar
  35. Peet, M., Laugharne, J. D., Horrobin, D. F., and Reynolds, G. P. (1994) Arachidonic acid: a common link in the biology of schizophrenia. Arch. Gen. Psychiatry 51, 665, 666.Google Scholar
  36. Peet, M., Laugharne, J. D. E., Mellor, J., and Ramchard, C. N. (1996) Essential fatty acid deficiency in erythrocyte membranes from chronic schizophrenic patients and the clinical effects of dietary supplementation. Prostaglandins Leukotrienes Essential Fatty Acids, in press.Google Scholar
  37. Pettegrew, J. W., Keshavan, M. S., and Minchew, N. J. (1993) 31P nuclear magnetic resonance spectroscopy: neurodevelopment and schizophrenia. Schizophr. Bull. 35–53.Google Scholar
  38. Pettegrew, J. W., Keshavan, M. S., and Panchalingram, K. (1991) A pilot study of the dorsal prefrontal cortex using in vivo phosphorous 31 nuclear magnetic resonance spectroscopy. Arch. Gen. Psychiatry 48, 563–568.PubMedCrossRefGoogle Scholar
  39. Rudin, D. O. (1981) The major psychoses and neuroses as omega-3 essential fatty acid deficiency syndrome: substrate pellagra. Biol. Psychiatry 16, 837–850.PubMedGoogle Scholar
  40. Rybakowski, J. and Weterle, R. (1991) Niacin test in schizophrenia. Biol. Psychiatry 29, 834–836.PubMedCrossRefGoogle Scholar
  41. Schwartz, R. D., Uretsky, N. J., and Bianchine, J. R. (1972) Prostaglandin inhibition of apomorphine-induced circling in mice. Pharmacol. Biochem. Behay. 17, 1233.CrossRefGoogle Scholar
  42. Seiler, D. and Hasselbach, W. (1971) Essential fatty acid deficiency and the activity of the sarcoplasmic calcium pump. Eur. J. Biochem. 21, 385–387.PubMedCrossRefGoogle Scholar
  43. Soulirac, A., Lambinet, H., and Heuman, J. C. (1990) Schizophrenia and PGs: therapeutic effects of PG precursors in the form of evening primrose oil. Ann. Med. Psychol. 8, 883–890.Google Scholar
  44. Tay, A., Simon, J. S., Squire, J., Hamel, K., Jacob, H. J., and Skorecki, K. (1995) Cytosolic phospholipase A2 gene in human and rat: chromosomal localization and polymorphic markers. Genetics 26, 138–141.Google Scholar
  45. Trzeciak, H. I., Kalacinski, W., Malecki, A., and Kokot, D. (1995) Effect of neuroleptics on phospholipase A2 activity in the brain of rats. Eur. Arch. Psychiatry Clin. Neurosci. 245, 179–182.Google Scholar
  46. Ulas, J. and Cotman, C. W. (1993) Excitatory amino acid receptors in schizophrenia. Schizophr. Bull. 19, 105–117.PubMedCrossRefGoogle Scholar
  47. Vaddadi, K. S. (1992) Use of gamma-linolenic acid and in the treatment of schizophrenia and tardive dyskinesia. Prostaglandins Leukotrienes Essential Fatty Acids 46, 67–70.CrossRefGoogle Scholar
  48. Vaddadi, K. S., Courtney, P., Gilleard, C. J., Manku, M. S., and Horrobin, D. F. (1988) A double-blind trial of essential fatty acid supplementation in patients with tardive dyskinesia. Psychiatry Res. 27, 313–323.CrossRefGoogle Scholar
  49. Vaddadi, K. S., Gilleard, C. J., Mindham, R. H. S., and Butler, R. A. (1986) A controlled trial of prostaglandin El precursor in chronic neuroleptic resistant schizophrenic patients. Psychopharmacology 88, 362–367.PubMedCrossRefGoogle Scholar
  50. Vial, D. and Piomelli, D. (1995) Dopamine D2 receptors potentiate arachidonate release via activation of cytosolic, archidonate-specific phospholipase A2. J. Neurochem. 64, 2765–2772.PubMedCrossRefGoogle Scholar
  51. Vinogradov, S., Gottesman, I. I., Moises, H. W., and Nicol, S. (1991) Negative association between schizophrenia and rheumatoid arthritis. Schizophr. Bull. 17, 669–678.PubMedCrossRefGoogle Scholar
  52. Wahl, O. F. and Hunter, J. (1992) Are gender effects being neglected in schizophrenia research? Schizophr. Bull. 18, 313–317.PubMedCrossRefGoogle Scholar
  53. Witt, M. R. and Nielsen, M. (1994) Characterisation of the influence of unsaturated free fatty acids on brain GABA/benzodiazepine receptor binding in vitro. J. Neurochem. 62, 1432–1439.PubMedCrossRefGoogle Scholar
  54. World Health Organization (1979) Schizophrenia: An International Follow-Up Study. Wiley, New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • David F. Horrobin

There are no affiliations available

Personalised recommendations