Advertisement

Petri Nets for a Space Operational System Availability Study

  • M. Saleman
  • J.-F. Ereau
Chapter

Abstract

This paper presents an availability study of a space operational system called TPFO (Topex Poseidon Follow On) using Petri nets for both modeling and evaluation aspects. The aim of this study was to examine mission/system trades that might be possible in view of TPFO missions with the intent of achieving minimum program cost. Thus, the study have to take into account several aspects of the program, as mission time, number of satellites, satellite reliability and lifetime, satellite production and storage policies, launch reliability and availability, relaunch policy, etc... and to identify options for achieving availability objectives with minimum total cost. We illustrate in this paper Petri net’s ability to deal with such system from both modeling and evaluation view points. The results obtained by this method provide interesting outputs for the project. This is shown through the interpretation of typical results.

Keywords

Maintenance Policy Satellite Production Transition Firing Mission Time Space Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Ajmone Marsan, G. Balbo and G. Conte, “A class of Generalized Stochastic Petri Nets for the Performance Evaluation of Multiprocessor Systems”, ACM Trans. on Computer Systems, 2 /2, 1984 May, P 93 – 122.Google Scholar
  2. [2]
    Y. Atamna, G. Juanole, “Dealing with Arbitrary Time Distribution with the Stochastic Timed Petri Net Model, Applications to Queuing Systems”, International Workshop on Petri Nets and Performance Models, Melbourne, Australia, 1991 December.Google Scholar
  3. [3]
    I. A. Merlin and D. J. Farber, “Recoverability of Communication Protocols — Implications of a Theorical Study”, IEEE Trans. on Comm., COM-24 (9), 1976 September, P 1036 – 1043.Google Scholar
  4. [4]
    G. Florin, S. Natkin, “Evaluation des Performances d’un Protocole de Communication à l’aide des Réseaux de Petri et des Processus Stochastiques”, Journées AFCET Multi-Ordinateurs, multiprocesseurs en temps réel, CNRS, Paris, 1978 Mai.Google Scholar
  5. [5]
    IXI, MISS-RdP version 4.0, Manuel de l’utilisateur 1994.Google Scholar
  6. [6]
    F. Moyse, “Précision des résultats de simulation du logiciel MISS-RdP”, Rapport de stage de DEA de Mathèmatiques Appliquées, Ecole Nationale Supérieure de l’Aéronautique et de l’Espace Université Paul Sabatier, 1995 September.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • M. Saleman
    • 1
  • J.-F. Ereau
    • 2
  1. 1.CNESToulouseFrance
  2. 2.CNES & LAAS-CNRS ToulouseFrance

Personalised recommendations