Skip to main content

Multiresolution Decomposition

  • Chapter
Book cover Visual Communication

Abstract

This chapter includes multiresolution decomposition for image analysis and data compression. Multiresolution processing has been implemented with many different architectures (tree structures) and filters (operators) for signal decomposition (analysis) and reconstruction (synthesis).1–13 Therefore, Section 5.1 begins with a single-level decomposition that most architectures share, and Section 5.2 extends the formulations to a particular multi-level realization, the wavelet transform. Finally, Section 5.3 characterizes the performance of this decomposition in the visual communication channel. This characterization focuses on the effects of the quantization of the wavelet transform coefficients (or requantization) on the information rate, data rate and image quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Gabor, “Theory of communication,” Proc. IEEE 93, 429–457 (1946).

    Google Scholar 

  2. P. J. Burt and E. H. Adelson, “The Laplacian pyramid as a compact image code,” IEEE Trans. Comm. COM-31, 532–540 (1983).

    Article  Google Scholar 

  3. I. Daubechies, “Orthonormal bases of compactly supported wavelets,” Commun. on Pure and Appl. Math., 41, 909–996 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Mallat, “Multifrequency channel decompositions of images and wavelet models,” IEEE Trans. Acoustic., Speech, and Signal Proc. ASSP-37, 2901–2110 (1989).

    Google Scholar 

  5. S. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. on Pattern Recog. and Mach. Intell. 11, 674–693 (1989).

    Article  MATH  Google Scholar 

  6. I. Daubechies, “The wavelet transform, time-frequency localization and signal analysis,” IEEE Trans. Inform. Th. 36, 961–1005 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  7. T. Ebrahimi and M. Kunt, “Image compression by Gabor expansion,” Opt. Eng. 30, 873–880 (1991).

    Article  Google Scholar 

  8. J. W. Woods, editor, Subband Image Coding ( Kluwer Academic Publishers, Boston, 1991 ).

    MATH  Google Scholar 

  9. M. Vetterli and C. Herley, “Wavelets and filter banks: Theory and design,” IEEE Trans. Signal Proc. 40 (9), 2207–2232 (1992).

    Article  MATH  Google Scholar 

  10. A. N. Akansu and R. A. Haddad, Multiresolution Signal Decomposition ( Academic Press, Boston, 1992 ).

    MATH  Google Scholar 

  11. Y. Meyer, Wavelet: Algorithms and Applications ( SIAM, Philadelphia, 1993 ).

    Google Scholar 

  12. G. Kaiser, A Friendly Guide to Wavelets ( Birckhäuser, Boston, 1994 ).

    MATH  Google Scholar 

  13. M. Vetterli and J. Kovacevic, Wavelets and Subband Coding ( Prentice Hall, New Jersey, 1995 ).

    MATH  Google Scholar 

  14. S. Mallat and S. Zhong, “Wavelet maxima representation,” in Y. Meyer, editor, Wavelets and Applications ( Masson, Paris, 1991 ).

    Google Scholar 

  15. R. R. Coffman, Y. Meyer and M. V. Wickerhauser, “Wavelet analysis and signal processing,” in M. B. Ruskai et al., editor, Wavelets and their Applications ( Jones and Bartlett, Boston, 1992 ).

    Google Scholar 

  16. R. R. Coffman and M. V. Wickerhauser, “Entropy-based algorithms for best basis selection,” IEEE Trans. Inform. Th., Special Issue on Wavelet Transforms and Multiresolution Signal Analysis 38, 713–718 (1992).

    Google Scholar 

  17. J. M. Shapiro, “Embedded image coding using zero trees of wavelet coefficients,” IEEE Trans. Signal Proc., Special Issue on Wavelets and Signal Processing 41, 3445–3462 (1993).

    MATH  Google Scholar 

  18. K. Ramchandran and M. Vetterli, “Best wavelet packet bases in a rate-distortion sense,” IEEE Trans. Image Proc. 2 160–175 (1993).

    Article  Google Scholar 

  19. D. Marr and E. Hildreth, “Theory of edge detection,” Proc. Roy. Soc. London B 207, 187–217 (1980).

    Google Scholar 

  20. D. Marr, Vision (Freeman, San Francisco, California, 1982 ).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Huck, F.O., Fales, C.L., Rahman, Zu. (1997). Multiresolution Decomposition. In: Visual Communication. The Springer International Series in Engineering and Computer Science, vol 409. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2568-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2568-1_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5180-9

  • Online ISBN: 978-1-4757-2568-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics