Preparation, Characterization, and Utilization of Biomimetic Membranes

  • Janos H. Fendler


Biological membranes define the very existence of the living cell and are intimately involved in in vivo syntheses, recognition, information transfer, and energy transduction.1 Self-organization, predominantly bimolecular thickness, domain formation, temperature, media- and electrical signal-dependent fluidity, and permeability control are believed to be responsible for the effectiveness of the biological membrane in mediating these myriads of activities. The exploitation of biomembranedependent processes in vitro in relatively simple artificial biomimetic membranes for the compartmentalization of substrates, for acting as carriers, and for altering reaction rates, products, and stereochemistries has been the subject of intensive research activities.2 Biomimetic membranes are defiined by a utilitarian point of view as compartments which are able to. accommodate selected substrates in desired microenvironments. Aqueous micelles, reversed micelles, monolayers, Langmuir-Blodgett (LB) films, bilayer lipid membranes (BLMs), freely suspended ultrathin fiilms, surfactant vesicles (liposomes), cast multilayers, self-assembled films, and even such layered compounds as zeolites and pillared clays (or organoclay complexes) are considered to be biomimetic membranes in this broad definition. In contrast, the term biofunctional membrane is limited to an “entity in which biological molecules (or cells) are attached to polymeric supports cast in the form of porous membranes.”3


Bilayer Lipid Membrane Pillared Clay Surface Force Apparatus Langmuir Film Trans Side 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.E. Bittar, “Membrane Structure and Function,” Wiley-Interscience, New York (1968).Google Scholar
  2. 2.
    J.H. Fendler, “Membrane Mimetic Chemistry,” Wiley-Interscience, New York (1982).Google Scholar
  3. 3.
    D.A. Butterfield, J. Lee, S. Ganapathi, and D. Bhattacharyya, Biofunctional membranes. 4. Active-site structure and stability of an immobilized enzyme, papain, on modified polysulfone membranes studied by electron-paramagnetic-resonance and kinetics, J. Membr. Sci. 91:47 (1994).CrossRefGoogle Scholar
  4. 4.
    J.H. Fendler, “Membrane-Mimetic Approach to Advanced Materials,” Springer-Verlag, Berlin (1994).CrossRefGoogle Scholar
  5. 5.
    J.N. Israelachvili, “Intermolecular & Surface Forces,” Second Edition, Academic Press, San Diego, CA (1992).Google Scholar
  6. 6.
    J.L. Parker, H.K. Christenson, and B.W. Ninham, Surface force apparatus, Rev. Sci. lnstrum. 60:3135 (1989).CrossRefGoogle Scholar
  7. 7.
    R. Wiesendanger, “Scanning Probe Microscopy and Spectroscopy,” Cambridge University Press, Cambridge (1994).CrossRefGoogle Scholar
  8. 8.
    M. Löche and H. Möhwald, Fluorescence microscopy of monolayers, Rev. Sci. Instr. 55:1968 (1984).CrossRefGoogle Scholar
  9. 9.
    S. Henon and J. Meunier, Microscope at the Brewster angle: direct observation of first-order phase transitions in monolayers, Rev. Sci. lnstr. 62:936(1991).CrossRefGoogle Scholar
  10. 10.
    D. Hönig and D. Möbius, Direct visualization of monolayers at the air-water interface by Brewster angle microscopy, J. Phys. Chem. 95:4590 (1991).CrossRefGoogle Scholar
  11. 11.
    J. Als-Nielsen and H. Möhwald, Synchrotron x-ray scattering studies of Langmuir films, in: “Handbook on Synchrotron Radiation,” S. Ebashi, M. Koch, and E. Rubinstein, eds., Elsevier, The Netherlands (1991), Vol. 4.Google Scholar
  12. 12.
    A. Ulman, “An Introduction to Ultrathin Organic Films from Langmuir-Blodgett to SelfAssembly,” Academic Press, Boston (1991).Google Scholar
  13. 13.
    A. Pockels, Surface tensions, Nature 43:437 (1891).Google Scholar
  14. 14.
    “Advances in the Applications of Membrane-Mimetic Chemistry,” T.F. Yen, R.D. Gilbert, and J.H. Fendler, eds., Plenum Press, New York (1994).Google Scholar
  15. 15.
    “Molecular and Biomolecular Electronics,” R.R. Birge, ed., American Chemical Society: Washington, DC (1994).Google Scholar
  16. 16.
    D.J. Robinson and J.C. Earnshaw, Initiation of aggregation in colloidal particle monolayers, Langmuir 9:1436 (1993).CrossRefGoogle Scholar
  17. 17.
    G. Onoda, Polystyrene monolayers, Phys. Rev. Lett. 55:226 (1985).PubMedCrossRefGoogle Scholar
  18. 18.
    Z. Hórvölgyi, S. Németh, and J.H. Fendler, Spreading of hydrophobic silica beads at water air interfaces, Colloids Surf. A: Physicochem. Eng. Aspects 71:327 (1993).CrossRefGoogle Scholar
  19. 19.
    S. Németh, T.-C. Jao, and J.H. Fendler, Concentration and solvent-dependent excimer formation of 1-pyrenylmethanamine covalently attached to maleic anhydride-grafted ethylene propylene copolymers, Macromol. 27:5449 (1994).CrossRefGoogle Scholar
  20. 20.
    H. Haas and H. Möhwald, Ordered protein arrays as mesophases, Langmuir 10:363 (1994).CrossRefGoogle Scholar
  21. 21.
    N.A. Kotov, F.C. Meldrum, C. Wu, and J.H. Fendler, Monoparticulate layer and LangmuirBlodgett-type multiparticulate layers of size-quantized, cadmium-sulfide clusters: a colloid-chemical approach to superlattice construction, J. Phys. Chem. 98:2735 (1994).CrossRefGoogle Scholar
  22. 22.
    N.A. Kotov, F.C. Meldrum, and J.H. Fendler, Monoparticulate layers of titanium dioxide nanocrystallites with controllable interparticle distances, J. Phys. Chem. 98:8827 (1994).CrossRefGoogle Scholar
  23. 23.
    N.A. Kotov, Y. Tian, F.C. Meldrum, and J.H. Fendler, Unpublished results (1995).Google Scholar
  24. 24.
    N.A. Kotov, G. Zavala, and J.H. Fendler, Langmuir-Blodgett films prepared from ferroelectric lead zirconium titanate particles, J. Phys. Chem. submitted for publication (1995).Google Scholar
  25. 25.
    F.C. Meldrum, N.A. Kotov, and J.H. Fendler, Preparation of particulate mono- and multilayers from surfactant-stabilized, nanosized magnetite crystallites, J. Phys. Chem. 98:4506 (1994).CrossRefGoogle Scholar
  26. 26.
    X.K. Zhao, S. Xu, and J.H. Fendler, Ultrasmall magnetic particles in Langmuir-Blodgett films, J. Phys. Chem. 94:2573 (1990).CrossRefGoogle Scholar
  27. 27.
    D.W. Grainger, M. Ahlers, P. Meller, R. Blankenburg, A. Reichert, H. Ringsdorf, C. Salesse, J.N. Herron, and K. Lim, Controlling binding and organization of proteins with model biomembrane systems through specific recognition, in: “Biomembrane Structure and Function — the State of the Art,” B.P. Gaber and K.R.K. Easwaran, eds., Adenine Press, New York (1992).Google Scholar
  28. 28.
    B.R. Heywood and S. Mann, Template-directed nucleation and growth of inorganic materials, Adv. Mater. 6:9 (1994).CrossRefGoogle Scholar
  29. 29.
    H.A. Lowenstam and S. Weiner, “On Biomineralization,” Oxford University Press, New York (1989).Google Scholar
  30. 30.
    L. Addadi and S. Weiner, Control and design principles in biological mineralization, Angew. Chem. Int. Ed. Engl. 31:153 (1992).CrossRefGoogle Scholar
  31. 31.
    H.T. Tien, “Bilayer Lipid Membranes (BLM). Theory and Practice,” Marcel Dekker, New York (1974).Google Scholar
  32. 32.
    B. Hille, “Ionic Channels of Excitable Membranes,” Sinaver Associates, Sunderland, MA (1984).Google Scholar
  33. 33.
    B. Sackmann and E. Neher, “Single Channel Recording,” Plenum Press, New York (1983).Google Scholar
  34. 34.
    S. Kato and T. Kunitake, Molecular design of black lipid membranes (BLM) by polymerized double-chain ammonium amphiphiles, Chem. Lett. 261 (1991).Google Scholar
  35. 35.
    K. Hongyo, J. Joseph, R.J. Huber, and J. Janata, Experimental observation of chemically modulated admittance of supported phospholipid membranes, Langmuir 3:827 (1987).CrossRefGoogle Scholar
  36. 36.
    X.K. Zhao, S. Baral, R. Rolandi, and J.H. Fendler, Semiconductor particles in bilayer lipid membranes (BLMs). Formation, characterization, and photoelectrochemistry, J. Am. Chem. Soc. 110:1012 (1988).CrossRefGoogle Scholar
  37. 37.
    X.K. Zhao, P.J. Herve, and J.H. Fendler, Magnetic particulate thin films on bilayer lipid membranes (BLMs), J. Phys. Chem. 93:908 (1989).CrossRefGoogle Scholar
  38. 38.
    X.K. Zhao, S. Baral, and J.H. Fendler, Electrochemical characterization of bilayer lipid membrane semiconductor junctions, J. Phys. Chem. 94:2043 (1990).CrossRefGoogle Scholar
  39. 39.
    A.T. Todorov, A.G. Petrov, and J.H. Fendler, Flexoelectricity of charged and dipolar bilayer lipid membranes studied by stroboscopic interferometry, Langmuir 10:2344 (1994).CrossRefGoogle Scholar
  40. 40.
    F.C. Meldrum, N.A. Kotov, J.H. Fendler, Utilization of surfactant-stabilized colloidal silver nanocrystallites in the construction of mono- and multiparticulate Langmuir-Blodgett films, Langmuir 10:2035 (1994).CrossRefGoogle Scholar
  41. 41.
    G. Decher, J. Maclennan, and J. Reibel, Highly-ordered ultrathin LC multilayer films on solid substrates, Adv. Mater. 3:617 (1991).CrossRefGoogle Scholar
  42. 42.
    T. Kunitake and Y. Okahata, A totally synthetic bilayer membrane, J. Am. Chem. Soc. 99:3 860 (1977).Google Scholar
  43. 43.
    T. Kunitake, Y. Okahata, K. Tamaki, F. Kumamura, and M. Takayanagi, Formation of the bilayer membrane from a series of quaternary ammonium salts, Chem. Lett.(Jpn) 387 (1977).Google Scholar
  44. 44.
    J.H. Fendler, Membrane mimetic chemistry, C&E News 62:25 (1984).CrossRefGoogle Scholar
  45. 45.
    J.H. Fendler, Polymerized surfactant vesicles — novel membrane mimetic systems, Science 223:888 (1984).PubMedCrossRefGoogle Scholar
  46. 46.
    J.H. Fendler and E.J. Fendler, “Catalysis in Micellar and Macromolecular Systems,” Academic Press, New York (1975).Google Scholar
  47. 47.
    T. Kunitake, Synthetic bilayer membranes: molecular design, self-organization, and application, Angew. Chem. Int. Ed. Engl. 31:709 (1992).CrossRefGoogle Scholar
  48. 48.
    H. Ringsdorf, B. Schlarb, and J. Venzmer, Molecular architecture and function of polymeric oriented systems: models for the study of organization, surface recognition, and dynamics of biomembranes, Angew. Chem. lnt. Ed. Engl. 27:113 (1988).CrossRefGoogle Scholar
  49. 49.
    J.H. Fendler, Surfactant vesicles as membrane mimetic agents: characterizations and utilizations, Acc. Chem. Res. 13:7 (1980).CrossRefGoogle Scholar
  50. 50.
    M. Caffrey, D. Moynihan, and J. Hogan, A database of lipid phase transition temperatures and enthalpy changes, Chem. Phys.Lip. 57:275 (1991).CrossRefGoogle Scholar
  51. 51.
    S.L. Regen, J.-S. Shin, J.F. Hainfeld, and J.S. Wall, Ghost vesicles, J. Am. Chem. Soc. 106:5756 (1984).CrossRefGoogle Scholar
  52. 52.
    Y. Okahata, Lipid bilayer-corked capsule membranes. Reversible, signal-receptive permeation control. Acc. Chem. Res. 19:57 (1986).CrossRefGoogle Scholar
  53. 53.
    Y. Okahata, Lipid bilayer-coated capsule membranes. Reversible, signal-receptive permeation control, Acc. Chem. Res. 19:57 (1986).CrossRefGoogle Scholar
  54. 54.
    Y. Okahata, K. Ariga, and T. Seki, Polymerizable lipid-corked capsule membranes. Polymerization at different positions of corking lipid bilayers on the capsule and effect of polymerization on permeation behavior, J. Am. Chem. Soc. 110–2495 (1988).Google Scholar
  55. 55.
    N. Nakashima, R. Ando, and T. Kunitake, Casting of synthetic bilayer membranes on glass and spectral variation of mnembrane-bound cyanine and merocyanine dyes, Chem. Lett. 1577 (1983).Google Scholar
  56. 56.
    M. Shimomura, R. Ando, and T. Kunitake, Orientation and spectral characteristics of the azobenzene chromophore in the ammonium bilayer assembly, Ber. Bunsenges, Phys. Chem. 87:1134 (1983).CrossRefGoogle Scholar
  57. 57.
    N. Higashi and T. Kunitake, Immobilization of cast bilayer films by 60Co gamma-irradiation and other means, Polymer J. 16:583 (1984).CrossRefGoogle Scholar
  58. 58.
    M. Shimomura and T. Kunitake, Immobilization of synthetic bilayer membranes as multilayered polymer films, Polymer J. 16:187 (1984).CrossRefGoogle Scholar
  59. 59.
    T. Kunitake, A. Tsuge, and N. Nakashima, Immobilization of ammonium bilayer membranes by complexation with anionic polymers, Chem. Lett. (Jpn) 1783 (1984).Google Scholar
  60. 60.
    N. Nakashima, M. Kunitake, T. Kunitake, S. Tone, and T. Kajiyama, Ordered cast films of polymerized bilayer mermbranes, Macromol. 18:1515 (1985).CrossRefGoogle Scholar
  61. 61.
    S.L. Regen, P. Kirszensztejh, and A. Singh, Polymer supported membranes, Macromol. 16:335 (1983).CrossRefGoogle Scholar
  62. 62.
    O. Albrecht and A. Laschewsky, Polymer supported membranes, Macromol. 17:1292 (1984).CrossRefGoogle Scholar
  63. 63.
    S.L. Regen, Z. Foltynowicz, and K. Yamaguchi, Further evidence for polymer supported membranes, Macromol. 17:1293 (1984).CrossRefGoogle Scholar
  64. 64.
    N. Higashi, T. Kajiyama, T. Kunitake, W. Prass, H. Ringsdorf, and A. Takahara, Cast multibilayer films from polymerizable lipids, Macromol. 20:29 (1987).CrossRefGoogle Scholar
  65. 65.
    A. Takahara, N. Higashi, T. Kunitake, and T. Kajiyama, State of aggregation and surface chemical composition of composite thin films composed of poly(vinyl alcohol) and fluorocarbon amphiphile, Macromol. 21(8):2443 (1988).CrossRefGoogle Scholar
  66. 66.
    K. Fukuta, Y. Itami, R. Shimizu, and T. Kunitake, Preparation of multilayered fiilms of poly(stearyl acrylate) using cast films of a novel fluorocarbon amphiphile as twodimensional templates.Google Scholar
  67. 67.
    S. Asakuma and T. Kunitake, A multi-layered film of a two-dimensionally crosslinked acrylate polymer, Chem. Lett. 2059 (1989).Google Scholar
  68. 68.
    Y. Okahata and H. Ebato, Application of a quartz-crystal microbalance for detection of phase transitions in liquid crystals and lipid multibilayers, Anal. Chem. 61:2185 (1989).CrossRefGoogle Scholar
  69. 69.
    K. Sakata and T. Kunitake, A multilayered film of an ultrathin siloxane network, J. Chem. Soc., Chem. Commun. 504 (1990).Google Scholar
  70. 70.
    Y. Ishikawa and T. Kunitake, Macroscopically oriented copper(II) chelates in cast multibilayer films, J. Am. Chem. Soc. 108:8300 (1986).CrossRefGoogle Scholar
  71. 71.
    I. Hamachi, S. Noda, and T. Kunitake, Layered arrangement of oriented myoglobins in cast films of a phosphate bilayer membrane, J. Am. Chem. Soc. 112:67–44 (1990).CrossRefGoogle Scholar
  72. 72.
    T. Kunitake, Ultrathin fiilms as biomimetic membranes, Polymer J. 23 :613 (1991).Google Scholar
  73. 73.
    S. Asakuma, H. Okada, and T. Kunitake, Template synthesis of two-dimensional network of cross-linked acrylate polymer in a cast multibilayer film, J. Am. Chem. Soc. 113:1749 (1991).CrossRefGoogle Scholar
  74. 74.
    Y. Ishikawa and T. Kunitake, Design of spatial disposition of anionic porphyrins in matrices of ammonium bilayer membranes, J. Am. Chem. Soc. 113 :621 (1991).Google Scholar
  75. 75.
    K. Sakata and T. Kunitake, Synthesis of polysiloxane films with varied microstructures in matrices of carbazole-containing bilayer membranes, Thin Solid Films 210/211:26 (1992).CrossRefGoogle Scholar
  76. 76.
    H. Okada, K. Sakata, and T. Kunitake, Formation of oriented iron oxide particles in cast multibilayer films, Chem. Mater. 2:89 (1990).CrossRefGoogle Scholar
  77. 77.
    Y. Okahata, H.-J. Lim, G. Nakamura, and S. Hachiya, A large nylon capsule coated with a synthetic bilayer membrane. Permeability control of NaCI by phase transition of the dialkylammonium bilayer coating, J. Am. Chem. Soc. 105:4855 (1983).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Janos H. Fendler
    • 1
  1. 1.Department of ChemistrySyracuse UniversitySyracuseUSA

Personalised recommendations