Skip to main content

Biomimetic Approach to the Design of Selective Oxoanion Receptors for Use in Membrane-Based Potentiometric Sensors

  • Chapter
Biofunctional Membranes

Abstract

The need to selectively recognize and complex ions and molecules is common in many areas of science and industry. Nature’s ability to selectively detect or sense specific compounds in a variety of ways and under many different conditions has long been the source of inspiration in the application and development of recognition-based chemistry. Biofunctional membranes present one such example where polymeric membranes can be designed with a desired function by using or mimicking natural chemical recognition systems. The components found in living organisms that have selective recognition features (i.e., proteins, enzymes, membrane systems, sensory neurons, etc.) have been the subject of much intense study. The rapid, selective, and sensitive response of natural sensory systems that employ recognition chemistry can serve as a model in the development of biosensors. This includes mimicking natural receptors,1 antibiotics,2,3 and even olfactory membranes4 to accomplish desired tasks. One group has successfully immobilized double-helical DNA directly onto an electrode surface and obtained a biosensor that responded selectively to DNA-binding substances (via intercalation) as well as to magnesium ion.5 The applications which await the development of novel biosensors cover a wide range of disciplines, including environmental, medical, industrial, and other venues of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tohda, K.; Naganawa, R.; Lin, X. M.; Tange, M.; Umezawa, K.; Odashima, K.; Umezawa, Y.; Furuta, H.; Sessler, J. L. Sens. Actuators B 1993, 13–14, 669–672.

    Article  Google Scholar 

  2. Siswanta, D.; Hisamoto, H.; Tohma, H.; Yamamoto, N.; Suzuki, K. Chem. Lett. 1994, 945–948.

    Google Scholar 

  3. Cygan, A.; Luboch, E.; Biernat, J. F. J. Incl. Phenom. 1988, 6, 215–220.

    Article  CAS  Google Scholar 

  4. Krull, U. J.; Thompson, M. Trends Anal. Chem. 1985, 4, 90–96.

    Article  CAS  Google Scholar 

  5. Maeda, M.; Nakano, K.; Takagi, M. ACS Symp. Ser. 1994, 556, 238–251.

    Article  Google Scholar 

  6. Rechnitz, G. A.Chem. Eng. News 1988, September 5, 24–36.

    Google Scholar 

  7. Simon, W. Swiss Pat. 1969, 479870.

    Google Scholar 

  8. Simon, W. Pure Appl. Chem. 1971, 25, 811–823.

    Article  CAS  Google Scholar 

  9. Covington, A. K.; Kumar, N. Anal. Chim. Acta 1976, 85, 175–178.

    Article  PubMed  CAS  Google Scholar 

  10. Erne, D.; Stojunac, N.; Ammann, D.; Hofstetter, P.; Pretsch, E.; Simon, W. Helv. Chim. Acta 1980, 63, 2271–2279.

    Article  CAS  Google Scholar 

  11. Schindler, J. G.; Schindler, M. M. Fresenius’ Z. Anal. Chem. 1985, 320, 258–260.

    Article  CAS  Google Scholar 

  12. Lockhart, J. C. In Inclusion Compounds, Vol. 5; Atwood, J. L., Davies, J. E. D., MacNicol, D. D., Eds.; Oxford University Press: New York, 1991; pp 345–363.

    Google Scholar 

  13. Allen, J. R.; Cynkowski, T.; Desai, J.; Bachas, L. G. Electroanalysis 1992, 4, 533–537.

    Article  CAS  Google Scholar 

  14. Ohki, A.; Lu, J. P.; Huang, X.; Bartsch, R. A.Anal. Chem. 1994, 66, 4332–4336.

    Article  CAS  Google Scholar 

  15. Lindner, E.; Gráf, E.; Niegreisz, Z.; Tóth, K.; Pungor, E.; Buck, R. P. Anal. Chem. 1988, 60, 295–301.

    Article  CAS  Google Scholar 

  16. Schulthess, P.; Ammann, D.; Simon, W.; Caderas, C.; Stepánek, R.; Kräutler, B. Helv. Chim. Acta 1984, 67, 1026–1032.

    Article  CAS  Google Scholar 

  17. Schulthess, P.; Ammann, D.; Kräutler, B.; Caderas, C.; Stepánek, R.; Simon, W. Anal. Chem. 1985, 57, 1397–1401.

    Article  CAS  Google Scholar 

  18. Stepánek, R.; Kräutler, B.; Schulthess, P.; Lindemann, B.; Ammann, D.; Simon, W. Anal. Chim. Acta 1986, 182, 83–90.

    Article  Google Scholar 

  19. Daunert, S.; Witkowski, A.; Bachas, L. G. Prog. Clin. Biol. Res. 1989, 292, 215–225.

    PubMed  CAS  Google Scholar 

  20. Florido, A.; Daunert, S.; Bachas, L. G. Electroanalysis 1991, 3, 177–182.

    Article  CAS  Google Scholar 

  21. Hofmeister, F. Arch. Exp. Pathol. Pharmakol. 1888, 24, 247–260.

    Article  Google Scholar 

  22. Pratt, J. M. Inorganic Chemistry of VitaminB12; Academic Press: New York, 1972; pp 14–29.

    Google Scholar 

  23. Daunert, S.; Bachas, L. G. Anal. Chem. 1989, 61, 499–503.

    Article  CAS  Google Scholar 

  24. Ammann, D.; Huser, M.; Krautler, B.; Rusterholz, B.; Schulthess, P.; Lindemann, B.; Halder, E.; Simon, W. Helv. Chim. Acta. 1986, 69, 849–854.

    Article  CAS  Google Scholar 

  25. Hodinár, A.; Jyo, A. Chem. Lett. 1988, 993–996.

    Google Scholar 

  26. Hodinár, A.; Jyo, A. Anal. Chem. 1989, 61, 1169–1171.

    Article  Google Scholar 

  27. Daunert, S.; Wallace, S.; Florido, A.; Bachas, L. G. Anal. Chem. 1991, 63, 1676–1679.

    Article  CAS  Google Scholar 

  28. Brown, D.; Chaniotakis, N.; Lee, I.; Ma, S.; Park, S.; Meyerhoff, M. E. Electroanalysis 1989, 1, 477–484.

    Article  CAS  Google Scholar 

  29. Chaniotakis, N. A.; Park, S. B.; Meyerhoff, M. E. Anal. Chem. 1989, 61, 566–570.

    Article  PubMed  CAS  Google Scholar 

  30. Park, S. B.; Matuszewski, W.; Meyerhoff, M. E.; Liu, Y. H.; Kadish, K. M. Electroanalysis 1991, 3, 909–916.

    Article  CAS  Google Scholar 

  31. Li, X; Harrison, D. J. Anal. Chem. 1991, 63, 2168–2174.

    Article  CAS  Google Scholar 

  32. Malinowska, E.; Meyerhoff, M. E. Anal. Chim. Acta 1995, 300, 33–43.

    Article  CAS  Google Scholar 

  33. Abe, H.; Kokufuta, E. Bull. Chem. Soc. Jpn. 1990, 63, 1360–1364.

    Article  CAS  Google Scholar 

  34. Yuan, R.; Chai, Y. Q.; Lin, D.; Gao, D.; Li, J. Z.; Yu, R. Q. Anal. Chem. 1993, 65, 2572–2575.

    Article  CAS  Google Scholar 

  35. Yim, H. S.; Kibbey, C. E.; Ma, S. C.; Kliza, D. M.; Liu, D.; Park, S. B.; Torre, C. E.; Meyerhoff, M. E. Biosens. Bioelectron. 1993, 8, 1–38.

    Article  PubMed  CAS  Google Scholar 

  36. Ma, S. C.; Yang, V. C.; Fu, B.; Meyerhoff, M. E. Anal. Chem. 1993, 65, 2078–2084.

    Article  PubMed  CAS  Google Scholar 

  37. Schmidtchen, F. P.; Gleich, A.; Schummer, A. Pure Appl. Chem. 1989, 61, 1535–1546.

    Article  CAS  Google Scholar 

  38. Luecke, H.; Quiocho, F. A. Nature 1990, 27, 402–406.

    Article  Google Scholar 

  39. Herzberg, O.; Reddy, P.; Sutrina, S.; Saier, M. H. Jr.; Reizer, J.; Kapadia, G. Proc. Natl. Acad. Sci. USA 1992, 89, 2499–2503.

    Article  PubMed  CAS  Google Scholar 

  40. Chakrabarti, P. J. Mol. Biol. 1993, 234, 463–482.

    Article  PubMed  CAS  Google Scholar 

  41. Gleich, A.; Schmidtchen, F. P.; Mikulcik, P.; Muller, G. J. Chem. Soc., Chem. Commun. 1990, 55–57.

    Google Scholar 

  42. Muller, G.; Riede, J.; Schmidtchen, F. P. Angew. Chem. Int. Ed. Engl. 1988, 27, 1516–1518.

    Article  Google Scholar 

  43. Echavarren, A.; Galán, A.; Lehn, J. M.; de Mendoza, J.In Inclusion Phenom. Mol. Recognit., (Proc. Int. Symp.), 5th; Atwood, J. L., Ed.; Plenum: New York, NY, 1990; pp 119–124.

    Chapter  Google Scholar 

  44. Schmidtchen, F. P. Chem. Ber. 1980, 113, 2175–2182.

    Article  CAS  Google Scholar 

  45. Molina, P.; Alajarín, M.; Vidal, A. J. Org. Chem. 1993, 58, 1687–1695.

    Article  CAS  Google Scholar 

  46. Hutchins, R. S.; Molina, P.; Alajarín, M.; Vidal, A.; Bachas, L. G. Anal. Chem. 1994, 66, 3188–3192.

    Article  CAS  Google Scholar 

  47. Hutchins, R. S.; Bansal, P.; Molina, P.; Alajarín, M.; Vidal, A.; Bachas, L. G. manuscript in preparation.

    Google Scholar 

  48. Shurmer, H. V.; Gardner, J. W. Sens. Actuators, B 1992, B8, 1–11.

    Article  Google Scholar 

  49. Otto, M.; Thomas, J. D. R. Anal. Chem. 1985, 57, 2647–2651.

    Article  CAS  Google Scholar 

  50. Goldberg, H. D.; Brown, R. B.; Liu, D. P.; Meyerhoff, M. E. Sens. Actuators, B 1994, B21, 171–183.

    Article  Google Scholar 

  51. Lindner, E.; Cosofret, V. V.; Ufer, S.; Buck, R. P.; Kusy, R. P.; Ash, R. B.; Nagle, H. T. J. Chem. Soc., Faraday Trans. 1993, 89, 361–367.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hutchins, R.S., Bachas, L.G. (1996). Biomimetic Approach to the Design of Selective Oxoanion Receptors for Use in Membrane-Based Potentiometric Sensors. In: Butterfield, D.A. (eds) Biofunctional Membranes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2521-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2521-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3254-9

  • Online ISBN: 978-1-4757-2521-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics