Lenses, Apertures, and Resolution

  • David B. Williams
  • C. Barry Carter


Electron lenses are the magnetic equivalent of the glass lenses in an optical microscope and, to a large extent, we can draw comparisons between the two. For example, the behavior of all the lenses in a TEM can be approximated to the action of a convex (converging) glass lens on monochromatic light. The lens is basically used to do two things:
  • either take all the rays emanating from a point in an object and recreate a point in an image,

  • or focus parallel rays to a point in the focal plane of the lens.


Focal Plane Objective Lens Electron Lens Spherical Aberration Chromatic Aberration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


General References

  1. Grivet, P. (1972) Electron Optics, Pergamon Press, New York.Google Scholar
  2. Hawkes, P.W. (1982) Magnetic Electron Lenses, Springer-Verlag, New York. A collection of review articles.Google Scholar
  3. Hawkes, P.W. and Kasper, E. (1989, 1994) Principles of Electron Optics,1–3 Academic Press, New York. Comprehensive but advanced. Volume 3 includes imaging in the TEM.Google Scholar
  4. Klemperer, O. and Barnett, M.E. (1971) Electron Optics, Cambridge University Press, New York.Google Scholar

Specific References

  1. Bradbury, S., Evennett, P.J., Haselmann, H., and Piller, H. (1989) Dictionary of Light Microscopy,Royal Microscopical Society Handbook #15, Oxford University Press, New York.Google Scholar
  2. Busch, H. (1927) Arch. Elektrotechnik 18 583.Google Scholar
  3. Edington, J.W. (1976) Practical Electron Microscopy in Materials Science, Van Nostrand Reinhold, New York.Google Scholar
  4. Grundy, P.J. and Jones, G.A. (1976) Electron Microscopy in the Study of Materials, E. Arnold, London.Google Scholar
  5. Hawkes, P.W. (1972) Electron Optics and Electron Microscopy, Taylor and Francis Ltd., London.Google Scholar
  6. Hirsch, P.B., Howie, A., Nicholson, R.B., Pashley, D.W., and Whelan, M.J. (1977) Electron Microscopy of Thin Crystals, 2nd edition, Krieger, Huntington, NewYork.Google Scholar
  7. Jenkins, F.A. and White, H.E. (1976) Fundamentals of Optics, 4th edition, McGraw-Hill, New York.Google Scholar
  8. Munro, E. (1974) Proc. 8th Int. Cong. for Electron Microscopy, 1, p. 218, The Australian Academy of Sciences, Canberra.Google Scholar
  9. Muff, L.E. (1970) Electron Optical Applications in Materials Science, McGraw-Hill, New York.Google Scholar
  10. Reimer, L. (1993) Transmission Electron Microscopy; Physics of Image Formation and Microanalysis, 3rd edition, Springer-Verlag, New York.Google Scholar
  11. Sawyer, L.C. and Gmbh, D.T. (1987) Polymer Microscopy, Chapman and Hall, New York.CrossRefGoogle Scholar
  12. Thomas, G. (1962) Transmission Electron Microscopy of Metals, John Wiley and Sons, New York.Google Scholar
  13. Thomas, G. and Goringe, M.J. (1979) Transmission Electron Microscopy of Materials, Wiley Interscience, New York.Google Scholar
  14. von Heimendahl, M. (1980) Electron Microscopy of Materials, Academic Press, New York.Google Scholar
  15. Watt, I.M. (1985) The Principles and Practice of Electron Microscopy, Cambridge University Press, New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • David B. Williams
    • 1
  • C. Barry Carter
    • 2
  1. 1.Lehigh UniversityBethlehemUSA
  2. 2.University of MinnesotaMinneapolisUSA

Personalised recommendations