Planar Defects

  • David B. Williams
  • C. Barry Carter


Internal interfaces (grain boundaries, phase boundaries, stacking faults) or external interfaces (i.e., surfaces) are perhaps the most important defects in crystalline engineering materials. Their common feature is that we can usually think of them as all being two-dimensional, or planar, defects. The main topics of this chapter will be:
  • Characterizing which type of internal interface we have and determining its main parameters.

  • Identifying lattice translations at these interfaces from the appearance of the diffraction-contrast images.


Twin Boundary Planar Defect Simulated Image Bloch Wave Internal Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


General References

  1. Amelinckx, S., Van Landuyt, J. (1978) in Diffraction and Imaging Techniques in Material Science, 1 and 2 (Eds. S. Amelinckx, R. Gevers, J. Van Landuyt), 2nd edition, p. 107, North-Holland, New York.Google Scholar
  2. Christian, J.W. (1975) The Theory of Transformations in Metals and Alloys, Part 1, 2nd edition, Pergamon Press, New York.Google Scholar
  3. Edington, J.W. (1976) Practical Electron Microscopy in Materials Science, Van Nostrand Reinhold, New York.Google Scholar
  4. Forwood, C.T., Clarebrough, L.M. (1991) Electron Microscopy of Interfaces in Metals and Alloys, Adam Hilger, New York. Invaluable for anyone studying interfaces by TEM.Google Scholar
  5. Head, A.K., Humble, P., Clarebrough, L.M., Morton, A.J., Forwood, C.T. (1973) Computed Electron Micrographs and Defect Identification, North-Holland, New York.Google Scholar
  6. Rasmussen, D.R., Carter, C.B. (1991) J. Electron Microsc. Techniques 18, 429.CrossRefGoogle Scholar
  7. Sutton, A.P., Balluffi, R.W. (1995) Interfaces in Crystalline Materials, Oxford University Press, New York.Google Scholar
  8. Wolf, D., Yip, S., Eds. (1992) Materials Interfaces, Atomic-level Structure and Properties, Chapman and Hall, New York.Google Scholar

Specific References

  1. Anstis, G.R., Cockayne, D.J.H. (1979) Acta Cryst. A35, 511.CrossRefGoogle Scholar
  2. Doyle, P.A., Turner, P.S. (1968) Acta Cryst. A24, 390.CrossRefGoogle Scholar
  3. Gevers, R., Art, A., Amelinckx, S. (1963) Phys. Stat. Sol. 3, 1563.CrossRefGoogle Scholar
  4. Gevers, R., Blank, H., Amelinckx, S. (1966) Phys. Stat. Sol. 13, 449.CrossRefGoogle Scholar
  5. Hashimoto, H., Howie, A., Whelan, M.J. (1962) Proc. Roy. Soc. London A269, 80.CrossRefGoogle Scholar
  6. Hirsch, P., Howie, A., Nicholson, R.B., Pashley, D.W., Whelan, M.J. (1977) Electron Microscopy of Thin Crystals, 2nd edition, p. 225, Krieger, Huntington, New York.Google Scholar
  7. Howie, A., Basinski, Z.S. (1968) Phil. Mag. 17, 1039.CrossRefGoogle Scholar
  8. Howie, A., Sworn, H. (1970) Phil. Mag. 31, 861.CrossRefGoogle Scholar
  9. Humphreys, C.J., Hirsch, P.B. (1968) Phil. Mag. 18, 115.CrossRefGoogle Scholar
  10. Mott, N.F.,Massey, H.S.W. (1965) The Theory of Atomic Collisions, 3rd edition, Clarendon Press, Oxford.Google Scholar
  11. Rasmussen, D.R., McKernan, S., Carter, C.B. (1991) Phys. Rev. Lett. 66, 2629.CrossRefGoogle Scholar
  12. Schäublin, R.,Stadelmann, P. (1993) Mater. Sci. Engng. A164, 373.CrossRefGoogle Scholar
  13. Taft0, J., Spence, J.C.H. (1982) J. Cryst. 15, 60.CrossRefGoogle Scholar
  14. Thölen, A.R. (1970) Phil. Mag. 22, 175.CrossRefGoogle Scholar
  15. Thölen, A.R. (1970) Phys. Stat. Sol. (A) 2, 537.CrossRefGoogle Scholar
  16. Viguier, B.,Hemker, K.J., Vanderschaeve, G. (1994) Phil. Mag. A69,19.Google Scholar
  17. Yoshioka, H. (1957) J. Phys. Soc. Japan 12, 618.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • David B. Williams
    • 1
  • C. Barry Carter
    • 2
  1. 1.Lehigh UniversityBethlehemUSA
  2. 2.University of MinnesotaMinneapolisUSA

Personalised recommendations