Advertisement

Turns

  • András Perczel
  • Miklós Hollósi
Chapter

Abstract

β and γ turns have been recognized as forming an important group of regular or ordered secondary structures of proteins. β turns are sites where the polypeptide chain reverses its overall direction. Using a hard-sphere model-building technique, Venkatachalam (1968) explored favorable H-bonded conformations of the three consecutive amide units of β turns (see Chou and Fasman, 1977, and references therein). The x-ray structural analysis of an increasing number of proteins (Richardson, 1981; Kabsch and Sander, 1983) has revealed that β turns are common in proteins, accounting for 25–30% of the residues of the total molecule. Lewis et al. (1973) found that about one-fourth of β turns do not possess the H-bond stipulated by Venkatachalam.

Keywords

Circular Dichroism Circular Dichroism Spectrum Cyclic Peptide Protein Secondary Structure Conformational Weight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Rahman, S., and Hattaba, A., 1988, Conformation and biologic studies of synthesized Trp4Met5 enkephalin N-protected with 3,5-dimethoxy-alpha, alpha-dimethyl-benzoylcarbonyl group, Pharmazie 43: 116–117.PubMedGoogle Scholar
  2. Agris, P. F., Guenther, R. H., Sierzputowska-Gracz, H., Easter, L., Smith, W., and Hardin, C. C., 1992, Solution structure of a synthetic peptide corresponding to a receptor binding region of FSH (hFSHbeta 33–53), J. Protein Chem. 11: 495–507.PubMedCrossRefGoogle Scholar
  3. Ananthanarayanan, V. S., and Cameron, I. S., 1988, Proline-containing beta-turns. IV. Crystal and solution conformations of tert.-butyloxycarbonyl-L-prolyl-o-alanine and tert.-butyloxycarbonyl-Lprolyl-o-alanyl-L-alanine, Int. J. Peptide Protein Res. 31: 399–411.CrossRefGoogle Scholar
  4. Ananthanarayanan, V. S., Saint-Jean, A., and Jiang, P., 1992, Conformation of a synthetic hexapeptide substrate of collagen lysyl hydroxylase, Arch. Biochem. Biophys. 298: 21–28.PubMedCrossRefGoogle Scholar
  5. Ananthanarayanan, V. S., Saint-Jean, A., Cheesman, B. V., Hughes, D. W., and Bain, A. D., 1994, Conformational studies on calcium binding by tBoc-Leu-Pro-Tyr-Ala-NHCH3, a tyrosine kinase substrate, in a nonpolar solvent, J. Biomol. Struct. Dyn. 11: 509–528.CrossRefGoogle Scholar
  6. Aoyagi, H., Lee, S., Kanmera, T., Mihara, H., and Kato, T., 1987, Interaction of synthetic fragments of the extension peptide of cytochrome P-150(SCC) precursor with phospholipid bilayer, J. Biochem. 102: 813–820.PubMedGoogle Scholar
  7. Arad, O., and Goodman, M., 1990, Depsipeptide analogues of elastin repeating sequences: Conformational analysis, Biopolymers 29: 1652–1668.PubMedGoogle Scholar
  8. Atkinson, R. A., and Pelton, J. T., 1992, Conformational study of cyclo[D-Trp-D-Asp-Pro-D-Val-Leu], an endothelin-A receptor-selective antagonist, FEBS Lett. 296: 1–6.PubMedCrossRefGoogle Scholar
  9. Atreya, P. L., and Ananthanarayanan, V. S., 1991, Interaction of prolyl 4-hydroxylase with synthetic peptide substrates. A conformational model for collagen proline hydroxylation, J. Biol. Chem. 266: 2852–2858.PubMedGoogle Scholar
  10. Aubry, A., and Marraud, M., 1985, Interactions squelette-chaîne latérale dans les peptides. III. Structure de pivaloyl-L-prolyl-N-méthyl-L-thréoninamide, C15H27N3O4, Acta Crystallogr. C41: 65–67.Google Scholar
  11. Aubry, A., Ghermani, N., and Marraud, M., 1984, Backbone side chain interactions in peptides, Int. J. Peptide Protein Res. 23: 113–122.CrossRefGoogle Scholar
  12. Aubry, A., Cung, M. T., and Marraud, M., 1985, 31- and (3II-turn conformations in model dipeptides with the Pro-Xaa sequences, J. Am. Chem. Soc. 107: 7640–7647.Google Scholar
  13. Azzena, U., and Luisi, P. L., 1986, Models of thioredoxin hairpin structures: Conformational properties of 13-turn containing sequences, Biopolymers 25: 555–570.PubMedCrossRefGoogle Scholar
  14. Ball, J. B., Andrews, P. R., Alewood, P. F., and Hughes, R. A., 1990, A one-variable topographical descriptor for the p-turns of peptides and proteins, FEBS Leu. 273: 15–18.CrossRefGoogle Scholar
  15. Bandekar, J., 1992, Amide modes and protein conformation, Biochim. Biophys. Acta 1120: 123–143.Google Scholar
  16. Bandekar, J., Evans, D. J., Krimm, S., Leach, S. J., Lee, S., Mcquie, J. R., Minasian, E., Nemethy, G., Pottle, M. S., Scheraga, H. A., Stimson, E. R., and Woody, R. W., 1982, Conformations of cyclo(Lalanyl-L-alanyl-e-aminocapryl) and of cyclo(L-alanyl-D-alanyl-c-aminocapryl) cyclised dipeptide models for specific types of p-bends, Int. J. Peptide Protein Res. 19: 187–205.Google Scholar
  17. Barlow, A., Gounarides, J. S., Naider, F., and Diem, M., 1993, Infrared vibrational CD of polypeptides containing beta-turns—cyclic and linear analogs of yeast alpha-factor, Biophys. J. 64: A377.Google Scholar
  18. Blanco, F. J., Jimenez, M. A., Rico, M., Santoro, J., Herranz, J., and Nieto, J. L., 1991, Tendamistat (12–26) fragment. NMR characterization of isolated beta-turn folding intermediates, Eur. J. Biochem. 200: 345–351.PubMedCrossRefGoogle Scholar
  19. Bobba, A., Cavatorta, P., Attimonelli, M., Ricco, P., Masotti, L., and Quagliariello, E., 1990, Estimation of protein secondary structure from circular dichroism spectra: A critical examination of the CONTIN program, Protein Seq. Data Anal. 3: 7–10.PubMedGoogle Scholar
  20. Bohm, G., Muhr, R., and Jaenicke, R., 1992, Quantitative anlaysis of protein far UV circular dichroism spectra by neural networks, Protein Eng. 5: 191–195.PubMedCrossRefGoogle Scholar
  21. Bolotina, J. A., Chekhov, V. O., Lugauskas, V. Y., Finkelstein, A. V., and Ptitsyn, O. B., 1980a, Determination of protein secondary structure from circular dichroism spectra I. Protein derived basic spectra of circular dichroism for a-, 13- and irregular structures, Mol. Biol. 14: 891–901.Google Scholar
  22. Bolotina, J. A., Chekhov, V. O., Lugauskas, V. Y., and Ptitsyn, O. B., 1980b, Determination of protein secondary structure from circular dichroism spectra II. Protein-derived basic spectra of circular dichroism from 13-bends, Mol. Biol. 14: 902–909.Google Scholar
  23. Bolotina, J. A., Chekov, V. O., Lugauskas, V. Y., and Ptitsyn, O. B., 1981, Determination of protein secondary structure from circular dichroism spectra III. Protein-derived basic spectra of circular dichroism for antiparallel and parallel 13-structures, Mol. Biol. 15: 167–175.Google Scholar
  24. Boussard, G., Marraud, M., and Aubry, A., 1986, Backbone–side chain interactions in peptides, Int. J. Peptide Protein Res. 28: 508–517.CrossRefGoogle Scholar
  25. Brahmachari, S. K., Bhatnagar, R. S., and Ananthanarayanan, V. S., 1982, Proline-containing β-turns in peptides and proteins. II. Physiochemical studies on tripeptides with the Pro-Gly sequence, Biopolymers 21: 1107–1125.CrossRefGoogle Scholar
  26. Brahms, S., and Brahms, J., 1980, Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism, J. Mol. Biol. 138: 149–178.PubMedCrossRefGoogle Scholar
  27. Brahms, S., Brahms, J., Spach, G., and Brack, A., 1977, Identification of 13,β-turns and unordered conformations in polypeptide chains by vacuum ultraviolent circular dichroism, Proc. Natl. Acad. Sci. USA 74: 3208–3212.PubMedCrossRefGoogle Scholar
  28. Brakch, N., Rholam, M., Boussetta, H., and Cohen, P., 1993a, Role of beta-turn in proteolytic processing of peptide hormone precursors at dibasic sites, Biochemistry 32: 4925–4930.PubMedCrossRefGoogle Scholar
  29. Brakch, N., Boileau, G., Simonetti, M., Nault, C., Joseph-Bravo, P., Rholam, M., and Cohen, P., 1993b, Prosomatostatin processing in Neuro2A cells. Role of beta-turn structure in the vicinity of the Arg-Lys cleavage site, Eur. J. Biochem. 216: 39–47.PubMedCrossRefGoogle Scholar
  30. Braun, W., 1987, Distance geometry and related methods for protein structure determination from NMR data, Q. Rev. Biophys. 19: 115–157.PubMedCrossRefGoogle Scholar
  31. Breese, K., Friedrich, T., Andersen, T. T., Smith, T. F., and Figge, J., 1991, Structural characterization of a 14-residue peptide ligand of the retinoblastoma protein: Comparison with a nonbinding analog, Peptide Res. 4: 220–226.Google Scholar
  32. Brooks, B. B., Bruccelori, R. E., Olafson, B. D., States, D. J., Swaminathan, S., and Karplus, M., 1983, CHARM: A program for macromolecular energy minimization and dynamics calculations, J. Comp. Chem. 4: 187.CrossRefGoogle Scholar
  33. Bruch, M. D., Rizo, J., and Gierasch, L. M., 1992, Impact of a micellar environment on the conformations of two cyclic pentapeptides, Biopolymers 32: 1741–1754.PubMedCrossRefGoogle Scholar
  34. Burke, C., Mayo, K. H., Skubitz, A. P., and Furcht, L. T., 1991,’H NMR and CD secondary structure analysis of cell adhesion promoting peptide F-9 from laminin, J. Biol. Chem. 266: 19407–19412.Google Scholar
  35. Burton, J., Wood, S. G., Pedyczak, A., and Siemion, I. Z., 1989, Conformational preferences of sequential fragments of the hinge region of human IgAl immunoglobulin molecule II, Biophys. Chem. 33: 39–45.PubMedCrossRefGoogle Scholar
  36. Byler, D. M., and Susi, H., 1986, Examination of the secondary structure of proteins by deconvolved FTIR spectra, Biopolymers 25: 469–487.PubMedCrossRefGoogle Scholar
  37. Bystrov, V. F., Portnova, S. L., Tsetlin, V. I., Ivanov, V. T., and Ovchinnikov, Y. A., 1969, Conformational studies of peptide systems. The rotational states of the NH-CH fragment of alanine dipeptides by nuclear magnetic resonance, Tetrahedron 25: 493–515.PubMedCrossRefGoogle Scholar
  38. Cann, J. R., London, R. E., Unkefer, C. J., Vavrek, R. J., and Stewart, J. M., 1987, CD-n.m.r. study of the solution conformation of bradykinin analogs containing alpha-aminoisobutyric acids, Int. J. Peptide Protein Res. 29: 486–496.Google Scholar
  39. Carbone, F. R., and Leach, S. J., 1985, Studies of repeating synthetic peptides designed to adopt a cross 3-conformation, Int. J. Peptide Protein Res. 26: 498–508.CrossRefGoogle Scholar
  40. Cavatorta, P., Sartor, G., Neyroz, P., Farruggia, G., Franzoni, L., and Szabo, A. G, 1991, Fluorescence and CD studies on the conformation of the gastrin releasing peptide in solution and in the presence of model membranes, Biopolymers 31: 653–661.PubMedCrossRefGoogle Scholar
  41. Cerrini, S., Gavuzzo, E., Lucente, G., Luisi, G., Pinnen, F., and Radics, L., 1991, Ten membered cyclopeptides III. Synthesis and conformation of cyclo(Me- βAla-Phe-Pro) and cyclo(Me βAla-PheD-Pro), Int. J. Peptide Protein Res. 38: 289.CrossRefGoogle Scholar
  42. Chandrasekhar, K., Profy, A. T., and Dyson, H. J., 1991, Solution conformational preferences of immunogenic peptides derived from the principal neutralizing determinant of the HIV-1 envelope glycoprotein gp120, Biochemistry 30: 9187–9194.PubMedCrossRefGoogle Scholar
  43. Chang, C. T., Wu, C. S. C., and Yang, J. T., 1978, Circular dichroic analysis of protein conformation; inclusion of the (3-turns, Anal. Biochem. 91: 13–31.PubMedCrossRefGoogle Scholar
  44. Chen, Y.-H., and Yang, J. T., 1971, New approach to the calculation of secondary structures of globular proteins by optical rotatory dispersion and circular dichroism, Biochem. Biophys. Res. Commun. 44: 1285.PubMedCrossRefGoogle Scholar
  45. Chen, Y.-H., and Yang, J. T., 1972, Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion, Biochemistry 11: 4120.PubMedCrossRefGoogle Scholar
  46. Chen, Y.-H., Yang, J. T., and Chau, K. H., 1974, Determination of the helix and (3-form of proteins in aqueous solution by circular dichroism, Biochemistry 13: 3350.PubMedCrossRefGoogle Scholar
  47. Chou, P., and Fasman, G. D., 1977, β-Turns in proteins, J. Mol. Biol. 115: 135–175.Google Scholar
  48. Chou, P., and Fasman, G. D., 1978, Empirical predictions of protein conformation, Annu. Rev. Biochem. 47: 251–276.PubMedCrossRefGoogle Scholar
  49. Compton, L. A., and Johnson, W. C., Jr., 1986, Analysis of protein circular dichroism spectra forGoogle Scholar
  50. secondary structure using a simple matrix multiplication, Anal. Biochem. 155:155–167.Google Scholar
  51. Condon, E. U., Altar, W., and Eyring, H., 1937, One electron rotatory power, J. Chem. Phys. 5: 753–775.CrossRefGoogle Scholar
  52. Crisma, M., Fasman, G. D., Balaram, H., and Balaram, P., 1984, Peptide models for beta-turns. A circular dichroism study, Int. J. Peptide Protein Res. 23: 411–419.CrossRefGoogle Scholar
  53. Csâszâr, A., 1992, Conformers of gasous glycine, J. Am. Chem. Soc. 114: 9568–9575.CrossRefGoogle Scholar
  54. Czugler, M., Sasvâri, K., and Hollósi, M., 1982, Crystal structure of cyclo (GIy-L-Pro-L-Pro-Gly-L-ProL-Pro) tryhydrate. Unusual conformational characteristics of a cyclic hexapeptide, J. Am. Chem. Soc. 104: 4465–4469.CrossRefGoogle Scholar
  55. Deber, C. M., Madison, V., and Blout, E. R., 1976, Why cyclic peptides? Complementary approaches to conformations, Acc. Chem. Res. 9: 106–113.CrossRefGoogle Scholar
  56. Deibler, G. E., Stone, A. L., and Kies, M. W., 1990, Role of phosphorylation in conformational adoptability of bovine myelin basic-protein, Proteins 7: 32–40.PubMedCrossRefGoogle Scholar
  57. Dentino, A. R., Raj, P. A., Bhandary, K. K., Wilson, M. E., and Levine, M. J., 1991, Role of peptide backbone conformation on biological activity of chemotactic peptides, J. Biol. Chem. 266: 18460–18468.PubMedGoogle Scholar
  58. Drakenberg, T., and Forsen, S., 1971, Barrier to internal rotation of amides I. Formamide, J. Chem. Soc. Chem. Commun. 1971: 1404.Google Scholar
  59. Drewes, J. A., and Rowlen, K. L., 1993, Evidence for a -y-turn motif in antifreeze glycopeptides, Biophys. J. 65: 985–991.PubMedCrossRefGoogle Scholar
  60. Dyson, H. J., and Wright, P. E., 1991, Defining solution conformations of small linear peptides, Annu. Rev. Biophys. Biochem. Chem. 20: 519–538.CrossRefGoogle Scholar
  61. Dyson, H. J., Rance, M., Houghten, R. A., Lerner, R. A., and Wright, P. E., 1988, Folding of immunogenic peptide fragments of proteins in water solution. I, J. Mol. Biol. 201: 161–200.PubMedCrossRefGoogle Scholar
  62. Epps, D. E., Havel, H. A., Sawyer, T. K., Staples, D. J., Chung, N. N., Schiller, P. W., Hartrodt, B., and Barth, A., 1991, Spectroscopic analysis of [Trp3]-β-casomorphin analogs, Int. J. Peptide Protein Res. 37: 257–267.CrossRefGoogle Scholar
  63. Erard, M., Lakhdar-Ghazal, F., and Amalric, F., 1990, Repeat peptide motifs which contain beta-turns and modulate DNA condensation in chromatin, Eur. J. Biochem. 191: 19–26.PubMedCrossRefGoogle Scholar
  64. Fabian, H., Szendrei, G. I., Mantsch, H. H., and Ötvös, L., Jr., 1993, Comparative analysis of human-and Dutch-type Alzheimer beta-amyloid peptides by infrared-spectroscopy and circular dichroism, Biochem. Biophys. Res. Commun. 191: 232–239.PubMedCrossRefGoogle Scholar
  65. Fasman, G. D., 1989, The development of the prediction of protein structure, in: Prediction of Protein Structure and the Principles of Protein Conformation ( G. D. Fasman, ed.), pp. 193–316, Plenum Press, New York.CrossRefGoogle Scholar
  66. Fasman, G. D., Park, K., and Schlesinger, D. H., 1990, Conformational analysis of the immunodominant epitopes of the circumsporozoite protein of Plasmodium falciparum and knowlesi, Biopolymers 29: 123–130.PubMedCrossRefGoogle Scholar
  67. Fontenot, J. D., Finn, O. J., Dales, N., Andrews, P. C., and Montelaro, R. C., 1994, Synthesis of large multideterminant peptide immunogens using a poly-proline beta-turns helix motif, Peptide Res. 6: 330–336.Google Scholar
  68. Freidinger, R. M., Perlow, D. S., Randall, W. C., Saperstein, R., Arison, B. H., and Veber, D. F., 1984, Conformational modifications of cyclic hexapeptide somatostatin analogs, Int. J. Peptide Protein Res. 23: 142–150.CrossRefGoogle Scholar
  69. Fry, D. C., Madison, V. S., Bolin, D. R., Greeley, D. N., Toome, V., and Wegrzynski, B. B., 1989, Solution structure of an analogue of vasoactive intestinal peptide as determined by two-dimensional NMR and circular dichroism spectroscopies and constrained molecular dynamics, Biochemistry 28: 2399–2409.PubMedCrossRefGoogle Scholar
  70. Gallo, E. A., and Gellman, S. H., 1993, Hydrogen-bond-mediated folding in depsipeptide models of beta-turns and alpha-helical turns, J. Am. Chem. Soc. 115: 9774–9788.CrossRefGoogle Scholar
  71. Garcia-Echeverria, C., Siligardi, G., Mascagni, P., Gibbons, W., Giralt, E., and Pons, M.,1991, Conformational analysis of two cyclic disulfide peptides, Biopolymers 31: 835–843.Google Scholar
  72. Gierasch, L. M., Deber, C. M., Madison, V., Niu, C. H., and Blout, E. R., 1981, Conformations of (XL-Pro-Y)2 cyclic hexapeptides. Preferred fl-turn conformers and implications for β-turns in proteins, Biochemistry 20: 4730–4738.PubMedCrossRefGoogle Scholar
  73. Goodman, M., Rone, R., Manesis, N., Hassan, M., and Mammi, N., 1987, Peptidomimetics: Synthesis, spectroscopy, and computer simulations, Biopolymers 26: S26 - S32.CrossRefGoogle Scholar
  74. Goossens, J. F., Ommery, N., Lohez, M., Pommery, J., Helbecque, N., Cotelle, P., Lhermitte, M., and Henichart, J. P., 1992, Antagonistic effect of a vasoactive intestinal peptide fragment, vasoactive intestinal peptide (1–11), on guinea pig trachea smooth muscle relaxation, Mol. Pharmacol. 41: 104–109.PubMedGoogle Scholar
  75. Gray, R. A., Vander-Belde, D. G., Burke, C. J., Manning, M. C., Middaugh, C. R., and Borchardt, R. T., 1994, Delta-sleep-inducing peptide: Solution conformational studies of a membrane-permeable peptide, Biochemistry 33: 1323–1331.PubMedCrossRefGoogle Scholar
  76. Greenfield, N., and Fasman, G. D., 1969, Computed circular dichroism spectra for the evaluation of protein conformation, Biochemistry 8: 4108–4116.PubMedCrossRefGoogle Scholar
  77. Grizzuti, K., and Perlmann, G. E., 1973, Binding magnesium and calcium ions to the phosphoglycoprotein phosvitin, Biochemistry 12: 4399–4403.PubMedCrossRefGoogle Scholar
  78. Grizzuti, K., and Perlmann, G. E., 1975, Further studies on the binding of divalent cations to the phosphoglycoprotein phosvitin, Biochemistry 14: 2171–2175.PubMedCrossRefGoogle Scholar
  79. Gupta, A., and Chauhan, V. S., 1990, Synthetic and conformational studies on dehydroalanine-containing model peptides, Biopolymers 30: 395–403.PubMedCrossRefGoogle Scholar
  80. Halford, N. G., Tatham, A. S., Sui, E., Daroda, L., Dreyer, T., and Shewry, P. R., 1992, Identification of a novel beta-turn-rich repeat motif in the D hordeins of barley, Biochim. Biophys. Acta 1122: 118–122.PubMedCrossRefGoogle Scholar
  81. Heider, R. C., Ragnarsson, U., and Zetterquist, O., 1985, The role of the phosphate group for the structure of phosphopeptide products of adenosine 3’,5’-cyclic monophosphate dependent protein kinase, Biochem. J. 229: 485–489.Google Scholar
  82. Hennessey, J. P., Jr., and Johnson, W. C., Jr., 1981, Information content in the circular dichroism of proteins, Biochemistry 20: 1085–1094.PubMedCrossRefGoogle Scholar
  83. Higashijima, T., Masui, Y., Chino, N., Sakakikbara, S., Kita, H., and Miyazawa, T., 1984, Nuclearmagnetic-resonance studies on the conformations of tridecapeptide alpha-mating factor from yeast Saccharomyces cerevisiae and analog peptides in aqueous solution. Conformation-activity relationship, Eur. J. Biochem. 140: 163–171.PubMedCrossRefGoogle Scholar
  84. Hilbich, C., Kisters-Woike, B., Reed, J., Masters, C. L., and Beyreuther, K., 1991, Aggregation and secondary structure of synthetic amyloid beta A4 peptides of Alzeheimer’s disease, J. Mol. Biol. 218: 149–163.PubMedCrossRefGoogle Scholar
  85. Hollósi, M., 1994, Conformation of B- and T-cell epitopic peptides, in: Synthetic Peptides in the Search for B- and T-Cell Epitopes ( É. Rajnavölgyi, ed.), pp. 67–96, R. G. Landes Co., Austin.Google Scholar
  86. Hollósi, M., and Wieland, T., 1977, Ion binding properties in acetonitrile of cyclopeptides built up from proline and glycine residues, Int. J. Peptide Protein Res. 10: 329–341.CrossRefGoogle Scholar
  87. Hollósi, M., Kawai, M., and Fasman, C. D., 1985, Studies on proline containing tetrapeptide models of n-turns, Biopolymers 24: 211–242.PubMedCrossRefGoogle Scholar
  88. Hollósi, M., Kövér, K. E., Holly, S., and Fasman, G. D., 1987a, β-Turns in serine-containing linear and cyclic models, Biopolymers 26: 1527–1553.Google Scholar
  89. Hollósi, M., Kövér, K. E., Holly, S. Radies, L., and Fasman, G. D., 1987b, β-Turns in bridged prolinecontaining cyclic peptide models, Biopolymers 26: 1555–1572.Google Scholar
  90. Hollósi, M., Ötvös, L., Jr., Kajtâr, J., Perczel, A., and Lee, V. M., 1989, Is amyloid deposition in Alzheimer’s disease preceded by an environment-induced double conformational transition? Peptide Res. 2: 109–113.Google Scholar
  91. Hollósi, M., Perczel, A., and Fasman, G. D., 1990, Cooperativity of carbohydrate moiety orientation and beta-turn stability is determined by intramolecular hydrogen bonds in protected glycopeptide models, Biopolymers 29: 1549–1564.PubMedCrossRefGoogle Scholar
  92. Hollósi, M., Ismail, A. A., Mantsch, H. H., Penke, B., Vâradi, I. G., Tóth, G. K., Laczkó, I., Kurucz, I., Nagy, Z., Fasman, G. D., and Rajnavölgyi, E., 1992a, Conformational and functional properties of peptides covering the intersubunit region of influenza virus hemagglutinin, Eur. J. Biochem. 206: 421–425.PubMedCrossRefGoogle Scholar
  93. Hollósi, M., Urge, L., Perczel, A., Kajtâr, J., Teplân, L., Ötvös, L., Jr., and Fasman, G. D., 1992b, Metal-ion induced conformational changes of phosphorylated fragments of human neurofilament (NF-M) protein, J. Mol. Biol. 223: 673–682.PubMedCrossRefGoogle Scholar
  94. Hollósi, M., Ötvös, L., Jr., Urge, L., Kajtâr, J., Perczel, A., Laczkó, I., Vadâsz, Z., and Fasman, G. D., 1993, Ca2+-induced conformational transitions of phosphorylated peptides, Biopolymers 33: 497–510.PubMedCrossRefGoogle Scholar
  95. Hollósi, M., Shen, Z. M., Perczel, A., and Fasman, G. D., 1994a, Stable intrachain and interchain complexes of neurofilament peptides: A putative link between Al3+ and Alzheimer disease, Proc. Ntal. Acad. Sci. USA 91: 4902–4906.CrossRefGoogle Scholar
  96. Hollósi, M., Majer, Z., Rónai, A. Z., Magyar, A., Medzihradszky, K., Holly, S., Perczel, A., and Fasman, G. D., 1994b, CD and Fourier transform infrared spectroscopic studies of peptides. II. Detection of beta-turns in linear peptides, Biopolymers 34: 177–185.PubMedCrossRefGoogle Scholar
  97. Holly, S., Majer, Z., Tóth, G. K., Vâradi, G., Rajnavölgyi, E, Laczkó, I., and Hollósi, M., 1993a, Circular dichroism and Fourier-transform infrared spectroscopic studies on T-cell epitopic peptide fragments of influenza virus hemagglutinin, Biochem. Biophys. Res. Commun. 193: 1247–1254.PubMedCrossRefGoogle Scholar
  98. Holly, S., Laczkó, I., Fasman, G. D., and Hollósi, M., 1993b, FT-IR spectroscopy indicates that Ca2+- binding to phosphorylated C-terminal fragments of the midsized neurofilament protein subunit results in β-sheet formation and β-aggregation, Biochem. Biophys. Res. Commun. 197: 755–762.PubMedCrossRefGoogle Scholar
  99. Imperiali, B., Fisher, S. L., Moats, R. A., and Prins, T. J., 1992, A conformational study of peptides with the general structure Ac-L-Xaa-Pro-D-Xaa-L-Xaa-NH2: Spectroscopic evidence for a peptide with significant β-turn character in water and in dimethyl sulfoxide, J. Am. Chem. Soc. 114: 3182–3188.CrossRefGoogle Scholar
  100. Inooka, H., Endo, S., Kitada, C., Mizuta, E., and Fujino, M., 1992, Pituitary adenylate cyclase activating polypeptide (PACAP) with 27 residues. Conformation determined by 1H NMR and CD spectroscopies and distance geometry in 25% methanol solution, Int. J. Peptide Protein Res. 40: 456–464.CrossRefGoogle Scholar
  101. Ishii, H., Fukunishi, Y., Inoue, Y., and Chûjô, R., 1985, β-Turn structure and intramolecular interaction of tetrapeptides containing Asp and Lys, Biopolymers 24: 2045–2056.Google Scholar
  102. Jackson, M., and Mantsch, H. H., 1991, Beware of proteins in DMSO, Biochim. Biophys. Acta 1078: 231–235.Google Scholar
  103. Jackson, M., and Mantsch, H. H., 1992, Halogenated alcohols as solvents for proteins: FTIR spectroscopic studies, Biochim. Biophys. Acta 1118: 139–143.PubMedCrossRefGoogle Scholar
  104. Jaenicke, R., 1991, Protein folding: Local structures, domains, subunits and assemblies, Biochemistry 30: 3147–3161.PubMedCrossRefGoogle Scholar
  105. Jardetzky, O., 1980, On the nature of molecular conformations inferred from high resolution NMR, Biochim. Biophys. Acta 621: 227–232.PubMedCrossRefGoogle Scholar
  106. Jiang, P., and Ananthanarayanan, V. S., 1991, Conformational requirement for lysine hydroxylation in collagen. Structural studies on synthetic peptide substrates of lysyl hydroxylase, J. Biol. Chem. 266: 22960–22967.PubMedGoogle Scholar
  107. Johnson, W. C., Jr., 1990, Protein secondary structure and circular dichroism: A practical guide, Proteins Struct. Funct. Genet. 7: 250–214.CrossRefGoogle Scholar
  108. Jurka, J., and Smith, T. F., 1987, β-Turn-driven early evolution: The genetic code and biosynthetic pathways, J. Mol. Evol. 25: 15–19.Google Scholar
  109. Kabsch, W., and Sander, C., 1983, Dictionary of protein secondary structure. Pattern recognition of hydrogen bonded and geometrical features, Biopolymers 22: 2577–2637.PubMedCrossRefGoogle Scholar
  110. Kaiser, E. T., and Kezdy, F. J., 1984, Amphiphilic secondary structure: Design of peptide hormones, Science 223: 249.PubMedCrossRefGoogle Scholar
  111. Kajtâr, M., Hollósi, M., Kajtâr, J., Majer, Z., and Kövér, K. E., 1986, Chiroptical properties and solution conformations of protected endothiodipeptide esters, Tetrahedron 42: 3931–3942.CrossRefGoogle Scholar
  112. Kamegai, J., Kimura, S., and Imanishi, Y., 1986, Conformation of sequential polypeptide poly(Leu-Leu-D-Phe-Pro) and formation of ion channel across bilayer lipid membrane, Biophys. J., 49: 1101–1108.PubMedCrossRefGoogle Scholar
  113. Karle, I. L., 1978, Crystal structure and conformation of cyclo-(glycylprolylglycyl-D-alanyl-prolyl) containing 4→1 and 3→1 intermolecular hydrogen bonds, J. Am. Chem. Soc. 100: 1286–1289.CrossRefGoogle Scholar
  114. Karle, I. L., 1981, X-ray analysis: Conformation of peptides in the crystalline state, in: Peptides ( E. Gross and J. Meienhofer, eds.), pp. 1–54, Academic Press, New York.Google Scholar
  115. Karle, I. L., Karle, J., Mastropaolo, D., Camerman, A., and Camerman, N., 1983, Multiple conformations of enkephalin in the crystalline state, in: Peptides, Structure and Function, Proc. Am. Pept. Symp. ( V. J. Hruby and D. H. Rich, eds.), pp. 291–294, Pierce Chemical Co., Rockford, IL.Google Scholar
  116. Kataev, B. S., Balodis, J. J., and Nikiforovich, G. V., 1985, CD spectrum and conformational distribution of cyclotuftsin in solution, FEBS Let. 190: 214–216.CrossRefGoogle Scholar
  117. Kawai, M., and Fasman, G. D., 1978, A model β turn. Circular dichroism and infrared spectra of a tetrapeptide, J. Am. Chem. Soc. 100: 3630–3632.CrossRefGoogle Scholar
  118. Kennedy, D. F., Crisma, M., Toniolo, C., and Chapman, D., 1991, Studies of peptides forming 310- and α-helices and β-bend ribbon structures in organic solution and in model biomembranes by Fourier transform infrared spectroscopy, Biochemistry 30: 6541–6548.PubMedCrossRefGoogle Scholar
  119. Kessler, M., Gehrke, M., and Griesinger, C., 1988, Zweidimensionale NMR-Spektroskopie, Grundlagen and Übersicht über die Experimente, Angew. Chem. 100: 507–554.CrossRefGoogle Scholar
  120. Kharrat, A., Derancourt, J., Doree, M., Amalric, F., and Erard, M., 1991, Synergistic effect of histone H1 and nucleolin on chromatin condensation in mitosis: Role of a phosphorylated heteromer, Biochemistry 30: 10329–10336.PubMedCrossRefGoogle Scholar
  121. Kishore, R., Raghothama, S., and Balaram, P., 1988, Synthetic peptide models for the redoxactive disulfide loop of glutaredoxin, conformational studies, Biochemistry 27: 2462–2471.PubMedCrossRefGoogle Scholar
  122. Krimm, S., and Bandekar, J., 1986, Vibrational spectroscopy and conformation of peptides, polypeptides and proteins, in: Advances in Protein Chemistry, Vol. 38 ( C. B. Anfinsen, J. T. Edsall, and F. M. Richards, eds.), pp. 181–364, Academic Press, New York.Google Scholar
  123. Kuntz, I. D., 1972, Protein folding, J. Am. Chem. Soc. 94: 4009–4012.PubMedCrossRefGoogle Scholar
  124. Laczkó-Hollósi, I., Hollósi, M., Lee, V. M.-Y., and Mantsch, H. H., 1992, Conformational change of a synthetic amyloid analogue des[Ala21,30]A42 upon binding to octyl glucoside micelles, Eur. Biophys. J. 21: 345–348.PubMedCrossRefGoogle Scholar
  125. Lambert, M. H., and Scheraga, H. A., 1989, Pattern recognition in the prediction of protein structure. Ill. An importance sampling minimization procedure, J. Comp. Chem. 10: 817.CrossRefGoogle Scholar
  126. Lamthanh, H., Léonetti, M., Nabedryk, E., and Ménez, A., 1993, CD and FTIR studies of an immunogenic disulphide cyclized octadecapeptide, a fragment of a snake curaremimetic toxin, Biochim. Biophys. Acta 1203: 191–198.PubMedCrossRefGoogle Scholar
  127. Lang, E., and Ötvös, L., Jr., 1992, A serine — proline change in the Alzheimer’s disease-associated epitope Tau 2 results in altered secondary structure, but phosphorylation overcomes the conformational gap, Biochem. Biophys. Res. Commun. 188: 162.PubMedCrossRefGoogle Scholar
  128. Lang, E., Szendrei, G. I., Lee, V. M.-Y., and Ötvös, L., Jr., 1992a, Immunological and conformational characterization of a phosphorylated immunodominant epitope on the paired helical filaments found in Alzheimer’s disease, Biochem. Biophys. Res. Commun. 187: 783–790.PubMedCrossRefGoogle Scholar
  129. Lang, E., Szendrei, G. I., Elekes, I., Lee, V. M.-Y., and Ötvös, L., Jr., 1992b, Reversible β-pleated sheet formation of a phosphorylated synthetic T peptides, Biochem. Biophys. Res. Commun. 182: 63–69.PubMedCrossRefGoogle Scholar
  130. Lang, E., Szendrei, G. I., Lee, V. M.-Y., and Ötvös, L., Jr., 1994, Spectroscopic evidence that monoclonal antibodies recognize the dominant conformation of medium-sized synthetic peptides, J. Immunol. Methods 170: 103–115.PubMedCrossRefGoogle Scholar
  131. Leszczynski, J. F., and Rose, G. D., 1986, Loops in globular proteins: A novel category of secondary structure, Science 234: 849–855.PubMedCrossRefGoogle Scholar
  132. Levitt, M., 1976, A simplified representation of protein conformations for rapid simulation of protein folding, J. Mol. Biol. 104: 59–107.PubMedCrossRefGoogle Scholar
  133. Levitt, M., 1978, Conformational preferences of amino acids in globular proteins, Biochemistry 17: 4277–4285.PubMedCrossRefGoogle Scholar
  134. Levitt, M., and Chothia, C., 1976, Structural patterns in globular proteins, Nature 261: 552–558.PubMedCrossRefGoogle Scholar
  135. Lewis, P. N., Momany, F. A., and Scheraga, H. A., 1973, Chain reversals in proteins, Biochim. Biophys. Acta 303: 211–229.PubMedCrossRefGoogle Scholar
  136. Lisowski, M., Siemion, I. Z., and Sobczyk, K., 1983, Conformation of model alanine and proline containing tetrapeptides in water. Comparison of carbon-β NMR and CD results, Int. J. Peptide Protein Res. 21: 301–306.CrossRefGoogle Scholar
  137. Lisowski, M., Pietrzynski, G., and Rzeszotarska, B., 1993, Conformational investigation of a,β-dehydropeptides. V. Stability of reverse turns in saturated and a,β-unsaturated peptides Ac-Pro-Xaa-NHCH3: CD studies in various solvents, Int. J. Peptide Protein Res. 42: 466–474.CrossRefGoogle Scholar
  138. Liu, X., Otter, A., Scott, P. G., Cann, J. R., and Kotovych, G., 1994, Conformational analysis of the type II and type III collagen alpha-1 chain C-telopeptides by 1H NMR and circular dichroism spectroscopy, J. Biomol. Struct. Dyn. 11: 541–555.CrossRefGoogle Scholar
  139. Loomis, R. E., Gonzalez, M., and Loomis, P. M., 1991, Investigation of cis/trans proline isomerism in a multiply occurring peptide fragment from human salivary proline-rich glycoprotein, Int. J. Peptide Protein Res. 38: 428–439.CrossRefGoogle Scholar
  140. Lu, Z. X., Fok, K. F., Erickson, B. W., and Hugli, T. E., 1984, Conformational analysis of COOH-terminal segments of human C3a. Evidence of ordered conformation in an active 21-residue peptide, J. Biol. Chem. 259: 7367–7370.PubMedGoogle Scholar
  141. Mcharfi, M., Aubry, A., Boussard, G., and Marraud, M., 1986, Backbone side-chain interactions in peptides. IV. β-Turn conformations of Asp and Asn-containing dipeptides in solute and solid states, Eur. Biophys. J. 14: 43–51.CrossRefGoogle Scholar
  142. Madison, V., and Kopple, K. D., 1980, Solvent-dependent conformational distributions of some dipeptides, J. Am. Chem. Soc. 120: 4855–4863.CrossRefGoogle Scholar
  143. Madison, V., and Schellman, J., 1970, Location of proline derivatives in conformational space. II. Theoretical optical activity, Biopolymers 9: 569–588.PubMedCrossRefGoogle Scholar
  144. Mammi, S., Foffani, M. T., Improta, S., Tessari, M., Schievano, E., and Peggion, E., 1992, Conformation of uteroglobin fragments, Biopolymers 32: 341–346.PubMedCrossRefGoogle Scholar
  145. Manavalan, P., and Johnson, W. C., Jr., 1987, Variable selection method improves the prediction of protein secondary structures from circular dichroism spectra, Anal. Biochem. 167: 76–85.PubMedCrossRefGoogle Scholar
  146. Manning, M. C., and Woody, R. W., 1987, Theoretical determination of the CD of proteins containing closely packed antiparallel G3-sheets, Biopolymers 26: 1731–1752.PubMedCrossRefGoogle Scholar
  147. Manning, M. C., and Woody, R. W., 1989, Theoretical study of the contribution of aromatic side chains to the circular dichroism of basic bovine pancreatic trypsin inhibitor, Biochemistry 28: 8609–8613.PubMedCrossRefGoogle Scholar
  148. Manning, M. C., Illangasekare, M., and Woody, R. W., 1988, Circular dichroism studies of distorted a-helixes, twisted β-sheets, and β-turns, Biophys. Chem. 31: 77–86.PubMedCrossRefGoogle Scholar
  149. Mantsch, H. H., Moffatt, D. J., and Casal, H. L., 1988, Fourier transform methods for spectral resolution enhancement, J. Mol. Struct. 173: 285–298.CrossRefGoogle Scholar
  150. Mantsch, H. H., Perczel, A., Hollósi, M., and Fasman, G. D., 1993, Characterization of β-turns in cyclic hexapeptides in solution by Fourier transform IR spectroscopy, Biopolymers 33: 201–207.PubMedCrossRefGoogle Scholar
  151. Mao, D., and Wallace, B. A., 1984, Differential light scattering and absorption flattening optical effects are minimal in the circular dichroism spectra of small unilamellar residues, Biochemistry 23: 2667–2673.PubMedCrossRefGoogle Scholar
  152. Marraud, M., and Aubry, A., 1984, Backbone side chain interactions in peptides. II. Solution study of serine-containing model dipeptides, Int. J. Peptide Protein Res. 23: 123–133.CrossRefGoogle Scholar
  153. Matthews, B. W., 1972, The γ turn. Evidence for a new folded conformation in proteins, Macromolecules 5: 818–819.CrossRefGoogle Scholar
  154. Mayo, K. H., Parra-Diaz, D., McCarthy, J. B., and Chelberg, M., 1991, Cell adhesion promoting peptide GVKGDKGNPGWPGAP form the collagen type IV triple helix: cis/trans proline-induced multiple 1H NMR conformations and evidence for a KG/PG multiple turn repeat motif in the all-trans proline state, Biochemistry 30: 825–867.Google Scholar
  155. Krick, S. M., Martinez, G. V., and Fiori, W. R., 1992, Short alanine-based peptides may form 310-helices in globular proteins, Int. J. Peptide Protein Res. 37: 508–512.Google Scholar
  156. Milner-White, E. J., 1990, Situations of gamma-turns in proteins, their relation to alpha-helices, beta-sheets and ligand binding sites, J. Mol. Biol. 216: 385–397.CrossRefGoogle Scholar
  157. Milner-White, E. J., Ross, B. M., Ismail, R., Belhadj-Mostefa, K., and Poet, R., 1988, One type of gamma-turn, rather than the other gives rise to chain-reversal in proteins, J. Mol. Biol. 204: 777–782.PubMedCrossRefGoogle Scholar
  158. Miyazawa, T., Shimanouchi, T., and Mizushima, J., 1958, Normal vibrations of N-methylacetamide, J. Chem. Phys. 29: 611–616.CrossRefGoogle Scholar
  159. Momany, F. A., McGuire, R. F., Burgess, A. W., and Scheraga, H. A., 1975, Energy parameters in polypeptides VII. Geometric parameters, partial atomic charges, nonbonded interactions and intrinsic torsional potentials for the naturally occurring amino acids, J. Phys. Chem. 79: 2361.CrossRefGoogle Scholar
  160. Mori, N., Ishizaki, H., and Tu, A. T., 1989, Isolation and characterization of Pelamis platurus (yellow-bellied sea snake) postsynaptic isoneurotoxin, J. Pharm. PharmacoL 41: 331–334.PubMedCrossRefGoogle Scholar
  161. Müller, G., Gurrath, M., Kurz, M., and Kessler, H., 1993, 3VI turns in peptides and proteins: A model peptide mimicry, Proteins Struct. Funct. Genet. 15: 235–251.Google Scholar
  162. Nachman, R. J., Roberts, V. A., Dyson, R. H., Holman, G. M., and Tainer, J. A., 1991, Active conformation of an insect neuropeptide family, Proc. Natl. Acad. Sci. USA 88: 4518–4522.PubMedCrossRefGoogle Scholar
  163. Nachman, R. J., Kuniyoshi, H., Roberts, V. A., Holman, G. M., and Suzuki, A., 1993, Active conformation of the pyrokinin/PBAN neuropeptide family for pheromone biosynthesis in the silkworm, Biochem. Biophys. Res. Commun. 193: 661–666.PubMedCrossRefGoogle Scholar
  164. Nelson, J. W., and Kaltenbach, N. R., 1986, Stabilization of ribonuclease S-peptide a-helix by trifluoroethanol, Proteins 2: 211–217.CrossRefGoogle Scholar
  165. Némethy, G., and Printz, M. P., 1972, The y-turn, a possible folded conformation of the polypeptide chain. Comparison with the β-turn, Macromolecules 5: 755–758.CrossRefGoogle Scholar
  166. Némethy, G., and Scheraga, H. A., 1965, Theoretical determination of sterically allowed conformations of a polypeptide chain by a computer method, Biopolymers 3: 155.CrossRefGoogle Scholar
  167. Neuhaus, D., and Williamson, M., 1989, The Nuclear Overhauser Effect in Structural and Conformational Analysis,Verlagsgesellschaft (VCH) Publications.Google Scholar
  168. Noggle, J. H., and Schirmer, R. E., 1971, The Nuclear Overhauser Effect, Chemical Applications, Academic Press, New York.Google Scholar
  169. Olson, G. L., Voss, M. E., Hill, D. E., Kahn, M., Madison, V. S., and Cook, C. M., 1990, Design and synthesis of a protein β-turn mimetic, J. Am. Chem. Soc. 112: 323–333.CrossRefGoogle Scholar
  170. Oschkinat, H., Müller, T., and Dieckmann, T., 1994, Protein structure determination with three-and four-dimensional NMR spectroscopy, Angew. Chem. Int. Ed. Engl. 33: 277–293.CrossRefGoogle Scholar
  171. Otter, A., Scott, P. G., Liu, X. H., and Kotovych, G., 1989a, A 1H and 13C NMR study on the role of salt bridges in the formation of a type I beta-turn in N-acetyl-L-Asp-L-Glu-L-Lys-L-Ser-NH2, J. Biomol. Struct. Dyn. 7: 455–476.CrossRefGoogle Scholar
  172. Otter, A., Kotovych, G., and Scott, P. G., 1989b, Solution conformation of the type I collagen alpha-1 chain N-telopeptide studied by ‘H NMR spectroscopy, Biochemistry 28: 8003–8010.PubMedCrossRefGoogle Scholar
  173. Ötvös, L., Jr., Hollósi, M., Perczel, A., Dietzschold, B., and Fasman, G. D., 1988, Phosphorylation loops in synthetic peptides of the human neurofilament protein middle-sized subunit, J. Protein Chem. 7: 365–376.PubMedCrossRefGoogle Scholar
  174. Ötvös, L., Jr., Thurin, J., Kollât, E., Urge, L., Mantsch, H. H., and Hollósi, M., 1991, Glycosylation of synthetic peptides breaks helices: phosphorylation results in distorted structure, Int. J. Peptide Protein Res. 38: 476–482.CrossRefGoogle Scholar
  175. Ötvös, L., Jr., Szendrei, G. I., Lee, V. M.-Y., and Mantsch, H. H., 1993, Human and rodent Alzheimer β-amyloid peptides acquire distinct conformations in membrane-mimicking solvents, Eur. J. Biochem. 211: 249–257.PubMedCrossRefGoogle Scholar
  176. Pancoska, P., and Keiderling, T. A., 1991, Systematic comparison of statistical analyses of electronic and vibrational circular dichroism for secondary structure prediction of selected proteins, Biochemistry 30: 6885–6895.PubMedCrossRefGoogle Scholar
  177. Pancoska, P., Yasui, S. C., and Keiderling, T. A., 1989, Enhanced sensitivity to conformation in various proteins. Vibrational circular dichroism results, Biochemistry 28: 5917–5923.PubMedCrossRefGoogle Scholar
  178. Pancoska, P., Yasui, S. C., and Keiderling, T. A., 1991, Statistical analyses of the vibrational circular dichroism of selected proteins and relationship to secondary structures, Biochemistry 30: 5089–5103.PubMedCrossRefGoogle Scholar
  179. Pande, J., Pande, C., Gilg, D., Vasâk, M., Callender, R., and Kägi, J. H. R., 1986, Raman, infrared, and circular dichroism spectroscopic studies on metallothionein: A predominantly “turn”-containing protein, Biochemistry 25: 5526–5532.PubMedCrossRefGoogle Scholar
  180. Paolillo, L., Simonetti, M., Brakch, N., D’Auria, G., Saviano, M., and Dettin, M., 1992, Evidence for the presence of a secondary structure at the dibasic processing site of prohormone: The pro-oxytocin model, EMBO J. 11: 2399–2405.PubMedGoogle Scholar
  181. Park, K., Perczel, A., and Fasman, G. D., 1992, Differentiation between transmembrane helices and peripheral helices by the deconvolution of circular dichroism spectra of membrane proteins, Protein Sci. 1: 1032–1049.PubMedCrossRefGoogle Scholar
  182. Pauling, L., and Corey, R., 1951, Atomic coordinates and structure factors for two helical configurations of polypeptide chains, Proc. Natl. Acad. Sci. USA 37: 235–240.PubMedCrossRefGoogle Scholar
  183. Pauling, L., Corey, R., and Branson, H., 1951, The structure of proteins: Two H-bonded helical configurations of the polypeptide chain, Proc. Natl. Acad. Sci. USA 37: 205–211.PubMedCrossRefGoogle Scholar
  184. Pease, L. G., and Watson, C., 1978, Conformational and ion binding studies of a cyclic pentapeptide. Evidence for β and γ turns in solution, J. Am. Chem. Soc. 100: 1279–1286.CrossRefGoogle Scholar
  185. Perczel, A., Tusnâdy, G., Hollósi, M., and Fasman, G. D., 1989, Convex constraint decomposition of circular dichroism curves of proteins, Croat. Chim. Acta 62: 189–200.Google Scholar
  186. Perczel, A., and Fasman, C. D., 1992, Quantitative analysis of cyclic β-turn models, Protein Sci. 1: 378–395.PubMedCrossRefGoogle Scholar
  187. Perczel, A., Hollósi, M., Fülöp, V., Kalman, A., Sándor, P., and Fasman, G. D., 1990, Environment-dependent conformation of Boc-Pro-Ser-NHCH3, Biopolymers 30: 763–771.CrossRefGoogle Scholar
  188. Perczel, A., Hollósi, M., Foxman, B. M., and Fasman, G. D., 1991a, Conformational analysis of pseudocyclic hexapeptides based on quantitative circular dichroism (CD), NOE and X-ray data. The pure CD spectra of type I and type II [3-turn, J. Am. Chem. Soc. 113: 9772–9784.CrossRefGoogle Scholar
  189. Perczel, A., Hollósi, M., Tusnâdy, G., and Fasman, G. D., 1991b, Convex constraint analysis: A natural deconvolution of circular dichroism curves of proteins, Protein Eng. 4: 669–679.PubMedCrossRefGoogle Scholar
  190. Perczel, A., Angyán, J. G., Kajtár, M., Viviani, W., Rivail, J. L., Marcoccia, J. F., and Csizmadia, I. G., 1991c, Peptide models 1. Topology of selected peptide conformational potential energy surfaces (glycine and alanine derivatives), J. Am. Chem. Soc. 113: 6256–6265.CrossRefGoogle Scholar
  191. Perczel, A., Park, K., and Fasman, G. D., 1992a, Deconvolution of the circular dichroism spectra of proteins: The circular dichroism spectra of the antiparallel β-sheet in proteins, Proteins Struct. Funct. Genet. 13: 57–69.PubMedCrossRefGoogle Scholar
  192. Perczel, A., Park, K., and Fasman, G. D., 1992b, Analysis of the circular dichroism spectra of proteins using the convex constraint algorithm: A practical guide, Anal. Biochem. 203: 83–93.PubMedCrossRefGoogle Scholar
  193. Perczel, A., Foxman, B. M., and Fasman, G. D., 1992c, How reverse turns may mediate the formation of helical segments in proteins: An X-ray model, Proc. Natl. Acad. Sci. USA, 89: 8210–8214.PubMedCrossRefGoogle Scholar
  194. Perczel, A., Kollát, E., Hollósi, M., and Fasman, G. D., 1993a, Synthesis and conformational analysis of N-glycopeptides II: Circular dichroism, molecular dynamics and NMR spectroscopic studies on linear N-glycopeptides, Biopolymers 33: 665–685.PubMedCrossRefGoogle Scholar
  195. Perczel, A., Hollósi, M., Sândor, P., and Fasman, G. D., 1993b, The evaluation of type I and type II beta-turn mixtures. Circular dichroism, NMR and molecular dynamics studies, Int. J. Peptide Protein Res. 41: 223–236.CrossRefGoogle Scholar
  196. Perczel, A., McAllister, M. A., Császár, P., and Csizmadia, I. G., 1993c, Peptide models VI. New β- turn conformations from ab initio calculations confirmed by X-ray data of proteins, J. Am. Chem. Soc. 115: 4849–4858.CrossRefGoogle Scholar
  197. Perczel, A., Lengyel, I., Mantsch, H. H., and Fasman, G. D., 1993d, Analysis of hydrogen bonds in peptides, based on the hydration affinity of amides, J. Mol. Struct. 297: 115–126.CrossRefGoogle Scholar
  198. Perczel, A., McAllister, M. A., Császár, P., and Csizmadia, I. G., 1994, Peptide models VII. A complete conformational set of For-Ala-Ala-NH2 by ab initio computations, Can. J. Chem. 72: 2050–2070.CrossRefGoogle Scholar
  199. Perczel, A., Endrédi, G., McAllister, M. A., Farkas, O., Császár, P., Ladik, J., and Csizmadia, I. G., 1995, Peptide models VII. The ending of the right-hand helices in oligopeptides and in proteins, J. Mol. Structure 331: 5–10.CrossRefGoogle Scholar
  200. Peterson, M. R., and Csizmadia, I. G., 1982, Analytic equations for conformational energy surfaces, in: Progress of Theoretical Organic Chemistry, Vol. 3 ( I. G. Csizmadia, ed.), pp. 190–266, Elsevier, Amsterdam.Google Scholar
  201. Prestrelski, S. J., Byler, D. M., and Thompson, M. P., 1991, Infrared spectroscopic discrimination between a-and 310-helices in globular proteins, Int. J. Peptide Protein Res. 37: 508–512.CrossRefGoogle Scholar
  202. Pribic, R., van Stokkum, I. H. M., Chapman, D., Haris, P. I., and Bloemendal, M., 1993, Protein secondary structure from Fourier transform infrared and/or circular dichroism spectra, Anal. Biochem. 214: 366–378.PubMedCrossRefGoogle Scholar
  203. Provencher, S. W., and Glöckner, J., 1981, Estimation of globular protein secondary structure from circular dichroism, Biochemistry 20: 33–37.PubMedCrossRefGoogle Scholar
  204. Radics, L., and Hollósi, M., 1980, Conformations of proline-containing cyclic peptides II. Asymmetric solution conformations of cyclo-(L-Pro2-Gly)2 and its alkaline-earth metal complexes as studied by NMR spectroscopy, Tetrahedron Lett. 21: 4531–4534.CrossRefGoogle Scholar
  205. Rao, B. N. N., Kumar, A., Balaram, H., Ravi, A., and Balaram, P., 1983, Nuclear Overhauser effects and circular dichroism as probes of β-turn conformations in acyclic and cyclic peptides with Pro-X sequences, J. Am. Chem. Soc. 105: 7423–7428.CrossRefGoogle Scholar
  206. Ravi, A., Venkataram Prasad, B. V., and Balaram, P., 1983, Cyclic peptide disulfides. Solution and solid-state conformation of Boc-Cys-Pro-Aib-Cys-NHMe, a disulfide-bridged peptide helix, J. Am. Chem. Soc. 105: 105–108.CrossRefGoogle Scholar
  207. Reddy, G. L., and Nagaraj, R., 1987, Circular dichroism studies on synthetic peptides corresponding to the cleavage site region of precursor proteins, Int. J. Peptide Protein Res. 29: 497–503.CrossRefGoogle Scholar
  208. Reed, J., Kinzel, V., Chang, H. C., and Walsh, D. A., 1987, Circular dichroic investigations of secondary structures in synthetic peptide inhibitors of cAMP-dependent protein kinase: A model for inhibitory potential, Biochemistry 26: 7611–7617.Google Scholar
  209. Rholam, M., Cohen, P., Brakch, N., Paolillo, L., Scatturin, A., and Di-Bello, C., 1990, Evidence for beta-turn structure in model peptides reproducing pro-ocytocin/neurophysin proteolytic processing site, Biochem. Biophys. Res. Commun. 168: 1066–1073.PubMedCrossRefGoogle Scholar
  210. Rich, D. H., Kawai, M., and Jasensky, R. D., 1983, Conformational studies of cyclic tetrapeptides, Int. J. Peptide Protein Res. 21: 35–42.CrossRefGoogle Scholar
  211. Richardson, J. S., 1981, The anatomy and taxonomy of protein structure, Adv. Protein Chem. 34: 167–339.PubMedCrossRefGoogle Scholar
  212. Roos, H. M., Van Rooyen, P. H., and Wessels, P. L., 1994, Experimental studies and potential energy calculations of the blocked tetrapeptide Ac-Lys-Pro-Gly-Ile-NMA from the third loop of short-chain snake venom neurotoxins, Int. J. Peptide Protein Res. 42: 305–311.CrossRefGoogle Scholar
  213. Rose, G. D., Gierasch, L. M., and Smith, J. A., 1985, Turns in peptides and proteins, Adv. Protein Chem. 37: 1–109.PubMedCrossRefGoogle Scholar
  214. Rosenkranz, H., and Scholtan, W., 1971, Improved method for the evaluation of helical protein conformation by means of circular dichroism, Hoppe-Seyler’s Z. Physiol. Chem. 352: 896–904.PubMedCrossRefGoogle Scholar
  215. Rossi, F., Saviano, M., Di-Blasio, B., Zanotti, G., Maione, A. M., Tancredi, T., and Pedone, C., 1994, Bioactive peptides: Solid state, solution and molecular dynamics studies of a cyclolinopeptide A-related cystinyl cyclopentapeptide, Biopolymers 34: 273–284.PubMedCrossRefGoogle Scholar
  216. Sarkar, P. K., and Doty, P., 1966, Optical rotatory properties of the β configuration in polypeptides and proteins, Proc. Natl. Acad. Sci. USA 55: 981–989.PubMedCrossRefGoogle Scholar
  217. Sarver, R. W., Jr., and Krueger, C., 1991, An infrared and circular dichroism combined approach to the analysis of protein secondary structure, Anal. Biochm. 199: 61–67.CrossRefGoogle Scholar
  218. Sathyanarayana, B. K., and Applequist, J., 1986, Theoretical π-π* absorption and circular dichroic spectra of (3-turn model peptides, Int. J. Peptide Protein Res. 27: 86–94.CrossRefGoogle Scholar
  219. Sato, K., Sugawara, R., and Nagai, U., 1984, Studies on beta-turn of peptides. IX. Effect of 1st and 4th amino acids of tetrapeptide sequences on their beta-turn preferences studied by CD spectra of their chromophoric derivatives, Int. J. Peptide Protein Res. 24: 600–606.CrossRefGoogle Scholar
  220. Sato, K., Kato, R., and Nagai, U., 1986, Studies on β.-turn of peptides. XII. Synthetic confirmation of weak activity of [D-Pro55 -gramicidin S predicted from β-turn preference of its partial sequence, Bull. Chem. Soc. Jpn. 59: 535–538.CrossRefGoogle Scholar
  221. Saudek, V., Atkinson, R. A., Lepage, P., and Pelton, J. T., 1991, The secondary structure of echistatin from ‘H-NMR, circular-dichroism and Raman spectroscopy, Eur. J. Biochem. 202: 329–338.PubMedCrossRefGoogle Scholar
  222. Saxena, V. P., and Wetlaufer, B. D., 1971, New basis for interpreting the circular dichroic spectra of proteins, Proc. Natl. Acad. Sci. USA 68: 969.PubMedCrossRefGoogle Scholar
  223. Scarsdale, J. N., and Harris, R. B., 1990, Solution phase conformation studies of the prekallikrein binding domain of high molecular weight kininogen, J. Protein Chem. 9: 647–659.PubMedCrossRefGoogle Scholar
  224. Scatturin, A., Salvadori, S., Vertuani, G., and Tomatis, R., 1985, Opioid peptides. Conformational studies of dermorphin and its constitutive fragments by circular dichroism. IX, Farmaco Sci. 10: 709–716.Google Scholar
  225. Schäfer, L., Newton, S. Q., Cao, M., Peeters, A., van Alsenoy, C., Wolinski, K., and Momany, F. A., 1993, Evaluation of the dipeptide approximation in peptide modeling by ab-initio geometry optimizations of oligopeptides, J. Am. Chem. Soc. 115: 272–280.CrossRefGoogle Scholar
  226. Schwyzer, R., Sieber, P., and Gorup, B., 1958, Synthesis of cyclic peptides by the “activated ester” method, Chimia 12: 90–91.Google Scholar
  227. Seetharama Jois, D. S., Easwaran, K. R. K., Bednarek, M., and Blout, E. R., 1992, Conformational and ion binding properties of a cyclic octapeptide, cyclo(Ala-Leu-Pro-Gly)2, Biopolymers 32: 993–1001.CrossRefGoogle Scholar
  228. Selkoe, D. J., 1991, The molecular pathology of Alzheimer’s disease, Neuron 6: 487–496.PubMedCrossRefGoogle Scholar
  229. Shaw, R. A., Perczel, A., Mantsch, H. H., and Fasman, G. D., 1994, Turns in small cyclic peptides-Can infrared spectroscopy detect and discriminate amongst them? J. Mol. Struct. 324: 143–150.CrossRefGoogle Scholar
  230. Shen, Z. M., Perczel, A., Hollósi, M., Nagypâl, I., and Fasman, G. D., 1994, Study of Ala+ binding and conformational properties of the alanine-substituted C-terminal domain of the NF-M protein and its relevance to Alzheimer’s disease, Biochemistry 33: 9627–9636.PubMedCrossRefGoogle Scholar
  231. Shinozaki, K., Anzai, K., Kirino, Y., Lee, S., and Aoyagi, H., 1994, Ion channel activity of a synthetic peptide with a primary structure corresponding to the presumed pore-forming region of the voltage dependent potassium channel, Biochem. Biophys. Res. Commun. 198: 445–450.PubMedCrossRefGoogle Scholar
  232. Sibanda, B. L., and Thornton, J. M., 1985,13-Hairpin families in globular proteins, Nature 316:170–174. Siemion, I. Z., Sobczyk, K., and Lisowski, M., 1986, Comparison of conformational properties of proline and threonine residues, Int. J. Peptide Protein Res. 27: 127–137.Google Scholar
  233. Siemion, I. Z., Pedyczak, A., Burton, J., 1988, Conformational preferences of the sequential fragments of the hinge region of the human IgA 1 immunoglobulin molecule, Biophys. Chem. 31: 35–44.PubMedCrossRefGoogle Scholar
  234. Siemion, I. Z., Kubik, A., Lisowski, M., Szewczuk, Z., Zimecki, M., and Wieczorek, Z.,1991, Immunosuppressive analogues of hexapeptide Tyr-Val-Pro-Leu-Phe-Pro, an immune system stimulant, Int. J. Peptide Protein Res. 38: 54–61.Google Scholar
  235. Siligardi, G., Drake, A. F., Mascagni, P., Rowlands, D., Brown, F., and Gibbons, W. A., 1991, Correlations between the conformations elucidated by CD spectroscopy and the antigenic properties of four peptides of the foot-and-mouth disease virus, Eur. J. Biochem. 199: 545–551.PubMedCrossRefGoogle Scholar
  236. Siligardi, G., Campbell, M. M., Gibbons, W. A., and Drake, A. F., 1992, Conformational analysis of the melanine-concentrating hormone core by circular dichroic spectroscopy. Disulphide bridge and tyrosine contributions, Eur. J. Biochem. 206: 23–29.PubMedCrossRefGoogle Scholar
  237. Smith, J. A., and Pease, L. G., 1980, Reverse turns in peptides and proteins, CRC Crit. Rev. Biochem. 8: 315–399.PubMedCrossRefGoogle Scholar
  238. Sonnichsen, F. D., Van-Eyk, J. E., Hodges, R. S., and Sykes, B. D., 1992, Effect of trifluoroethanol on protein secondary structure: An NMR and CD study using a synthetic actin peptide, Biochemistry 31: 8790–8798.PubMedCrossRefGoogle Scholar
  239. Sreerama, N., and Woody, R. W.. 1993, A self-consistent method for the analysis of protein secondary structure from circular dichroism, Anal. Biochem. 209: 32–44.PubMedCrossRefGoogle Scholar
  240. Sreerama, N., and Woody, R. W., 1994, Poly(Pro)II helices in globular proteins: Identification and circular dichroic analysis, Biochemistry 33: 10022–10025.PubMedCrossRefGoogle Scholar
  241. Stradley, S. J., Rizo, J., Bruch, M. D., Stroup, A. N., and Gierasch, L. M., 1990, Cyclic pentapeptides as models for reverse turns: Determination of the equilibrium distribution between type I and type II conformations of Pro-Asn and Pro-Ala β-turns, Biopolymers 29: 263–287.PubMedCrossRefGoogle Scholar
  242. Strel’tsova, Z. A., 1984, Analysis of enkephalin conformation using circular dichroism and fluorescence spectroscopy, Bioorg. Khim. 10: 817–823.PubMedGoogle Scholar
  243. Surewicz, W. K., and Mantsch, H. H., 1988, New insight into protein secondary structure from resolution-enhanced infrared spectra, Biochim. Biophys. Acta 952: 115–130.PubMedCrossRefGoogle Scholar
  244. Surewicz, W. K., Mantsch, H. H., and Chapman, D., 1993, Determination of protein secondary structure by Fourier transform infrared spectroscopy: A critical assessment, Biochemistry 32: 389–394.PubMedCrossRefGoogle Scholar
  245. Suzuki, M., 1989, SPKK, a new nucleic acid-binding unit of protein found in histone, EMBO J. 8: 797–804.PubMedGoogle Scholar
  246. Szendrei, G. I., Lee, V. M.-Y., and Ötvös, L., Jr., 1993, Recognition of the minimal epitope of monoclonal antibody Tau-1 depends upon the presence of a phosphate group but not its location, J. Neurosci. Res. 34: 243–249.PubMedCrossRefGoogle Scholar
  247. Tamburro, A. M., and Guantieri, V., 1984, Folded β-turns and collagen like conformations of -Gly-Proand -Pro-Gly-sequences in synthetic polytripeptides, Biopolymers 23: 617–621.CrossRefGoogle Scholar
  248. Tancredi, T., Benedetti, E., Grimaldi, M., Pedone, C., Rossi, F., and Saviano, M., 1991, Ion binding of cyclolinopeptide A: An NMR and CD conformational study, Biopolymers 31: 761–767.PubMedCrossRefGoogle Scholar
  249. Tinker, D. A., Krebs, E. A., Feltham, I. C., Attah-Poku, S. K., and Ananthanarayanan, V. S., 1988, Synthetic beta-turn peptides as substrates for a tyrosine protein kinase, J. Biol. Chem. 263: 5024–5026.PubMedGoogle Scholar
  250. Tinoco, I., Jr., Woody, R. W., and Bradley, D. F., 1963, Absorption and rotation of light helical polymers. Effect of chain length, J. Chem. Phys. 38: 1317–1325.CrossRefGoogle Scholar
  251. Toniolo, C., 1980, Intramolecularly hydrogen-bonded peptide conformations, CRC Crit. Rev. Biochem. 9: 1–44.PubMedCrossRefGoogle Scholar
  252. Toumadje, A., Alcorn, S. W., and Johnson, W. C., Jr., 1992, Extending CD spectra of proteins to 168 nm improves the analysis for secondary structures, Anal. Biochem. 200: 321–331.PubMedCrossRefGoogle Scholar
  253. Urge, L., Görbics, L., and Otvös, L., Jr., 1992, Chemical glycosylation of peptide T at natural and artificial glycosylation sites stabilizes or rearranges the dominant reverse turn structures, Biochem. Biophys. Res. commun. 184: 1125–1132.PubMedCrossRefGoogle Scholar
  254. Urry, D. W., Masotti, L., and Krivacic, J. R., 1971, Circular dichroism of biological membranes, I. Mitochondria and red blood cell ghosts, Biochem. Biophys. Acta 241: 600–612.PubMedCrossRefGoogle Scholar
  255. Urry, D. W., Shaw, R. G., and Prasad, K. U., 1985, Polypentapeptide of elastin: Temperature dependence of ellipticity and correlation with elastomeric force, Biochem. Biophys. Res. Commun. 130: 50–57.PubMedCrossRefGoogle Scholar
  256. van Holst, G.-J., Martin, S. R., Allen, A. K., Ashford, D., Desai, N. N., and Neuberger, A., 1986, Protein conformation of potato (Solanum tuberosum) lectin determined by circular dichroism, Biochem. J. 233: 731–736.PubMedGoogle Scholar
  257. van Stokkum, I. H. M., Spoelder, H. J. W., Bloemendal, M., van Grondelle, R., and Groen, F. C. A., 1990, Estimation of protein secondary structure and error analysis from circular dichroism spectra, Anal. Biochem. 191: 110–118.PubMedCrossRefGoogle Scholar
  258. Vasquez, M., and Scheraga, H. A., 1988, Calculation of protein conformation by the build up procedure. Application of bovine pancreatic trypsin inhibitor using limited simulated NMR data, J. Biomol. Struct. Dyn. 5: 705–755.PubMedCrossRefGoogle Scholar
  259. Venkatachalam, M., 1968, Sterochemical criteria for polypeptides and proteins: Conformation of a system of three linked peptide units, Biopolymers 6: 1425–1436.PubMedCrossRefGoogle Scholar
  260. Venyaminov, S. Y., and Kalnin, N. N., 1990, Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. I. Spectral parameters of amino acid residue absorption bands, Biopolymers 30: 1243–1257.PubMedCrossRefGoogle Scholar
  261. Venyaminov, S. Y., Baikov, I. A., Shen, Z. M., Wu, C.-S. C., and Yang, J. T., 1993, Circular dichroic analysis of denaturated proteins: Inclusion of denaturated proteins in the reference set, Anal. Biochem. 214: 17–24.PubMedCrossRefGoogle Scholar
  262. Vicar, J., Malon, P., Trka, A., Smolikovâ, J., Fric, I., and Blâha, K., 1977, Synthesis and spectral properties of cyclotripeptides containing 2-azetidinecarboxylic acid or proline, Coll. Czech. Chem. Commun. 42: 2701–2717.CrossRefGoogle Scholar
  263. Volosov, A., and Woody, R. W., 1994, Theoretical approach to natural electronic optical activity, in: Circular Dichroism: Principles and Applications ( K. Nakanishi, N. Berova, and R. W. Woody, eds., pp. 59–84, VCH Publishers, New York.Google Scholar
  264. Walsh, M. T., Watzlawick, H., Putnam, F. W., Schmid, K., and Brossmer, R., 1990, Effect of the carbohydrate moiety on the secondary structure of O2-glycoprotein I. Implications for the biosynthesis and folding of glycoproteins, Biochemistry 29: 6250–6257.PubMedCrossRefGoogle Scholar
  265. Williamson, M. P., 1992, Peptide structure determination by NMR, in: Methods in Molecular Biology, Vol. 7 (C. Jones, B. Mulloy, and A. H. Thomas, eds.), Humana Press, Clifton, NJ.Google Scholar
  266. Wilmot, C. M., and Thornton, J. M., 1988, Analysis and prediction of the different types of β turns in proteins, J. Mol. Biol. 203: 221–232.PubMedCrossRefGoogle Scholar
  267. Wilmot, C. M., and Thornton, J. M., 1990, 3 turns and their distortions: A proposed new nomenclature, Protein Eng. 3: 479–493.Google Scholar
  268. Wishart, D. S., Sykes, B. D., and Richards, M., 1991a, Simple technics for the quantification of protein secondary structures by protein NMR spectroscopy, FEBS Lett. 293: 72.PubMedCrossRefGoogle Scholar
  269. Wishart, D. S., Sykes, B. D., and Richards, M., 1991b, Relationship between nuclear magnetic resonance chemical shift and protein secondary structure, J. Mol. Biol. 222: 311.PubMedCrossRefGoogle Scholar
  270. Wishart, D. S., Sykes, B. D., and Richards M., 1992, The chemical shift index: A fast and simple method for the assignment of protein secondary structure through NMR spectroscopy, Biochemistry 31: 1647.PubMedCrossRefGoogle Scholar
  271. Woody, R. W., 1974, Studies of theoretical circular dichroism of polypeptides: Contributions of O-turns, in: Peptides, Polypeptides and Proteins ( E. R. Blout, F. A. Bovey, N. Lotan, and M. Goodman, eds.), pp. 338–350, Wiley, New York.Google Scholar
  272. Woody, R. W., 1977, Optical rotatory properties of biopolymers, J. Polym. Sci. Macromol. Rev. 12:181–199CrossRefGoogle Scholar
  273. Woody, R. W., 1978, Aromatic side chain contributions to the far ultraviolet circular dichroism of peptides and proteins, Biopolymers 17: 1451–1467.CrossRefGoogle Scholar
  274. Woody, R. W., 1985, Circular dichroism of peptides, in: The Peptides, Vol. 7 ( V. J. Hruby, ed.), pp. 15–114, Academic Press, New York.Google Scholar
  275. Wright, P. E., Dyson, H. J., and Lerner, R. A., 1988, Conformation of peptide fragments of proteins in aqueous solutions. Implications for initiation of protein folding, Biochemistry 27: 7167.PubMedCrossRefGoogle Scholar
  276. Wütrich, K., 1990, Protein structure determination by nuclear magnetic resonance in proteins, J. Biol. Chem. 265: 2 2059.Google Scholar
  277. Wyssbrod, H. R., and Diem, M., 1992, IR (vibrational) CD of peptide beta-turns—A theoretical and experimental study of cyclo(Gly-Pro-Gly-D-Ala-Pro), Biopolymers 32: 1237–1242.PubMedCrossRefGoogle Scholar
  278. Yang, J. T., Wu, C.-S. C., and Martinez, H. M., 1986, Calculation of protein conformation from circular dichroism, Methods Enzymol. 130: 208–269.PubMedCrossRefGoogle Scholar
  279. Zargarova, T. A., Zargarov, A. A., Bolotina, I. A., Beresten’, S. F., and Favorova, I. O., 1990, A peptide, containing the universal antigenic determinant of tryptophanyl-tRNA-synthetase, Bioorg. Khim. 16: 1259–1267.PubMedGoogle Scholar
  280. Zimmerman, S. S., Pottle, M. S., Némethy, G., and Scheraga, H. A., 1977, Conformational analyses of the 20 naturally occurring amino acid residues using ECEPP, Macromolecules 10: 1.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • András Perczel
    • 1
  • Miklós Hollósi
    • 1
  1. 1.Department of Organic ChemistryEötvös UniversityBudapest 112Hungary

Personalised recommendations