The β Sheet ⇌ Coil Transition of Polypeptides, as Determined by Circular Dichroism

  • Luanne Tilstra
  • Wayne L. Mattice


Circular dichroism (CD) has seen three decades of use in the study of the ß sheet ⇌ coil transition in polypeptides (Sarkar and Doty, 1966; Townend et al.,1966). The focus here will be on the application of CD to the ß sheet ⇌ coil transition in three prototypical systems in which the transition is induced in a homopolypeptide: poly(l-lysine) [poly (Lys)], poly(l-tyrosine) [poly(Tyr)], and poly(S-carboxymethyl-l-cysteine) [poly(CM-cys)].


Circular Dichroism Statistical Weight Silk Fibroin Random Coil Conformational Transition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, A. J., Hoving, R., Potter, J., Wells, M., and Fasman, G. D., 1968, Circular dichroism of polypeptides. Poly(hydroxyethyl-L-glutamine) compared to poly(L-glutamic acid), J. Am. Chem. Soc. 90: 4736–4738.PubMedCrossRefGoogle Scholar
  2. Applequist, J.,1982, Theoretical wrr* absorption and circular dichroic spectra of polypeptide 13-structures, Biopolymers 21: 779–795.Google Scholar
  3. Auer, H. E., and Miller-Auer, H., 1982, Two classes of 13-pleated sheet conformation in poly(L-tyrosine): Evidence from solvent perturbation difference spectroscopy, Biopolymers 21: 1245–1259.CrossRefGoogle Scholar
  4. Auer, H. E., and Miller-Auer, H., 1986, Dynamics of the disordered—fi transition in poly(L-tyrosine) determined by stopped-flow spectrometry, Biopolymers 25: 1607–1613.PubMedCrossRefGoogle Scholar
  5. Balcerski, J. S., Pysh, E. S., Bonora, G. M., and Toniolo, C., 1976, Vacuum ultraviolet circular dichroism of 13-forming alkyl oligopeptides, J. Am. Chem. Soc. 98: 3470–3473.PubMedCrossRefGoogle Scholar
  6. Bauer, D. R., and Ullman, R., 1980, Contraction of polystyrene molecules in dilute solution below the O temperature, Macromolecules 13: 392–396.CrossRefGoogle Scholar
  7. Brahms, S., Brahms, J., Spach, G., and Brack, A., 1977, Identification of 13, (3-turns and unordered conformations in polypeptide chains by vacuum ultraviolet circular dichroism, Proc. Natl. Acad. Sci. USA 74: 3208–3212.PubMedCrossRefGoogle Scholar
  8. Chu, B., and Wang, Z., 1989, Transition of linear polymer dimensions from O to collapsed regime. Intrinsic viscosity, Macromolecules 22: 380–383.CrossRefGoogle Scholar
  9. Chu, B., Xu, R., and Zuo, J., 1988, Transition of polystyrene in cyclohexane from the O to the collapsed state, Macromolecules 21: 273–274.CrossRefGoogle Scholar
  10. Cosani, A., Palumbo, M., and Terbojevich, M., 1974, A potentiometric and CD study on the I3-random coil transition of poly-L-tyrosine in aqueous solution, Int. J. Peptide Protein Res. 6: 457–463.CrossRefGoogle Scholar
  11. Davidson, B., and Fasman, G. D., 1967, The conformational transitions of uncharged poly-L-lysine, a helix—random coil—(3 structure, Biochemistry 6: 1616–1629.PubMedCrossRefGoogle Scholar
  12. Domard, A., and Rinaudo, M., 1981, Polyelectrolyte complexes: Interaction between poly(L-lysine) and polyanions with various charge densities and degrees of polymerization, Macromolecules 14: 620–625.CrossRefGoogle Scholar
  13. Fukada, K., and Maeda, H., 1990, Correlation between the rate of chain folding and the stability of the 13-structure of a polypeptide, J. Phys. Chem. 94: 3843–3847.CrossRefGoogle Scholar
  14. Fukada, K., Maeda, H., and Ikeda, S., 1987a, Factors affecting the stability of the 13-structure of poly(Scarboxymethyl-L-cysteine), Int J. Biol. Macromol. 9: 87–94.CrossRefGoogle Scholar
  15. Fukada, K., Maeda, H., and Ikeda, S., 1987b, Temperature-dependent 13 structure—random coil conversion of poly[S-(carboxymethyl)-L-cysteinel, Polymer 28: 1887–1892.CrossRefGoogle Scholar
  16. Fukada, K., Hattori, H., Maeda, H., and Ikeda, S., 1988, Diverse kinetic behaviors of the p-structure formation. A study of poly(S-carboxymethyl-L-cysteine), Bull. Chem. Soc. Jpn. 61: 2651–2653.CrossRefGoogle Scholar
  17. Fukada, K., Maeda, H., and Ikeda, S., 1989, Kinetics of pH-induced random coil—p-structure conversion of poly[S-(Carboxymethyl)-L-cysteine], Macromolecules 22: 640–645.CrossRefGoogle Scholar
  18. Geddes, A. J., Parker, K. D., Atkins, E. D. T., and Beighton, E., 1968, “Cross-3” conformation in proteins, J. Mol. Biol. 32:343–358.Google Scholar
  19. Granados, E. N., and Bello, J., 1979, Alkylated poly(amino acids). I. Conformational properties of poly(NE-trimethyl-L-lysine) and poly(M-trimethyl-L-ornithine), Biopolymers 18: 1479–1486.CrossRefGoogle Scholar
  20. Greenfield, N., and Fasman, G. D., 1969, Computed circular dichroism spectra for the evaluation of protein conformation, Biochemistry 8: 4108–4116.PubMedCrossRefGoogle Scholar
  21. Hartman, R., Schwaner, R. C., and Hermans, J., Jr., 1974, Beta poly(L-lysine). Model system for biological self-assembly, J. Mol. Biol. 90: 415–429.PubMedCrossRefGoogle Scholar
  22. Higashi, N., Shimoguchi, M., and Niwa, M., 1992, Stabilization and facilitated formation of a ß-structure polypeptide by a poly(L-glutamic acid)-functionalized monolayer on water, Langmuir 8: 1509–1510.CrossRefGoogle Scholar
  23. Holzwarth, G., and Doty, P., 1965, The ultraviolet circular dichroism of polypeptides, J. Am. Chem. Soc. 87: 218–228.PubMedCrossRefGoogle Scholar
  24. Iizuka, E., and Yang, J. T., 1966, Optical rotatory dispersion and circular dichroism of the p-form of silk fibroin in solution, Proc. Natl. Acad. Sci. USA 55: 1175–1182.PubMedCrossRefGoogle Scholar
  25. Ikeda, S., Fukutome, A., Imae, T., and Yoshida, T., 1979, Circular dichroism and the pH-induced p-coil transition of poly(S-carboxymethyl-L-cysteine) and its side-chain homolog, Biopolymers 18: 335–349.CrossRefGoogle Scholar
  26. Ikeda, S., Yoshida, T., and Imae, T., 1981, Induced circular dichroism and mode of binding of acridine orange adsorbed on p-form poly(S-carboxyethyl-L-cysteine) in aqueous solutions, Biopolymers 20: 2395–2411.CrossRefGoogle Scholar
  27. Itoh, K., Foxman, B. M., and Fasman, G. D., 1976, The two 3 forms of poly(L-glutamic acid), Biopolymers 15: 419–455.PubMedCrossRefGoogle Scholar
  28. Jacobson, H., and Stockmayer, W. H., 1950, Intramolecular reaction in polycondensations. I. The theory of linear systems, J. Chem. Phys. 18: 1600–1606.CrossRefGoogle Scholar
  29. Johnson, W. C., Jr., 1978, Circular dichroism spectroscopy and the vacuum ultraviolet region, Annu. Rev. Phys. Chem. 29: 93–114.CrossRefGoogle Scholar
  30. Johnson, W. C., Jr., 1988, Secondary structure of proteins through circular dichroism spectroscopy, Annu. Rev. Biophys. Biophys. Chem. 17: 145–166.PubMedCrossRefGoogle Scholar
  31. Kakiuchi, K., and Akutsu, H., 1981, Hydrodynamic behavior and molecular conformation of poly(Llysine HBr) in carbonate buffer solution, Biopolymers 20: 345–357.CrossRefGoogle Scholar
  32. Kimura, M., Maeda, H., and Ikeda, S., 1988, Stability of the folded-chain ß-structure of a homopolypeptide based on time-resolved potentiometric titrations, Biophys. Chem. 30: 185–192.PubMedCrossRefGoogle Scholar
  33. Klotz, I. M., and Harris, J. U., 1971, Macromolecules—small molecule interactions. Strong binding by intramolecular cross-linked polylysine, Biochemistry 10: 923–926.PubMedCrossRefGoogle Scholar
  34. Krivacic, J. R., and Urry, D. W., 1970, Ultraviolet and visible refractive indices of spectro-quality solvents, Anal. Chem. 42: 596–599.CrossRefGoogle Scholar
  35. Kurotu, T., and Kasagi, M., 1983, p-Form of poly(a-L-glutamic acid) induced by cadmium ion in aqueous solution, Polym. J. 15: 397–399.Google Scholar
  36. Li, L. L., and Spector, A., 1969, The circular dichroism of p-poly-L-lysine, J. Am. Chem. Soc. 81: 220–222.CrossRefGoogle Scholar
  37. McKnight, R. P., and Auer, H. E., 1976, Thermodynamic parameters for the intramolecular disorderedto-p transition of poly(L-tyrosine) in aqueous solution, Macromolecules 9: 939–944.PubMedCrossRefGoogle Scholar
  38. Maeda, H., 1987, Irreversible nature of the stack p-pleated sheets of a model polypeptide, Bull. Chem. Soc. Jpn. 60: 3438–3440.CrossRefGoogle Scholar
  39. Maeda, H., and Ooi, K., 1981, Isodichroic point and the 13—random coil transition of poly(S-carboxymethyl-L-cysteine) and poly(S-carboxyethyl-L-cysteine) in the absence of added salt, Biopolymers 20: 1549–1563.CrossRefGoogle Scholar
  40. Maeda, H., Kadono, K., and Ikeda, S., 1982a, ß structure of poly[S-(carboxymethyl)-L-cysteine] in aqueous solutions by intermolecular association and intramolecular chain folding, Macromolecules 15: 822–827.CrossRefGoogle Scholar
  41. Maeda, H., Nakajima, J., Oka, K., Ooi, K., and Ikeda, S., 1982b, Binding of divalent cations with poly(S-carboxymethyl-L-cysteine) and their effects on the polypeptide conformation, Int. J. Biol. Macromol. 4: 352–356.CrossRefGoogle Scholar
  42. Maeda, H., Ito, T., Suzuki, H., Hirata, S., Kako, I., Yoshino, M., Ikeda, S., and Kobayashi, Y., 1983a, Preparation of fractionated low-molecular-weight poly(S-carboxymethyl-c-cysteine) by ion-exchange chromatography, Biopolymers 22: 2173–2189.CrossRefGoogle Scholar
  43. Maeda, H., Saito, K., and Ikeda, S., 1983b, Concentration dependence of the conversion between the intermolecular 13-structure and the disordered state of poly(S-carboxymethyl-L-cysteine) in aqueous solutions, Bull. Chem. Soc. Jpn. 56: 602–606.CrossRefGoogle Scholar
  44. Maeda, H., Gatto, Y., and Ikeda, S., 1984a, Effects of chain length and concentration on the 13—coil conversion of poly[S-(carboxymethyl)-L-cysteine] in 50 mM NaCl solutions, Macromolecules 17: 2031–2038.CrossRefGoogle Scholar
  45. Maeda, H., Iwase, T., and Ikeda, S., 1984b, The effect of chain length on the formation of the intermolecular ß-structure of poly(S-carboxymethyl-L-cysteine), Polym. J. 16: 471–477.CrossRefGoogle Scholar
  46. Maeda, H., Kimura, M., and Ikeda, S., 1985a, Effects of cationic surfactants on the conformation of poly[S-(carboxymethyl)-L-cysteinel, Macromolecules 18: 2566–2571.CrossRefGoogle Scholar
  47. Maeda, H., Oka, K., and Ikeda, S., 1985b, Absorption and circular dichroism spectra of CuC12 complexes with poly(S-carboxymethyl-L-cysteine) and poly(S-carboxyethyl-L-cysteine), Biopolymers 24: 1115–1129.CrossRefGoogle Scholar
  48. Maeda, H., Tanaka, Y., and Ikeda, S., 1986, Interaction of poly[S-(2-carboxyethyl)-L-cysteine] with cationic surfactants, Bull. Chem. Soc. Jpn. 59: 769–773.CrossRefGoogle Scholar
  49. Maeda, H., Nezu, T., Fukada, K., and Ikeda, S., 1988, Effects of hydrocarbon chain length of cationic surfactants on the induction of the secondary structures of anionic polypeptides, Macromolecules 21: 1154–1158.CrossRefGoogle Scholar
  50. Manning, M. C., and Woody, R. W., 1987, Theoretical determination of the CD of proteins containing closely packed antiparallel 13-sheets, Biopolymers 26: 1731–1752.PubMedCrossRefGoogle Scholar
  51. Manning, M. C., Illangasekare, M., and Woody, R. W., 1988, Circular dichroism studies of distorted a-helices, twisted ß-sheets, and 13-turns, Biophys. Chem. 31: 77–86.PubMedCrossRefGoogle Scholar
  52. Mattice, W. L., and Harrison, W. H., III, 1975, Estimation of the circular dichroism exhibited by statistical coils of poly(L-alanine) and unionized poly(L-lysine) in water, Biopolymers 14: 2025–2033.CrossRefGoogle Scholar
  53. Mattice, W. L., and Harrison, W. H., III, 1976, The importance of coulombic interactions for the induction of 3 structure in lysine oligomers by sodium dodecyl sulfate, Biopolymers 15: 559–567.PubMedCrossRefGoogle Scholar
  54. Mattice, W. L., and Scheraga, H. A., 1984a, Matrix formulation of the transition from a statistical coil to an intramolecular antiparallel 3 sheet, Biopolymers 23: 1701–1724.PubMedCrossRefGoogle Scholar
  55. Mattice, W. L., and Scheraga, H. A., 1984b, Practical estimates of the upper limit for the distribution function for strand lengths in large homopolymers containing intramolecular antiparallel sheets with tight bends, Macromolecules 17: 2690–2696.CrossRefGoogle Scholar
  56. Mattice, W. L., and Scheraga, H. A., 1984c, Suppression of the statistical coil state during the a R transition in homopolypeptides, Biopolymers 23: 2879–2890.PubMedCrossRefGoogle Scholar
  57. Mattice, W. L., and Scheraga, H. A., 1985, Role of interstrand loops in the formation of intramolecular cross-13-sheets by homopolyamino acids, Biopolymers 24: 565–579.PubMedCrossRefGoogle Scholar
  58. Mattice, W. L., and Suter, U. W., 1994, Conformational Theory of Large Molecules. The Rotational Isomeric State Model in Macromolecular Systems, Wiley, New York.Google Scholar
  59. Nagasawa, M., and Holtzer, A., 1964, The helix—coil transition in solutions of polyglutamic acid, J. Am. Chem. Soc. 86: 538–543.CrossRefGoogle Scholar
  60. Nakaishi, A., Maeda, H., Tomiyama, T., Ikeda, S., Kobayashi, Y., and Kyogoku, Y., 1988, Chain length dependence of solubility of monodisperse polypeptides in aqueous solutions and the stability of the (3-structure, J. Phys. Chem. 92: 6161–6166.CrossRefGoogle Scholar
  61. Oka, K., Maeda, H., and Ikeda, S., 1983, Induction of the 13-form of poly(S-carboxyethyl-L-cysteine) by divalent metal chlorides, Int. J. Biol. Macromol. 5: 342–346.CrossRefGoogle Scholar
  62. Palumbo, M., Cosani, A., Terbojevich, M., and Peggion, E., 1977, Metal complexes of poly(a-amino acids). A potentiometric and circular dichroism investigation of Cu(II) complexes of poly(L-lysine), poly(L-ornithine), and poly(L-diaminobutyric acid), Macromolecules 10: 813–820.PubMedCrossRefGoogle Scholar
  63. Palumbo, M., Cosani, A., Terbojevich, M., and Peggion, E., 1978, Metal complexes of poly-a-amino acids. Interaction of Cu(II) ions with poly(L-lysine) in the 0-structure, Biopolymers 17: 243–246.CrossRefGoogle Scholar
  64. Park, I. H., Wang, Q.-W., and Chu, B., 1987, Transition of linear polymer dimensions from to collapsed regime. 1. Polystyrene/cyclohexane system, Macromolecules 20: 1965–1975.CrossRefGoogle Scholar
  65. Park, I. H., Wang, Q.-W., and Chu, B., 1987, Transition of linear polymer dimensions from 0 to collapsed regime. 1. Polystyrene/cyclohexane system, Macromolecules 20: 1965–1975.CrossRefGoogle Scholar
  66. Patton, E., and Auer, H. E., 1975, Conformational states of poly(L-tyrosine) in aqueous solution, Biopolymers 14: 849–869.PubMedCrossRefGoogle Scholar
  67. Peggion, E., Cosani, A., and Terbojevich, M., 1974a, Solution properties of synthetic polypeptides. Assignment of the conformation of poly(L-tyrosine) in water and in ethanol—water solutions, Macromolecules 7: 453–459.PubMedCrossRefGoogle Scholar
  68. Peggion, E., Cosani, A., Terbojevich, M., and Romanin-Jacur, L., 1974b, Random coil-0-form transition of poly-L-lysine. Evidence for the formation of the a-helical structure during the transition, J. Chem. Soc. Chem. Commun. 1974: 313–316.Google Scholar
  69. Pritchard, M. J., and Caroline, D., 1980, Hydrodynamic radius of polystyrene around the 0 temperature, Macromolecules 13: 957–959.CrossRefGoogle Scholar
  70. Pritchard, M. J., and Caroline, D., 1981, Hydrodynamic radius of polystyrene around the 0 temperature. 2, Macromolecules 14: 424–426.CrossRefGoogle Scholar
  71. Pysh, E. S., 1966, The calculated ultraviolet optical properties of polypeptide 0-configurations, Proc. Natl. Acad. Sci. USA 56: 825–832.PubMedCrossRefGoogle Scholar
  72. Saito, K., Maeda, H., and Ikeda, S., 1982, Reversible and irreversible conversion between the intermolecular 0-structure and the disordered state of poly(S-carboxymethyl-L-cysteine) in aqueous media, Biophys. Chem. 16: 67–77.PubMedCrossRefGoogle Scholar
  73. Sarkar, P., and Doty, P., 1966, Optical rotatory properties of the 0-configuration in polypeptides and proteins, Proc. Natl. Acad. Sci. USA 55: 981–989.PubMedCrossRefGoogle Scholar
  74. Satake, I., and Yang, J. T., 1973, Effect of chain length and concentration of anionic surfactants on the conformational transitions of poly(L-ornithine) and poly(L-lysine) in aqueous solution, Biochem. Biophys. Res. Commun. 54: 930–936.PubMedCrossRefGoogle Scholar
  75. Satake, I., and Yang, J. T., 1975, Effect of temperature and pH on the 0—helix transition of poly(Llysine) in sodium dodecyl sulfate solution, Biopolymers 14: 1841–1846.CrossRefGoogle Scholar
  76. Satake, I., and Yang, J. T., 1976, Interaction of sodium dodecyl sulfate with poly(L-ornithine) and poly(Llysine) in aqueous solution, Biopolymers 15: 2263–2275.PubMedCrossRefGoogle Scholar
  77. Sato, Y., and Woody, R. W., 1980, Circular dichroism of N-phenylnaphthylamine derivatives complexed with the 0-form of poly(L-lysine), Biopolymers 19: 2021–2031.CrossRefGoogle Scholar
  78. Senior, M. B., Gorrell, S. L., and Hamori, E., 1971, Light-scattering and potentiometric-titration studies of poly-L-tyrosine in aqueous solutions, Biopolymers 10: 2387–2404.PubMedCrossRefGoogle Scholar
  79. Snell, C. R., and Fasman, G. D., 1973, Kinetics and thermodynamics of the a helix 0 transconformation of poly(L-lysine) and L-leucine copolymers. A compensation phenomenon, Biochemistry 12: 1017–1025.PubMedCrossRefGoogle Scholar
  80. Snipp, R. L., Miller, W. G., and Nylund, R. E., 1965, The charge-induced helix—random coil transition in aqueous solution, J. Am. Chem. Soc. 87: 3547–3553.CrossRefGoogle Scholar
  81. Sun, S.-T., Nishio, I., Swislow, G., and Tanaka, T., 1980, The coil—globule transition: Radius of gyration of polystyrene in cyclohexane, J. Chem. Phys. 73: 5971–5975.CrossRefGoogle Scholar
  82. Tilstra, L. F., and Mattice, W. L., 1988, Collapse of a polypeptide chain as a result of the intramolecular formation of antiparallel 0 sheets, Biopolymers 27: 805–819.PubMedCrossRefGoogle Scholar
  83. Tilstra, L. F., Mattice, W. L., and Maeda, H., 1988, Interaction of (+)-catechin with the edge of the 0 sheet formed by poly(S-carboxymethyl-L-cysteine), J. Chem. Soc. Perkin Trans. II 1988: 1613–1616.CrossRefGoogle Scholar
  84. Timasheff, S. N., Susi, H., Townend, R., Stevens, L., Gorbunoff, M. J., and Kumosinski, T. F., 1967, Application of circular dichroism and infrared spectroscopy to the conformation of proteins in solution, in: Conformation of Biopolymers, Vol. 1 ( G. N. Ramachandran, ed.), pp. 173–196, Academic Press, New York.Google Scholar
  85. Tomiyama, T., and Ikeda, S., 1979, Effect of D20 on the thermal stability of the 0 conformation of poly[S-((3-hydroxypropyl)-carbamoylmethyl)-L-cysteine], Macromolecules 12: 165–167.CrossRefGoogle Scholar
  86. Toniolo, C., and Bonora, G. M., 1975, The relative stabilities of the ß-structures of monodisperse synthetic linear homo-oligopeptides with aliphatic side chains, Pept.: Chem., Struct. Biol., Proc. Am. Pept. Symp., 4th, pp. 145–150.Google Scholar
  87. Townend, R., Kumosinski, T. F., Timasheff, S. N., Fasman, G. D., and Davidson, B., 1966, The circular dichroism of the 13 structure of poly-L-lysine, Biochem. Biophys. Res. Commun. 23: 163–169.PubMedCrossRefGoogle Scholar
  88. Vidakovie, P., and Rondelez, F., 1983, Temperature dependence of the hydrodynamic radius of flexible coils in solutions. 1. Vicinity of the A point, Macromolecules 16: 253–261.CrossRefGoogle Scholar
  89. Vidakovie, P., and Rondelez, F., 1984, Temperature dependence of the hydrodynamic radius of flexible coils in solutions. 2. Transition from the A to the collapsed state, Macromolecules 17: 418–425.CrossRefGoogle Scholar
  90. von Dreele, P. H., Lotan, N., Ananthanarayanan, V. S., Andreatta, R. H., Poland, D., and Scheraga, H. A., 1971, Helix—coil stability constants for the naturally occurring amino acids in water. II. Characterization of the host polymers and application of the host—guest technique to random poly(hydroxypropylglutamine-co-hydroxybutylglutamine), Macromolecules 4: 408–417.CrossRefGoogle Scholar
  91. Woody, R. W., 1969, Optical properties of polypeptides in the ß-conformation, Biopolymers 8: 669–683.CrossRefGoogle Scholar
  92. Woody, R. W., 1993, The circular dichroism of oriented 13 sheets: Theoretical predictions, Tetrahedron Asymmetry 4: 529–544.CrossRefGoogle Scholar
  93. Wooley, S.-Y. C., and Holzwarth, G., 1970, Intramolecular 13-pleated-sheet formation by poly(L-lysine) in solution, Biochemistry 9: 3604–3608.PubMedCrossRefGoogle Scholar
  94. Yamamoto, H., and Yang, J. T., 1974, The thermally induced helix—p transition of poly(N`-methyl-Llysine) and poly(M-ethyl-L-ornithine) in aqueous solution, Biopolymers 13: 1109–1116.PubMedCrossRefGoogle Scholar
  95. Yang, J. T., 1967, Optical activity of the a, (3, and coiled conformations in polypeptides and proteins, in: Conformation of Biopolymers, Vol. 1 ( G. N. Ramachandran, ed.), pp. 157–172, Academic Press, New York.Google Scholar
  96. Yu, J., Wang, Z., and Chu, B., 1992, Kinetic study of the coil-to-globule transition, Macromolecules 25: 1618–1620.CrossRefGoogle Scholar
  97. Zimm, B. H., and Bragg, J. K., 1959, Theory of the phase transition between helix and random coil in polypeptide chains, J. Chem. Phys. 31: 526–535.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Luanne Tilstra
    • 1
  • Wayne L. Mattice
    • 2
  1. 1.Department of ChemistryRose-Hulman Institute of TechnologyTerre HauteUSA
  2. 2.Institute of Polymer ScienceThe University of AkronAkronUSA

Personalised recommendations