Skip to main content

CD Spectroscopy and the Helix-Coil Transition in Peptides and Polypeptides

  • Chapter
Book cover Circular Dichroism and the Conformational Analysis of Biomolecules

Abstract

The proposal by Pauling and his coworkers (1951) of an atomic model for the structure of the alpha helix stimulated research in several areas of protein chemistry. It excited chemists as few discoveries have before or since, giving impetus to structural modeling efforts that resulted in the structure of DNA 2 years later, and in a whole new field of structural biology within two decades. Pauling’s feat pointed out the importance of understanding the conformation of the peptide group itself, rather than building models based on idealized helical structures. Working on the same problem, Bragg et al. (1950) failed to produce a structure of comparable elegance because they were unaware the peptide bond was planar (Crick, 1988). The alpha helix could be identified in the diffraction patterns from crystals of the globular proteins myoglobin and hemoglobin, as well as in the classical “α” patterns from fibrous proteins like keratin and synthetic polypeptides, poly(γ-l-glutamate) being the first to show the α pattern (Elliott, 1967).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 209.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 269.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamson, J. G., Zhou, N. E., and Hodges, R. S., 1993, Structure, function and application of the coiled-coil protein folding motif, Curr. Opin. Biotechnol. 4: 428–437.

    Article  PubMed  CAS  Google Scholar 

  • Adler, A. J., Greenfield, N., and Fasman, G. D., 1973, Circular dichroism and optical rotatory dispersion of proteins and polypeptides, Methods Enzymol. 27: 675–735.

    Article  PubMed  CAS  Google Scholar 

  • Allegra, G., 1967, The calculation of average functions of local conformations for a noninteracting copolymer system with neighbor interactions, J. Polymer Sci. C 16: 2815–2824.

    Google Scholar 

  • Amati, B., Brooks, M., Levy, N., Littlewood, T., Evan, G., and Land, H., 1993, Oncogenic activity of the c-Myc protein requires dimerization with Max, Cell, 72: 233–245.

    Article  PubMed  CAS  Google Scholar 

  • Ananthanarayanan, V. S., Andreatta, R. H., Poland, D., and Scheraga, H. A., 1971, Helix–coil stability constants for the naturally occurring amino acids in water. III. Glycine parameters from random poly(hydroxybutyl glutamine-co-glycine), Macromolecules 4: 417–424.

    Article  Google Scholar 

  • Armstrong, K. M., and Baldwin, R. L., 1993, Charged histidine affects a-helix stability at all positions in the helix by interacting with the backbone charges, Proc. Natl. Acad. Sci. USA 90: 11337–11340.

    Article  PubMed  CAS  Google Scholar 

  • Aurora, R., Srinivasan, R., and Rose, G. D., 1994, Rules for helix termination by glycine, Science 264: 1126–1130.

    Article  PubMed  CAS  Google Scholar 

  • Barskaya, T. V., and Ptitsyn, O. B., 1971, Thermodynamic parameters of helix–coil transition in polypeptide chains. II. Poly-t,-lysine, Biopolymers 10: 2181–2197.

    Article  PubMed  CAS  Google Scholar 

  • Basu, G., and Kuki, A., 1993, Evidence for a 310 helical conformation of an eight residue peptide from ‘H–’H rotating frame Overhauser studies, Biopolymers 33: 995–1000.

    Article  PubMed  CAS  Google Scholar 

  • Bell, J. A., Becktel, W. J., Sauer, U., Baase, W. A., and Matthews, B. M., 1992, Dissection of helix capping in T4 lysozyme by structural and thermodynamic analysis of six amino acid substitutions at Thr59, Biochemistry 31: 3590–3596.

    Article  PubMed  CAS  Google Scholar 

  • Beychok, S., 1967, Circular dichroism of poly-a-amino acids and proteins, in: Poly-a-amino Acids—Protein Models for Conformational Studies ( G. D. Fasman, ed.), pp. 293–338, Dekker, New York.

    Google Scholar 

  • Bierzynski, A., Kim, P. S., and Baldwin, R. L., 1982, A salt bridge stabilizes the helix formed by isolated C-peptide of RNase A, Proc. Nad. Acad. Sci. USA 79: 2470–2474.

    Article  CAS  Google Scholar 

  • Blaber, M., Zhang, X.-J., and Matthews, B. W., 1993a, Structural basis of amino acid a-helical propensity, Science 260: 1637–1640.

    Article  PubMed  CAS  Google Scholar 

  • Blaber, M., Zhang, X.-J., Lindstrom, J. D., Pepiot, S. D., Baase, W. A., and Matthews, B. W., 1993b, Determination of a helical propensity within the context of a folded protein, J. Mol. Biol. 235: 600–624.

    Article  Google Scholar 

  • Bodanszky, M., 1993, Peptide Chemistry: A Practical Textbook, pp. 58–60, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Bragg, W. L., Kendrew, J. C., and Perutz, M. F., 1950, Polypeptide chain configuration in crystalline proteins, Proc. R. Soc. London Ser. A 203: 321–357.

    Article  CAS  Google Scholar 

  • Brahms, J., and Brahms, 1980, Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism, J. Mol. Biol. 138: 149–178.

    Article  PubMed  CAS  Google Scholar 

  • Brahms, J., and Spach, G., 1963, Circular dichroic studies of synthetic polypeptides, Nature 200: 72–73.

    Article  CAS  Google Scholar 

  • Brown, J. E., and Klee, W. A., 1971, Helix–coil transition of the isolated amino terminus of ribonuclease, Biochemistry 10: 470–476.

    Article  PubMed  CAS  Google Scholar 

  • Bruch, M. D., Dhingra, M. M., and Gierasch, L. M., 1991, Side chain–backbone hydrogen bonding contributes to helix stability in peptides derived from an a-helical region of carboxypeptidase A, Proteins Struct. Funct. Genet. 10: 130–139.

    Article  PubMed  CAS  Google Scholar 

  • Burley, S. K., and Pesko, G. A., 1986, Amino–aromatic interactions in proteins, FEBS Lett. 203: 139–143.

    Article  PubMed  CAS  Google Scholar 

  • Bychkova, V. E., Ptitsyn, O. B., and Barskaya, T. V., 1971, Thermodynamic parameters of helix–coil transition in polypeptide chains. I. Poly-L-glutamic acid, Biopolymers 10: 2161–2179.

    Article  PubMed  CAS  Google Scholar 

  • Chakrabartty, A., Schellman, J. A., and Baldwin, R. L., 1991, Large differences in the helix propensities of alanine and glycine, Nature 351: 586–588.

    Article  PubMed  CAS  Google Scholar 

  • Chakrabartty, A., Kortemme, T., Padmanabhan, S., and Baldwin, R. L., 1993, Aromatic side chain contribution to far ultraviolet circular dichroism of helical peptides and its effect on measurement of helical propensities, Biochemistry 32: 5560–5565.

    Article  PubMed  CAS  Google Scholar 

  • Chakrabartty, A., Kortemme, T., and Baldwin, R. L., 1994a, Helix propensities of the amino acids measured in alanine-based peptides without helix-stabilizing side chain interactions, Protein Sci. 3: 843–852.

    Article  PubMed  CAS  Google Scholar 

  • Chakrabartty, A., Doig, A., and Baldwin, R. L., 1994b, Helix N-cap propensities in peptides parallel those found in proteins, Proc. Natl. Acad. Sci. USA 90: 11332–11336.

    Article  Google Scholar 

  • Chang, C. T., Wu, C. C., and Yang, J. T., 1978, Circular dichroic analysis of protein conformation of the 13-turns, Anal. Biochem. 91: 13–31.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y. H., Yang, J. T., and Chau, K. H., 1974, Determination of the a helix and 13 form of proteins in aqueous solution by circular dichroism, Biochemistry 13: 3350–3359.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y. W., Fersht, A. R., and Henrick, K., 1994, Contribution of buried hydrogen bonds to protein stability, J. Mol. Biol. 234: 1158–1170.

    Article  Google Scholar 

  • Chou, P. Y., and Fasman, G. D., 1974, Prediction of protein conformation, Biochemistry 13: 211–222.

    Article  PubMed  CAS  Google Scholar 

  • Chou, P. Y., and Fasman, G. D., 1978, Prediction of the secondary structure of proteins from their amino acid sequence, Adv. Enzymol. 47: 45–148.

    PubMed  CAS  Google Scholar 

  • Chou, P. Y., Wells, M., and Fasman, G. D., 1972, Conformational studies on copolymers of hydroxypropyl-L-glutamine and L-leucine. Circular dichroism studies, Biochemistry 11: 3028–3043.

    Article  PubMed  CAS  Google Scholar 

  • Creamer, T. P., and Rose, G. D., 1992, Side chain entropy opposes a helix formation but rationalizes experimentally determined helix-forming propensities, Proc. Natl. Acad. Sci. USA 89: 5937–5941.

    Article  PubMed  CAS  Google Scholar 

  • Creamer, T. P., and Rose, G. D., 1994, a-Helix forming propensities in peptides and proteins, Proteins Struct. Funct. Genet. 19: 85–97.

    Google Scholar 

  • Crick, F. H. C., 1953, The packing of a-helices: Simple coiled coils, Acta Crystallogr. 6: 689–697.

    Article  CAS  Google Scholar 

  • Crick, F. H. C., 1988, What Mad Pursuit, pp. 53–61, Basic Books, New York.

    Google Scholar 

  • Davidson, A. R., and Sauer, R. T., 1994, Folded proteins occur frequently in libraries of random amino acid sequences, Proc. Natl. Acad. Sci. USA 91: 2146–2150.

    Article  PubMed  CAS  Google Scholar 

  • DeGrado, W. F., 1993, Catalytic molten globules, Nature 365: 488–490.

    Article  PubMed  CAS  Google Scholar 

  • Dill, K., 1990, Dominant forces in protein folding, Biochemistry 29: 7133–7135.

    Article  PubMed  CAS  Google Scholar 

  • Doig, A. J., Chakrabartty, A., Klingler, T. M., and Baldwin, R. L., 1994, Determination of free energies of N capping in alpha helices by modification of the Lifson–Roig helix–coil theory to include N and C capping, Biochemistry 33: 3396–3403.

    Article  PubMed  CAS  Google Scholar 

  • Doty, P., and Yang, J. T., 1956, Polypeptides: VII. Poly-y-benzyl-L-glutamate: The helix–coil transition in solution, J. Am. Chem. Soc. 78: 498–500.

    Article  CAS  Google Scholar 

  • Doty, P., Holtzer, A. M., Bradbury, J. H., and Blout, E. R., 1954, Polypeptides. II. The configuration of polymers of y-benzyl-L-glutamate in solution, J. Am. Chem. Soc. 76: 4493–4494.

    Article  CAS  Google Scholar 

  • Edelhoch, H., 1967, Spectroscopic determination of tryptophan and tyrosine in proteins, Biochemistry 6: 1948–1954.

    Article  PubMed  CAS  Google Scholar 

  • Elliott, A., 1967, X-ray diffraction by synthetic polypeptides, in: Poly-a-amino Acids-Protein Models for Conformational Studies ( G. D. Fasman, ed.), pp. 1–68, Dekker, New York.

    Google Scholar 

  • Epand, R. M., and Scheraga, H. A., 1968, The influence of long-range interactions on the structure of myoglobin, Biochemistry 7: 2864–2872.

    Article  PubMed  CAS  Google Scholar 

  • Fairman, R., Shoemaker, K. R., Stewart, J. M., and Baldwin, R. L., 1990, The Glu2… Arg10 side chain interaction in the C-peptide helix of ribonuclease A, Biophys. Chem. 37: 107–119.

    Article  PubMed  CAS  Google Scholar 

  • Fairman, R., Armstrong, K. M., Shoemaker, K. R., York, E. J., Stewart, J. M., and Baldwin, R. L., 1991, Position effect on apparent helical propensities in the C-peptide helix, J. Mol. Biol. 221: 1395–1401.

    PubMed  CAS  Google Scholar 

  • Fasman, G. D., ed., 1967, Poly-a-amino Acids, Dekker, New York.

    Google Scholar 

  • Fasman, G. D., 1989, The development of the prediction of protein structure, in: Prediction of Protein Structure and the Principles of Protein Conformation ( G. D. Fasman, ed.), pp. 193–316, Plenum Press, New York.

    Chapter  Google Scholar 

  • Finkelstein, A. V., and Ptitsyn, O. B., 1976, A theory of protein molecule self-organization. IV. Helix and irregular local structures of unfolded protein chains, J. Mol. Biol. 103: 15–24.

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein, A. V., Badretinov, A. Y., and Ptitsyn, O. B., 1990, Short a helix stability, Nature 345: 300.

    Article  Google Scholar 

  • Finkelstein, A. V., Badretinov, A. Y., and Ptitsyn, O. B., 1991, Physical reasons for secondary structure stability: a helices in short peptides, Proteins Struct. Funct. Genet. 10: 287–299.

    Article  PubMed  CAS  Google Scholar 

  • Forood, B., Felliciano, E. J., and Nambiar, K. P., 1993, Stabilization of a-helical structures in short peptides via capping, Proc. Natl. Acad. Sci. USA 90: 838–842.

    Article  PubMed  CAS  Google Scholar 

  • Gans, P. J., Lyu, P. C., Manning, M. C., Woody, R. W., and Kallenbach, N. R., 1991, The helix—coil transition in heterogeneous peptides with specific side chain interaction: Theory and comparison with circular dichroism, Biopolymers 31: 1605–1614.

    Article  PubMed  CAS  Google Scholar 

  • Gentz, R., Rauscher, F. J., III, Abate, C., and Curran, T., 1989, Parallel association of Fos and Jun leucine zippers juxtaposes DNA binding domains, Science 243: 1695–1699.

    Article  PubMed  CAS  Google Scholar 

  • Gibbs, J. H., and DiMarzio, E. A., 1959, Statistical mechanics of helix-coil transitions in biological macromolecules, J. Chem. Phys. 30: 271–282.

    Article  CAS  Google Scholar 

  • Harbury, P., Zhang, T., Kim, P., and Alber, T., 1993, A switch between two-, three-, and four-stranded coil coils in GCN4 leucine zipper mutants, Science 262: 1401–1407.

    Article  PubMed  CAS  Google Scholar 

  • Harper, E., and Rose, G. D., 1993, Helix stop signal in proteins and peptides: The capping box, Biochemistry 32: 7605–7609.

    Article  PubMed  CAS  Google Scholar 

  • Hermans, J., Jr., 1996a, The effect of protein denaturants on the stability of the a helix, J. Am. Chem. Soc. 88: 2418–2422.

    Article  Google Scholar 

  • Hermans, J., Jr., 1966b, Experimental free energy and enthalpy of formation of the a helix, J. Phys. Chem. 70: 510–515.

    Article  PubMed  CAS  Google Scholar 

  • Hermans, J., Anderson, A. G., and Yun, R. H., 1992, Differential helix propensity of small apolar side chains studied by molecular dynamics simulations, Biochemistry 31: 5646–5653.

    Article  PubMed  CAS  Google Scholar 

  • Hill, T. L., 1959, Generalization of the one-dimensional Ising model applicable to helix transitions in nucleic acids and proteins, J. Chem. Phys. 30: 383–387.

    Article  CAS  Google Scholar 

  • Hol, W. G. J., 1985, The role of the alpha helix dipole in protein function and structure, Prog. Biophys. Mol. Biol. 45: 149–195.

    Article  PubMed  CAS  Google Scholar 

  • Holtzer, M. E., and Holtzer, A., 1990, Alpha helix to random coil transitions of two chain coiled coils: Experiments on the thermal denaturation of isolated segments of as tropomyosin, Biopolymers 30: 985–993.

    Article  PubMed  CAS  Google Scholar 

  • Holtzer, M. E., and Holtzer, A., 1992, Alpha helix to random coil transitions: Determination of peptide concentration from the CD at the isodichroic point, Biopolymers 32: 1675–1677.

    Article  PubMed  CAS  Google Scholar 

  • Holzwarth, G., and Doty, P., 1965, The ultraviolet circular dichroism of polypeptides, J. Am. Chem. Soc. 87: 218–228.

    Article  PubMed  CAS  Google Scholar 

  • Horovitz, A., Matthews, J. M., and Fersht, A. R., 1992, a-Helix stability in proteins. II. Factors that influence stability at an internal position, J. Mol. Biol. 227: 560–568.

    Google Scholar 

  • Hu, J. C., O’Shea, E. K., Kim, P. S., and Sauer, R. T., 1990, Sequence requirements for coiled-coils: Analysis with 1 repressor-GCN4 leucine zipper fusions, Science 250: 1400–1403.

    Article  PubMed  CAS  Google Scholar 

  • Huyghues-Despointes, B. M. P., Scholtz, J. M., and Baldwin, R. L., 1993a, Helical peptides with three pairs of Asp-Arg and Glu-Arg residues in different orientations and spacings, Protein Sci. 2: 80–85.

    Article  PubMed  CAS  Google Scholar 

  • Huyghues-Despointes, B. M. P., Scholtz, J. M., and Baldwin, R. L., 1993b, Effect of a single aspartate on helix stability at different positions in a neutral alanine-based peptide, Protein Sci. 2: 1604–1611.

    Article  PubMed  CAS  Google Scholar 

  • Ihara, S., Ooi, T., and Takahashi, S., 1982, Effects of salts on the nonequivalent stability of the a-helices of isomeric block copolypeptide, Biopolymers 21: 131–145.

    Article  CAS  Google Scholar 

  • Ishii, Y., 1994, The local and global unfolding of coiled-coil tropomyosin, Eur. J. Biochem. 221: 705–712.

    Article  PubMed  CAS  Google Scholar 

  • Jacchieri, S. G., and Jernigan, R. L., 1992, Variable ranges of interactions in polypeptide conformations with a method to complement molecular modelling, Biopolymers 32: 1327–1338.

    Article  PubMed  CAS  Google Scholar 

  • Jacchieri, S. G., and Richards, N. G. J., 1993, Probing the influence of sequence dependent interactions upon alpha helix stability in alanine based linear peptides, Biopolymers 33: 971–984.

    Article  PubMed  CAS  Google Scholar 

  • Jasanoff, A., and Fersht, A. R., 1994, Quantitative determination of helical propensities from trifluoroethanol titration curves, Biochemistry 33: 2129–2135.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, W. C., Jr., and Tinoco, I., Jr., 1972, Circular dichroism of polypeptide solutions in the vacuum ultraviolet, J. Am. Chem. Soc. 94: 4389–4390.

    Article  PubMed  CAS  Google Scholar 

  • Kamtekar, S., Schiffer, J. M., Xiong, H., Babik, J. M., and Hecht, M. H., 1993, Protein design by binary patterning of polar and nonpolar amino acids, Science 262: 1680–1685.

    Article  PubMed  CAS  Google Scholar 

  • Kauzmann, W., 1959, Some factors in the interaction of protein denaturation, Adv. Protein Chem. 14: 1–63.

    Article  PubMed  CAS  Google Scholar 

  • Kemp, D. S., Boyd, J. G., and Muendel, C. C., 1991, The helical s constant for alanine in water derived from template nucleated helices, Nature 352: 451–454.

    Article  PubMed  CAS  Google Scholar 

  • Kendrew, J. C., Bodo, G., Dintzis, H. M., Parrish, R. G., Wyckoff, H., and Phillips, D. C., 1958, A three-dimensional model of the myoglobin molecule obtained by X-ray analysis, Nature 181: 662–666.

    Article  PubMed  CAS  Google Scholar 

  • Kim, P. S., and Baldwin, R. L., 1990, Intermediates in the folding reactions of small proteins, Annu. Rev. Biochem. 59: 631–660.

    Article  CAS  Google Scholar 

  • Kitakuni, E., Horiuchi, T., Oda, Y., Oobatake, M., Nakamura, H., and Tanka, T., 1992, Design and synthesis of an a-helical peptide containing periodic proline residues, FEBS Lett. 298: 233–236.

    Article  PubMed  CAS  Google Scholar 

  • Klee, W. A., 1968, Studies on the conformation of ribonuclease S-peptide, Biochemistry 7: 2731–2736.

    Article  PubMed  CAS  Google Scholar 

  • Koehl, P., and Delarue, M., 1994, Application of a self-consistent mean field theory to predict protein side-chains conformation and estimate their conformational entropy, J. Mol. Biot. 239: 249–275.

    Article  CAS  Google Scholar 

  • Kouzarides, T., and Ziff, E., 1989, Leucine zippers of fos, jun and GCN4 dictate dimerization specificity and thereby control DNA binding, Nature 340: 568–571.

    Article  PubMed  CAS  Google Scholar 

  • Krylov, D., Mikhailenko, I., and Vinson, C., 1994, A thermodynamic scale for leucine zipper stability and dimerization specificity: e and g interhelical interactions, EMBO J. 13: 2849–2861.

    PubMed  CAS  Google Scholar 

  • Landschulz, W. H., Johnson, P. F., and McKnight, S. L., 1988, The leucine zipper: A hypothetical structure common to a new class of DNA binding proteins, Science 240: 1759–1764.

    Article  PubMed  CAS  Google Scholar 

  • Lecomte, J. T. J., and Moore, C. D., 1991, Helix formation in apocytochrome b5: The role of a neutral histidine at the N-cap position, J. Am. Chem. Soc. 113: 9663–9665.

    Article  CAS  Google Scholar 

  • Lee, K. H., Xie, D., Freire, E., and Amzel, L. M., 1994, Estimation of changes in side chain configurational entropy in binding and folding: General methods and application to helix formation, Proteins Struct. Funct. Genet. 20: 68–84.

    Article  PubMed  CAS  Google Scholar 

  • Lehman, G. W., and McTague, J. P., 1968, Melting of DNA, J. Chem. Phys. 49: 3170–3179.

    Article  PubMed  CAS  Google Scholar 

  • Levitt, M., and Perutz, M. F., 1988, Aromatic rings act as hydrogen bond acceptors, J. Mol. Biol. 201: 751–754.

    Article  PubMed  CAS  Google Scholar 

  • Li, S.-C., and Deber, C. M., 1994, A measure of helical propensity for amino acids in membrane environments, Nature Struct. Biol. 1: 368–373.

    Article  PubMed  CAS  Google Scholar 

  • Lifson, S., and Roig, A., 1961, On the theory of helix-coil transitions in polypeptides, J. Chem. Phys. 34: 1963–1974.

    Article  CAS  Google Scholar 

  • Lockhart, D. J., and Kim, P. S., 1992, Internal Stark effect measurement of the electric field at the amino terminus of an a helix, Science 257: 947–951.

    Article  PubMed  CAS  Google Scholar 

  • Lockhart, D. J., and Kim, P. S., 1993, Electrostatic screening of charge and dipole interactions with the helix backbone, Science 260: 198–202.

    Article  PubMed  CAS  Google Scholar 

  • Lotan, N., Yaron, A., and Berger, A., 1965, Conformational changes in the nonionizable water-soluble synthetic polypeptide poly-N5-(3-hydroxypropyl)-L-glutamine, Biopolymers 3: 625–655.

    Article  Google Scholar 

  • Lotan, N., Yaron, A., and Berger, A., 1966, The stabilization of the a-helix in aqueous solution by hydrophobic side chain interaction, Biopolymers 4: 365–368.

    Article  CAS  Google Scholar 

  • Lovejoy, B., Choe, S., Cascio, D., McRorie, D. K., DeGrado, W. F., and Eisenberg, D., 1993, Crystal structure of a synthetic triple stranded a helical bundle, Science 259: 1288–1293.

    Article  PubMed  CAS  Google Scholar 

  • Lyu, P. C., Liff, M. I., Marky, L. A., and Kallenbach, N. R., 1990, Side chain contributions to the stability of alpha helical structure in peptides, Science 250: 669–673.

    Article  PubMed  CAS  Google Scholar 

  • Lyu, P. C., Sherman, J. C., Chen, A., and Kallenbach, N. R., 1991, Alpha helix stabilization by natural and unnatural amino acids with alkyl side chains, Proc. Natl. Acad. Sci. USA 88: 5317–5320.

    Article  PubMed  CAS  Google Scholar 

  • Lyu, P. C., Gans, P. J., and Kallenbach, N. R., 1992a, Energetic contribution of solvent exposed ion pairs to alpha helix structure, J. Mol. Biol. 223: 343–350.

    Article  PubMed  CAS  Google Scholar 

  • Lyu, P. C., Zhou, H. X., Jelveh, N., Wemmer, D. E., and Kallenbach, N. R., 1992b, Position dependent stabilizing effects in a-helices: N-terminal capping in synthetic model peptides, J. Am. Chem. Soc. 114: 6560–6562.

    Article  CAS  Google Scholar 

  • Lyu, P. C., Wemmer, D. E., Zhou, H. X., Pinker, R. J., and Kallenbach, N. R., 1993, Capping interactions in isolated a helices: Position dependent substitution effects and structure of a serine capped peptide helix, Biochemistry 32: 421–425.

    Article  PubMed  CAS  Google Scholar 

  • Manavalan, P., and Johnson, W. C., Jr., 1987, Variable selection method improves the prediction of protein secondary structure from circular dichroism spectra, Anal. Biochem. 167: 76–85.

    Article  PubMed  CAS  Google Scholar 

  • Manning, M. C., and Woody, R. W., 1991, Theoretical CD studies of polypeptide helices: Examination of important electronic and geometric factors, Biopolymers 31: 569–586.

    Article  PubMed  CAS  Google Scholar 

  • Marky, L. A., and Breslauer, K. J., 1987, Calculating thermodynamic data for transitions of any molecularity from equilibrium melting curves, Biopolymers 26: 1601–1620.

    Article  PubMed  CAS  Google Scholar 

  • Marqusee, S., and Baldwin, R. L., 1987, Helix stabilization by Glu-… Lys ` salt bridges in short peptides of de novo design, Proc. Natl. Acad. Sci. USA 84: 8898–8902.

    Article  PubMed  CAS  Google Scholar 

  • Marqusee, S., and Baldwin, R. L., 1990, a helix formation by short peptides in water, in: Protein Folding, pp. 85–94, American Association for the Advancement of Science, Washington, DC.

    Google Scholar 

  • Marqusee, S., Robbins, V. H., and Baldwin, R. L., 1989, Unusually stable helix formation in short alanine based peptides, Proc. Natl. Acad. Sci. USA 86: 5286–5290.

    Article  PubMed  CAS  Google Scholar 

  • Merutka, G., and Stellwagen, E., 1990, Positional independence and additivity of amino acid replacements on helix stability in monomeric peptides, Biochemistry 29: 894–898.

    Article  PubMed  CAS  Google Scholar 

  • Merutka, G., Lipton, W., Shalongo, W., Park, S.-H., and Stellwagen, E., 1990, Effect of central residue replacements on the helical stability of a monomeric peptide, Biochemistry 29: 7511–7515.

    Article  PubMed  CAS  Google Scholar 

  • Muck, S. M., Martinez, G. V., Fiori, W. R., Todd, A. P., and Millhauser, G. L., 1992, Short alanine-based peptides may form 310-helix and not a-helices in aqueous solution, Nature 359: 653–655.

    Article  Google Scholar 

  • Miller, W. G., and Nyland, R. E., 1965, The stability of the helical conformation of random L-leucine-L-glutamic acid copolymers in aqueous solution, J. Am. Chem. Soc. 87: 3542–3547.

    Article  PubMed  CAS  Google Scholar 

  • Moffitt, W., 1956a, The optical rotatory dispersion of simple polypeptides. II, Proc. Natl. Acad. Sci. USA 42: 736–746.

    Article  PubMed  CAS  Google Scholar 

  • Moffitt, W., 1956b, Optical rotatory dispersion of helical polymers, J. Chem. Phys. 25: 467–478.

    Article  CAS  Google Scholar 

  • Moffitt, W., Fitts, D., and Kirkwood, J., 1957, Critique of the theory of optical activity of helical polymers, Proc. Natl. Acad. Sci. USA 43: 723–730.

    Article  PubMed  CAS  Google Scholar 

  • Munoz, V., and Serrano, L., 1994, Elucidating the folding problem of helical peptides using empirical parameters, Nature Struct. Biol. 1: 399–409.

    Article  PubMed  CAS  Google Scholar 

  • Nagai, K., 1961, Dimensional change of polypeptide molecules in the helix-coil transition region II, J. Chem. Physics 34: 887–904.

    Article  CAS  Google Scholar 

  • Nelson, J. W., and Kallenbach, N. R., 1986, Stabilization of ribonuclease S-peptide a-helix by trifluoroethanol, Proteins Struct. Funct. Genet. 1: 211–217.

    Article  PubMed  CAS  Google Scholar 

  • O’Neil, K. T., and DeGrado, W. F., 1990, A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids, Science 250: 646–651.

    Article  PubMed  Google Scholar 

  • Osapay, G., and Taylor, J. W., 1992, Multicyclic polypeptide model compounds. 2. Synthesis and conformational properties of a highly a helical uncosapeptide constrained by three side chain to side chain lactam bridges, J. Am. Chem. Soc. 114: 6966–6973.

    Article  CAS  Google Scholar 

  • O’Shea, E. K., Rutkowski, R., Stafford, W. F., III, and Kim, P. S., 1989, Preferential heterodimer formation by isolated leucine zippers from fos and jun, Science 245: 646–648.

    Article  PubMed  Google Scholar 

  • O’Shea, E. K., Klemm, J. D., Kim, P. S., and Alber, T., 1991, X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil, Science 254: 539.

    Article  PubMed  Google Scholar 

  • O’Shea, E. K., Rutkowski, R., and Kim, P. S., 1992, Mechanism of specificity in the Fos-Jun oncoprotein heterodimer, Cell 68: 699–708.

    Article  PubMed  Google Scholar 

  • O’Shea, E. K., Lumb, K., and Kim, P. S., 1993, Peptide “Velcro”: Design of a heterodimeric coiled coil, Curr. Biol. 3: 658–667.

    Article  PubMed  Google Scholar 

  • Padmanabhan, S., and Baldwin, R. L., 1991, Straight chain non-polar amino acids are good helix formers in water, J. Mol. Biol. 219: 135–137.

    Article  PubMed  CAS  Google Scholar 

  • Padmanabhan, S., Marqusee, S., Ridgeway, T., Lau, T. M., and Baldwin, R. L., 1990, Relative helix forming tendencies of non-polar amino acids, Nature 344: 268–270.

    Article  PubMed  CAS  Google Scholar 

  • Padmanabhan, S., York, E. J., Gera, L., Stewart, J. M., and Baldwin, R. L., 1994, Helix-forming tendencies of amino acids in short (hydroxybutyl)-L-glutamine peptides: An evaluation of the contradictory results from host-guest studies and short alanine based peptides, Biochemistry 33: 8604–8609.

    Article  PubMed  CAS  Google Scholar 

  • Park, K., Perczel, A., and Fasman, G. D., 1992, Differentiation between transmembrane helices and peripheral helices by the deconvolution of circular dichroism spectra of membrane proteins, Protein Sci. 1: 1032–1049.

    Article  PubMed  CAS  Google Scholar 

  • Park, S.-H., Shalongo, W., and Stellwagen, E., 1993, Residue helix parameters obtained from dichroic analysis of peptides of defined sequence, Biochemistry 32: 7048–7053.

    Article  PubMed  CAS  Google Scholar 

  • Pauling, L., 1960, The Nature of the Chemical Bond, 3rd ed., Cornell University Press, Ithaca, NY.

    Google Scholar 

  • Pauling, L., 1988, General Chemistry, 3rd ed., pp. 432–433, Dover, New York.

    Google Scholar 

  • Pauling, L., and Corey, R. B., 1951, Atomic coordinates and structure factors for two helical configurations of polypeptide chains, Proc. Natl. Acad. Sci. USA 37: 235–240.

    Article  PubMed  CAS  Google Scholar 

  • Pauling, L., Corey, R. B., and Branson, H. R., 1951, The structure of proteins: Two hydrogen-bonded helical configurations of the polypeptide chain, Proc. Natl. Acad. Sci. USA 37: 205–210.

    Article  PubMed  CAS  Google Scholar 

  • Pauling, L., and Corey, R. B., 1953, Compound helical configurations of polypeptide chains: Structure of proteins of the a-keratin type, Nature 171: 59–61.

    Article  PubMed  CAS  Google Scholar 

  • Peller, L., 1959a, On a model for the helix-random coil transition in polypeptides. I. The model and its thermal behavior, J. Phys. Chem. 63: 1194–1199.

    Article  CAS  Google Scholar 

  • Peller, L., 1959b, On a model for the helix-random coil transition in polypeptides. II. The influence of solvent composition and charge interactions on the transition, J. Phys. Chem. 63: 1199–1206.

    Article  CAS  Google Scholar 

  • Poland, D. C., and Scheraga, H. A., 1965, Comparison of theories of the helix-coil transition in polypeptides, J. Chem. Phys. 43: 2071–2074.

    Article  PubMed  CAS  Google Scholar 

  • Poland, D. C., and Scheraga, H. A., 1970, Theory of Helix-Coil Transitions in Biopolymers, Academic Press, New York.

    Google Scholar 

  • Presta, L. G., and Rose, G. D., 1988, Helix signals in proteins, Science 240: 1632–1641.

    Article  PubMed  CAS  Google Scholar 

  • Ptitsyn, O. B., 1992, Secondary structure formation and stability, Curr. Opin. Struct. Biol. 2: 13–20.

    Article  Google Scholar 

  • Pu, W., and Struhl, K., 1993, Dimerization of leucine zippers analyzed by random selection, Nucleic Acid. Res. 21: 4348–4355.

    Article  PubMed  CAS  Google Scholar 

  • Qian, H., 1994, A thermodynamic model for the helix—coil transition coupled to dimerization of short coiled-coil peptides, Biophys. J. 67: 349–355.

    Article  PubMed  CAS  Google Scholar 

  • Qian, H., and Schellman, J. A., 1992, Helix-coil theories: A comparative study for finite length polypeptides, J. Phys. Chem. 96: 3987–3994.

    Article  CAS  Google Scholar 

  • Reiss, H., McQuarrie, D. A., McTaque, J. P., and Cohen, E. R., 1966, On the melting of copolymeric DNA, J. Chem. Phys. 44: 4567–4581.

    Article  CAS  Google Scholar 

  • Rialdi, G., and Hermans, J., Jr., 1966, Calorimetric heat of the helix—coil transition of poly-L-glutamic acid, J. Am. Chem. Soc. 88: 5719–5720.

    Article  PubMed  CAS  Google Scholar 

  • Richardson, J. S., and Richardson, D. C., 1988, Amino acid preferences for specific locations at the ends of a helices, Science 240: 1648–1652.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, C. H., 1990, A hierarchical nesting approach to describe the stability of alpha helices with side chain interactions, Biopolymers 30: 335–347.

    Article  Google Scholar 

  • Rohl, C. A., and Baldwin, R. L., 1994, Exchange kinetics of individual amide protons in 15N-labeled helical peptides measured by isotope-edited NMR, Biochemistry 33: 7760–7764.

    Article  PubMed  CAS  Google Scholar 

  • Rohl, C. A., Scholtz, J. M., York, E. J., Stewart, J. M., and Baldwin, R. L., 1992, Kinetics of amide proton exchange in helical peptides of varying chain lengths: Interpretation by the Lifson—Roig equation, Biochemistry 31: 1263–1269.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki, S., Yasumoto, Y., and Uematsu, I., 1981, Tr-Helical conformation of poly(ß-phenethyl-L-aspartate), Macromolecules 14: 1797–1801.

    Article  CAS  Google Scholar 

  • Schellman, C., 1980, The aL conformation at the ends of helices, in: Protein Folding ( R. Jaenicke, ed.), pp. 53–61, Elsevier/North-Holland, Amsterdam.

    Google Scholar 

  • Schellman, J. A., 1955a, The thermodynamics of urea solutions and the heat of formation of the peptide hydrogen bonds, C.R. Lab Carlsberg Ser. Chim. 29: 223–229.

    CAS  Google Scholar 

  • Schellman, J. A., 1955b, The stability of hydrogen bonded peptide structures in aqueous solution, C.R. Lab. Carlsberg Ser. Chim. 29: 230–259.

    CAS  Google Scholar 

  • Schellman, J. A., 1958, The factors affecting the stability of hydrogen bonded polypeptide structures in solution, J. Phys. Chem. 62: 1485–1494.

    Article  CAS  Google Scholar 

  • Schellman, J. A., 1978, Solvent denaturation, Biopolymers 17: 1305–1322.

    Article  CAS  Google Scholar 

  • Schellman, J. A., 1987, Selective binding and solvent denaturation, Biopolymers 26: 549–559.

    Article  PubMed  CAS  Google Scholar 

  • Schellman, J. A., 1990, A simple model for solvation in mixed solvents. Application to the stabilization and destabilization of macromolecular structures, Biophys. Chem. 37: 121–140.

    Article  PubMed  CAS  Google Scholar 

  • Schellman, J. A., and Oriel, P., 1962, Origin of the Cotton effect of helical polypeptides, J. Chem. Phys. 37: 2114–2124.

    Article  CAS  Google Scholar 

  • Scheraga, H. A., 1978, Use of random copolymers to determine the helix—coil stability constants of the naturally occurring amino acids, Pure Appl. Chem. 50: 315–324.

    Article  CAS  Google Scholar 

  • Scholtz, J. M., and Baldwin, R. L., 1992, The mechanism of a-helix formation by peptides, Annu. Rev. Biophys. Biomol. Struct. 21: 95–118.

    Article  PubMed  CAS  Google Scholar 

  • Scholtz, J. M., Qian, H., York, E. J., Stewart, J. M., and Baldwin, R. L., 1991a, Parameters of helix coil transition theory for alanine based peptides of varying chain lengths in water, Biopolymers 31: 1463–1470.

    Article  PubMed  CAS  Google Scholar 

  • Scholtz, J. M., Marqusee, S., Baldwin, R. L., York, E. J., Stewart, J. M., Santoro, M., and Bolen, D. W., 1991b, Calorimetric determination of the enthalpy change for the a helix to coil transition of an alanine peptide in water, Proc. Natl. Acad. Sci. USA 88: 2854–2858.

    Article  PubMed  CAS  Google Scholar 

  • Scholtz, J. M., York, E. J., Stewart, J. M., Santoro, M., and Baldwin, R. L., 1991c, A neutral, water soluble a helical peptide: The effect of ionic strength on the helix—coil equilibrium, J. Am. Chem. Soc. 113: 5102–5104.

    Article  CAS  Google Scholar 

  • Scholtz, J. M., Qian, H., Robbins, V. H., and Baldwin, R. L., 1993, The energetics of ion-pair and hydrogen-bonding interactions in a helical peptide, Biochemistry 32: 9668–9676.

    Article  PubMed  CAS  Google Scholar 

  • Serrano, L., and Fersht, A. R., 1989, Capping and a-helix stability, Nature 342: 296–299.

    Article  PubMed  CAS  Google Scholar 

  • Serrano, L., Neira, J.-L., Sancho, J., and Fersht, A. R., 1992, Effect of alanine versus glycine in a-helices on protein stability, Nature 356: 453–455.

    Article  PubMed  CAS  Google Scholar 

  • Sheridan, R. P., and Allen, L. C., 1980, The electrostatic potential of the alpha helix, Biophys. Chem. 11: 133–136.

    Article  PubMed  CAS  Google Scholar 

  • Shoemaker, K. R., Kim, P. S., Brems, D. N., Marqusee, S., York, E. J., Chaiken, I. M., Stewart, J. M., and Baldwin, R. L., 1985, Nature of the charged group effect on the stability of the C-peptide helix, Proc. Natl. Acad. Sci. USA 82: 2349–2353.

    Article  PubMed  CAS  Google Scholar 

  • Shoemaker, K. R., Kim, P. S., York, E. J., Stewart, J. M., and Baldwin, R. L., 1987, Tests of the helix dipole model for stabilization of a-helices, Nature 326: 563–567.

    Article  PubMed  CAS  Google Scholar 

  • Shoemaker, K. R., Fairman, R., Schultz, D. A., Robertson, A. D., York, E. J., Stewart, J. M., and Baldwin, R. L., 1990, Side chain interactions in the C-peptide helix: Phe8.His12, Biopolymers 29: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Shortle, D., and Clarke, N., 1993, Alpha helix propensity of amino acids, Science 262: 917–918.

    Article  PubMed  Google Scholar 

  • Skolnick, J., and Holtzer, A., 1982, Theory of helix—coil transition of a helical, two-chain, coiled coils, Macromolecules 15: 303–314.

    Article  CAS  Google Scholar 

  • Skolnick, J., and Holtzer, A., 1985, Theory of a-helix to random-coil transition of two-chain, coiled coils. Application of the augmented theory to thermal denaturation of a-tropomyosin, Macromolecules 18: 1549–1559.

    Article  CAS  Google Scholar 

  • Snell, C. R., and Fasman, G. D., 1972, Conformational studies on copolymers of L-lysine and leucine: Circular dichroism and potentiometric titration studies, Biopolymers 11: 1723–1744.

    Article  PubMed  CAS  Google Scholar 

  • Socci, N. D., Bialek, W. S., and Onuchic, J. N., 1994, Properties and origins of protein secondary structure, Phys. Rev. E 49: 3440–3443.

    Article  CAS  Google Scholar 

  • Sosnick, T. P., Mayne, L., Hiller, R., and Englander, S. W., 1994, The barriers in protein folding, Nature Struct. Biol. 1: 149–156.

    Article  PubMed  CAS  Google Scholar 

  • Stellwagen, E., Park, S.-H., and Jain, A., 1992, The contribution of residue ion pairs to the helical stability of a model peptide, Biopolymers 32: 1193–1200.

    Article  PubMed  CAS  Google Scholar 

  • Sundaralingam, M., Sekharudu, Y. C., Yathindra, N., and Ravichandran, V., 1987, Stabilization of alpha helices by ion pairs, Int. J. Quantum Chem. Quantum Chem. Symp. 14: 289–296.

    Article  CAS  Google Scholar 

  • Tanford, C., 1968, Protein denaturation, Adv. Protein Chem. 24: 1–95.

    Article  Google Scholar 

  • Tinoco, I., Jr., Woody, R. W., and Bradley, D. F., 1963, Absorption and rotation of light by helical polymers: The effect of chain length, J. Chem. Phys. 38: 1317–1325.

    Article  CAS  Google Scholar 

  • Tirado-Rives, J., and Jorgensen, W. L., 1991, Molecular dynamics simulations of the unfolding of an S-peptide in water, Biochemistry 30: 3864–3871.

    Article  PubMed  CAS  Google Scholar 

  • Tirado-Rives, J., Maxwell, D. S., and Jorgensen, W. L., 1993, Molecular dynamics and Monte-Carlo simulations favor the a helical for alanine based peptides in water, J. Am. Chem. Soc. 115: 11590–11593.

    Article  CAS  Google Scholar 

  • Toumadje, A., and Johnson, W. C., Jr., 1994, A CD study of the a-helix nucleation hypothesis, Biopolymers 34: 969–973.

    Article  PubMed  CAS  Google Scholar 

  • Urnes, P. J., and Doty, P., 1961, Optical rotation and the conformation of polypeptides and proteins, Adv. Protein Chem. 16: 401–544.

    Article  PubMed  CAS  Google Scholar 

  • Vasquez, M., and Scheraga, H. A., 1988, Effect of sequence specific interactions on the stability of helical conformations in polypeptides, Biopolymers 32: 41–58.

    Article  Google Scholar 

  • Vinson, C., Hai, T., and Boyd, S., 1993, Dimerization specificity of the leucine zipper-containing bZIP motif on DNA binding: Prediction and rational design, Genes Dev. 7: 1047–1058.

    Article  PubMed  CAS  Google Scholar 

  • von Dreele, P. H., Poland, D., and Scheraga, H. A., 1971a, Helix-coil stability constants for the naturally occurring amino acids in water. I. Properties of copolymers and approximate theories, Macromolecules 4: 396–407.

    Article  Google Scholar 

  • von Dreele, P. H., Lotan, N., Ananthanarayanan, V. S., Andreatta, R. H., Poland, D., and Scheraga, H. A., 1971b, Helix-coil stability constants for the naturally occurring amino acids in water. II. Characterization of the host-guest technique to random poly(hydroxypropyl glutamine-co-hydroxybutyl glutamine), Macromolecules 4: 408–417.

    Article  Google Scholar 

  • Wada, A., 1976, The a-helix as an electric macro-dipole, Adv. Bipohys. 9: 1–63.

    CAS  Google Scholar 

  • Waterhous, D. V., and Johnson, W. C., Jr., 1994, Importance of environment in determining secondary structure in protein, Biochemistry 33: 2121–2128.

    Article  PubMed  CAS  Google Scholar 

  • Wojcik, J., Altmann, K.-H., and Scheraga, H. A., 1990, Helix-coil stability constants for the naturally occurring amino acids in water. XXIV. Half-cystine parameters from random poly(hydroxybutylglutamine-co-S-methylthio-L-cysteine), Biopolymers 30: 121–134.

    Article  CAS  Google Scholar 

  • Woody, R. W., 1977, Optical rotatory properties of biopolymers, J. Polym. Sci. Macromol. Rev. 12: 181–321.

    Article  CAS  Google Scholar 

  • Woody, R. W., 1985, Circular dichroism of peptides, in: The Peptides ( V. J. Hruby, ed.), Vol. 7, pp. 15–114, Academic Press, New York.

    Google Scholar 

  • Yang, J. T., Wu, C.-S. C., and Martinez, H. M., 1986, Calculation of protein conformation from circular dichroism, Methods Enzymol. 130: 208–257.

    Article  PubMed  CAS  Google Scholar 

  • Yee, D. P., Chan, H. S., Havel, T. F., and Dill, K. A., 1994, Does compactness induce secondary structure in proteins? J. Mol. Biol. 241: 557–573.

    Article  PubMed  CAS  Google Scholar 

  • Young, M. A., and Pysh, E. S., 1973, Vacuum ultraviolet circular dichroism of poly (L-alanine) films, Macromolecules 6: 790–791.

    Article  CAS  Google Scholar 

  • Zhang, L., and Hermans, J., 1994, 310 helix versus a-helix: A molecular dynamics study of conformational preferences of Aib and alanine, J. Am. Chem. Soc. 116: 11915–11921.

    Google Scholar 

  • Zhou, H. X., Hull, L. A., Kallenbach, N. R., Mayne, L., Bai, Y., and Englander, S. W., 1994a, Quantitative evaluation of stabilizing interactions in a prenucleated alpha helix by hydrogen exchange, J. Am. Chem. Soc. 116: 6482–6483.

    Article  CAS  Google Scholar 

  • Zhou, H. X., Lyu, P. C., Wemmer, D. E., and Kallenbach, N. R., 1994b, Alpha helix capping in synthetic model peptides by reciprocal side-chain-main chain interactions: Evidence for an N-terminal “capping box,” Proteins Struct. Funct. Genet. 18: 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, N. E., Kay, C. M., and Hodges, R. S., 1992a, Synthetic model proteins: The relative contribution of leucine residues at the nonequivalent positions of the 3–4 hydrophobic repeat to the stability of the two stranded a helical coiled-coil, Biochemistry 31: 5739–5746.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, N. E., Monera, O. D., Kay, C. M., and Hodges, R. S., 1992b, The two stranded a helical coiled-coil is an ideal model for studying protein stability and subunit interactions, Biopolymers 32: 419–426.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, N. E., Kay, C. M., and Hodges, R. S., 1993a, Disulfide bond contribution to protein stability: Positional effects of substitution in the hydrophobic core of the two stranded a helical coiled-coil, Biochemistry 32: 3178–3187.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, N. E., Kay, C. M., Sykes, B. D., and Hodges, R. S., 1993b, A single-stranded amphipathic a helix in aqueous solution: Design, structural characterization, and its application for determining a helical propensities of amino acids, Biochemistry 32: 6190–6197.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, N. E., Zhu, B.-Y., Kay, C. M., and Hodges, R. S., 1994, a-Helical propensity of amino acids in the hydrophobic face of an amphipathic a-helix, Protein Peptide Lett. 1: 114–119.

    Google Scholar 

  • Zimm, B. H., and Bragg, J. K., 1958, Theory of one-dimensional phase transition in polypeptide chains, J. Chem. Phys. 28: 1246–1247.

    Article  CAS  Google Scholar 

  • Zimm, B. H., and Bragg, J. K., 1959, Theory of the phase transition between helix and random coil in polypeptide chains, J. Chem. Phys. 31: 526–535.

    Article  CAS  Google Scholar 

  • Zimm, B. H., and Rice, S. A., 1960, The helix-coil transition in charged macromolecules, Mol. Phys. 3: 391–407.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kallenbach, N.R., Lyu, P., Zhou, H. (1996). CD Spectroscopy and the Helix-Coil Transition in Peptides and Polypeptides. In: Fasman, G.D. (eds) Circular Dichroism and the Conformational Analysis of Biomolecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2508-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2508-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3249-5

  • Online ISBN: 978-1-4757-2508-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics