Advertisement

Circular Dichroism Using Synchrotron Radiation

From Ultraviolet to X Rays
  • John C. Sutherland
Chapter

Abstract

Since 1960 circular dichroism (CD) has been one of the spectroscopic tools at the disposal of scientists studying the conformation of biological molecules (Grosjean and Legrand, 1960). Most of the spectrometers that measure CD have relied on conventional laboratory sources of broad-spectrum UV and visible light, particularly the high-pressure xenon arc. Around 1970, the frontiers of CD spectroscopy were extended into the vacuum UV by spectrometers with hydrogen-discharge sources (Feinleib and Bovey, 1968; Schnepp et al., 1970; Johnson, 1971), and into the infrared by spectrometers based on blackbody sources (Osborne et al., 1973; Chabay and Holzwarth, 1975). Synchrotron sources, which offer superior performance, particularly for wavelengths less than roughly 190 nm, were first used to record CD in the vacuum UV about 1980 (Snyder and Rowe, 1980; Sutherland et al., 1980). Regardless of the light source employed, these vacuum-UV CD spectrometers are inherently limited to wavelengths greater than 105 nm, the transmission limit of lithium fluoride (Sampson, 1967), although ~ 130 nm has been the practical limit. We are, however, on the threshold of a new era in which synchrotron radiation will make it possible to extend measurements of CD into the extreme UV and x-ray regions (λ ≤ ~100 nm), a capability that may prove important in the analysis of the conformation of biomolecules.

Keywords

Circular Dichroism Synchrotron Radiation Storage Ring Orbital Plane Magnetic Circular Dichroism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abu-Shumays, A., Hooper, G. E., and Duffield, J. J., 1971, Measurement of magnetic circular dichroism using alternating magnetic fields, Appl. Spectrosc. 25: 238–242.CrossRefGoogle Scholar
  2. Bahrdt, J., Gaupp, A., Gudat, W., Mast, M., Molter, K., Peatman, W. B., Scheer, M., Schroter, T., and Wang, C., 1992, Circularly polarized synchrotron radiation from the crossed undulator at BESSY, Rev. Sci. Instrum. 63: 339–342.CrossRefGoogle Scholar
  3. Balcerski, J. S., Pysh, E. S., Bonora, G. M., and Toniolo, C., 1976, Vacuum ultraviolet circular dichroism of I3-forming alkyl oligopeptides, J. Am. Chem. Soc. 98: 3470–3473.PubMedCrossRefGoogle Scholar
  4. Baumgarten, L., and Schneider, C. M., 1990, Magnetic x-ray dichroism in core-level photoemission from ferromagnets, Phys. Rev. Lett. 65: 492–495.PubMedCrossRefGoogle Scholar
  5. Blewett, J. P., 1988, Synchrotron radiation-1873 to 1947, Mwl. Instrum. Methods Phys. Res. A266: 1–9.CrossRefGoogle Scholar
  6. Blewett, J. P., and Chasman, R., 1977, Orbits and fields in the helical wiggler, J. Appl. Phys. 48: 2692–2698.CrossRefGoogle Scholar
  7. Carr, R., and Lidia, S., 1993, The adjustable phase planar helical undulator, SPIE Conference on Electron Beam Sources of High Brightness Radiation 2013.Google Scholar
  8. Carr, R., Kortright, J. B., Rice, M., Lidia, S., and Coffman, F., 1995, Performance of the elliptically polarizing undulator on SPEAR, Rev. Sci. Instrum. 66: 1862–1865.CrossRefGoogle Scholar
  9. Castellani, A., and Quercia, I. F., 1979, Synchrotron Radiation Applied to Biophysical and Biochemical Research, Plenum Press, New York.Google Scholar
  10. Chabay, I., and Holzwarth, G., 1975, Infrared circular dichroism and linear dichroism spectrometer, Appl. Opt. 14: 454–459.PubMedCrossRefGoogle Scholar
  11. Chen, C. T., 1987, Concept and design procedure for cylindrical element monochromators for synchrotron radiation, Nucl. Instrum. Methods Phys. Res. A 256: 595–604.CrossRefGoogle Scholar
  12. Chen, C. T., 1992, Raytracing, chopper, and guideline for double-headed Dragon monochromators, Rev. Sci. Instrum. 63: 1229–1233.CrossRefGoogle Scholar
  13. Chen, C. T., and Sette, F., 1989, Performance of the Dragon soft x-ray beamline, Rev. Sci. Instrum. 60: 1616–1621.CrossRefGoogle Scholar
  14. Chen, C. T., Sette, F., and Smith, N. V., 1990, Double-headed Dragon monochromator for soft x-ray circular dichroism studies, Appl. Opt. 29: 4535–4536.PubMedCrossRefGoogle Scholar
  15. Chothia, C., 1973, Conformation of twisted 13-pleated sheets in proteins, J. Mol. Biol. 75: 295–302.PubMedCrossRefGoogle Scholar
  16. Crick, F. H. C., 1953, The packing of a-helices: Simple coiled coils, Acta Crystallogr. 6: 689–697.CrossRefGoogle Scholar
  17. Ditchburn, R. W., 1963, Light, Interscience, New York.Google Scholar
  18. Diviacco, D., and Walker, R. P., 1990, Fields and trajectories in some new types of permanent magnet helical undulator, Nucl. Instrum. Methods Phys. Res. A 292: 517–529.CrossRefGoogle Scholar
  19. Doniach, S., Eisenberger, P., and Hodgson, K. O., 1980, X-ray absorption spectroscopy of biological molecules, in: Synchrotron Radiation Research ( H. Winick and S. Doniach, eds.), pp. 425–458, Plenum Press, New York.CrossRefGoogle Scholar
  20. Drake, A. F., Gould, J. M., and Mason, S. F., 1980, Simultaneous monitoring of light-absorption and optical activity in the liquid chromatrography of chiral substances, J. Chromatogr. 202: 239–245.CrossRefGoogle Scholar
  21. Duben, A. J., and Buch, A., 1980, Vacuum ultraviolet circular dichroism spectrometer and its application to N-acetylamino saccharides, Anal. Chem. 52: 635–638.PubMedCrossRefGoogle Scholar
  22. Elias, L. R., and Madey, J. M., 1979, Superconducting helically wound magnet for the free-electron laser, Rev. Sci. Instrum. 50: 1335–1340.PubMedCrossRefGoogle Scholar
  23. Elleaume, P., 1990, A flexible planar/helical undulator design for synchrotron sources, Nucl. Instrum. Methods Phys. Res. A 291: 371–377.CrossRefGoogle Scholar
  24. Elleaume, P., 1994, Helios: A new type of linear/helical undulator, J. Synchrotron Radiat. 1: 19–26.PubMedCrossRefGoogle Scholar
  25. Elleaume, P., Chavanne, J., Marécchal, X., Goulon, J., Braicovich, L., Malgrange, C., Emerich, H., Marot, G., and Susini, J., 1991, An ESRF beamline dedicated to polarization-sensistive XAS at low excitation energies, Nucl. Instrum. Methods Phys. Res. A 308: 382–389.CrossRefGoogle Scholar
  26. Feinleib, S., and Bovey, F. A., 1968, Vapour-phase vacuum-ultraviolet circular-dichroism spectrum of (+)-3-methylcyclopentanone, Chem. Commun. 1968: 978–979.Google Scholar
  27. Friedman, A., Krinsky, S., and Blum, E., 1992, Polarized wiggler for NSLS x-ray ring: Design consideration, Brookhaven National Laboratory BNL-47317.Google Scholar
  28. Gaupp, A., and Mast, M., 1989, First experimental experience with a VUV polarimeter at BESSY, Rev. Sci. Instrum. 60: 2213–2215.CrossRefGoogle Scholar
  29. Giles, C., Malgrange, C., Goulon, J, Vettier, J., de Bergevin, F., Freund, A., Elleaume, P., Dartyge, E., Fontaine, A., Giorgetti, C., and Pizzini, S., 1993, X-ray phase plate for energy dispersive and monochromatic experiments, Soc. Photo-Opt. Instrum. Eng. 2010: 136–149.Google Scholar
  30. Giles, C., Malgrange, C., Goulon, J., de Bergevin, F., Vettier, C. J., Fontaine, A., Dartyge, E., and Pizzini, S., 1994a, Energy and polarization-tunable x-ray quarter-wave plates for energy dispersive absorption spectrometer, Nucl. Instrum. Methods Phys. Res. A 349: 622–625.CrossRefGoogle Scholar
  31. Giles, C., Malgrange, C., Goulon, J., de Bergevin, F., Vettier, J., Dartyge, E., Fontaine, A., Giorgetti, C., and Pizzini, S., 1994b, Energy-dispersive phase plate for magnetic circular dichroism experiments in the x-ray range, J. Appl. Crystallogr. 27: 232–240.CrossRefGoogle Scholar
  32. Giles, C., Malgrange, C., de Bergevin, F., Goulon, J., Baudelet, F., Vettier, C., and Freund, A., 1995a, Mosaic crystals as x-ray phase plates, Nucl. Instrum. Methods Phys. Res. 361. 354–357.CrossRefGoogle Scholar
  33. Giles, C., Malgrange, C., Goulon, J., de Bergevin, F., Vettier, C. J., Fontaine, A., Dartyge, E., Pizzini, S., Baudelet, F., and Freund, A., 1995b, Perfect crystal and mosaic crystal quarter-wave plates for circular magnetic x-ray dichroism experiments, Rev. Sci. Instrum. 66: 1549–1553.CrossRefGoogle Scholar
  34. Giles, C., Malgrange, C., Goulon, J., de Bergevin, F., Vettier, C. J., Fontaine, A., Dartyge, E., Pizzini, S., Baudelet, F., and Freund, A., 1995c, Tunable x-ray quarter-wave plates for x-ray magnetic circular dichroism experiments with the energy dispersive absorption spectrometer, Physica B 208, 209: 784–786.CrossRefGoogle Scholar
  35. Gluskin, E., Frachon, D., Ivanov, P. M., Maines, J., Medvedko, E. A., Trakhtenberg, E., Turner, L. R., Vasserman, I., Erg, G. I., Evtushenko, Y. A., Gavrilov, N. G., Kulipanov, G. N., Medvedko, A. S., Petrov, S. P., Popik, V. M., Vinokurov, N. A., Friedman, A., Krinsky, S., Radowshy, G., and Singh, O., 1995, The elliptical multipole wiggler project, IEEE Particle Accelerator Conference, Dallas.Google Scholar
  36. Goree, J., 1985, Double lock-in detection for recovering weak coherent radio frequency signals, Rev. Sci. Instrum. 56: 1662–1664.CrossRefGoogle Scholar
  37. Goulon, J., Elleaume, P., and Raoux, D., 1987, Special multipole wiggler design producing circularly polarized synchrotron radiation, Nucl. Instrum. Methods Phys. Res. A 254: 192–201.CrossRefGoogle Scholar
  38. Goulon, J., Sette, F., Moise, C., Fontaine, A., Perby, D., Petra, R., and Baudelet, F., 1993, Detection limits for natural circular dichroism of chiral complexes in the x-ray range, Jpn. J. Appl. Phys. 32: 248–289.Google Scholar
  39. Goulon, J., Brookes, N. B., Gauthier, C., Boodkoop, J., Goulon-Ginet, C., Hagelstein, M., and Rogalev, A., 1995, Instrumentation development for ESRF beamlines, Physica B 208, 209: 199–202.Google Scholar
  40. Gray, D. M., Lang, D., Kuner, E., Vaughn, M., and Sutherland, J., 1984, Thin quartz cell suitable for vacuum ultraviolet absorption and circular dichroism measurements, Anal. Biochem. 136; 247–250.PubMedCrossRefGoogle Scholar
  41. Green, M. A., Kim, K., Viccaro, P. J., Gluskin, E., Halbach, K., Savoy, R., and Trzeciak, W. S., 1992, Rapidly modulated variable-polarization crossed-undulator source, Rev. Sci. Instrum. 63: 336–337.CrossRefGoogle Scholar
  42. Grosjean, M., and Legrand, M., 1960, Polarimétrie-appareil de mesure de dichroisme circulaire dans le visible et l’ultraviolet, Compt. Rend. 251: 2150–2153.Google Scholar
  43. Hamm, R. N., MacRae, R. A., and Arakawa, E. T., 1965, Polarization studies in the vacuum ultraviolet, J. Opt. Soc. Am. 55: 1460–1462.Google Scholar
  44. Hart, M., Siddons, D. P., Amemiya, Y., and Stojanoff, V., 1991, Tunable x-ray polarimeters for synchrotron radiation sources, Rev. Sci. Instrum. 62: 2540–2544.CrossRefGoogle Scholar
  45. Heinzmann, U., 1980, Experimental determination of the phase differences of continuum wavefunctions describing the photoionisation process of xenon atoms I. Measurements of the spin polarisations of photoelectrons and their comparison with theoretical results, J. Phys. B 13: 4353–4366.CrossRefGoogle Scholar
  46. Heinzmann, U., Osterheld, B., and Schafers, F., 1982, Measurement and calculations of the circular polarization and of the absolute intensity of synchrotron radiation in the wavelength range from 40 to 100 nm, Nucl. Instrum. Methods 195: 395–398.CrossRefGoogle Scholar
  47. Hirano, K., Izumi, K., Ishikawa, T., Annaka, S., and Kikuta, S., 1991, An x-ray phase plate using Braggcase diffraction, Jpn. J. Appl. Phys. 30: L407 — L410.CrossRefGoogle Scholar
  48. Höchst, H., Patel, R., and Middleton, F., 1994, Multiple-reflection quarter-wave phase shifter: A viable alternative to generate circular-polarized synchrotron radiation, Nucl. Instrum. Methods Phys. Res. A 347: 107–114.CrossRefGoogle Scholar
  49. Höchst, H., Bulicke, P., Nelson, T., and Middleton, F., 1995, Performance evaluation of a soft x-ray quadruple reflection circular polarizer, Rev. Sci. Instrum. 66: 1598–1600.CrossRefGoogle Scholar
  50. Howells, M. R., 1982, Theory of a modified Wadsworth monochromator matched to a low energy storage ring source, Nucl. Instrum. Methods 195: 215–222.CrossRefGoogle Scholar
  51. Idzerda, Y. U., Chen, C. T., Lin, H.-J., Meigs, G., Ho, G. H., and Kao, C.-C., 1994, Soft X-ray magnetic circular dichroism and magnetic films, Nucl. Instrum. Methods Phys. Res. A 347: 134–141.CrossRefGoogle Scholar
  52. Ishikawa, T., 1989, X-ray monochromators for circularly polarized radiation, Rev. Sci. Instrum. 60: 2058–2061.CrossRefGoogle Scholar
  53. Jasperson, S. N., and Schnatterly, S. E., 1969, An improved method for high reflectivity ellipsometry based on a new polarization modulation technique, Rev. Sci. Instrum. 40: 761–767.CrossRefGoogle Scholar
  54. Johnson, P. D., and Smith, N. V., 1983, Production of circularly polarized light from synchrotron radiation in the vacuum ultraviolet, Nucl. Instrum. Methods 214: 505–508.CrossRefGoogle Scholar
  55. Johnson, W. C., 1964, Magnesium fluoride polarizing prism for the vacuum ultraviolet, Rev. Sci. In-strum. 35: 1375–1376.CrossRefGoogle Scholar
  56. Johnson, W. C., Jr., 1971, A circular dichroism spectrometer for the vacuum ultraviolet, Rev. Sci. Instrum. 42: 1283–1286.PubMedCrossRefGoogle Scholar
  57. Johnson, W. C., Jr., 1985, Circular dichroism and its empirical application to biopolymers, Methods Biochem. Anal. 31: 61–163.PubMedCrossRefGoogle Scholar
  58. Kelly, L. A., Trunk, J. G., Polewski, K., and Sutherland, J. C., 1995, Simultaneous resolution of spectral and temporal properties of UV and visible fluorescence using single-photon counting with a position-sensitive detector, Rev. Sci. Instrum. 66: 1496–1498.CrossRefGoogle Scholar
  59. Kemp, J. C., 1969, Piezo-optical birefringence modulators: New use for a long-known effect, J. Opt. Soc. Am. 59: 950–954.Google Scholar
  60. Kim, K.-J., 1984, A synchrotron radiation source with arbitrarily adjustable elliptical polarization, Nucl. Instrum. Methods Phys. Res. 219: 425–429.CrossRefGoogle Scholar
  61. Kimura, H., Tanaka, T., Marechal, X., and Kitamura, H., 1994, Helical undulator systems for rapid switching of helicity, International Conference: Synchrotron Radiation Instrumentation, Stony Brook, NY, TuE28.Google Scholar
  62. Kincaid, B. M., 1977, A short-period helical wiggler as an improved source of synchrotron radiation, J. Appl. Phys. 48: 2684–2691.CrossRefGoogle Scholar
  63. Koide, T., Shidara, T., Yuri, M., Kandaka, N., Yamaguchi, K., and Fukutani, H., 1991a, Elliptical-polarization analyses of synchrotron radiation in the 5–80 eV region with a reflection polarimeter, Nucl. Instrum. Methods Phys. Res. A 308: 635–644.CrossRefGoogle Scholar
  64. Koide, T., Shidara, T., Yuri, M., Kandaka, N., and Fukutani, H., 1991b, Production and direct measurement of circularly polarized vacuum-ultraviolet light with multireflection optics, Appl. Phys. Lett. 58: 2592–2594.CrossRefGoogle Scholar
  65. Kortright, J. B., and Underwood, J. H., 1990, Multilayer optical elements for generation and analysis of circularly polarized x-rays, Nucl. Instrum. Methods Phys. Res. A 291: 272–277.CrossRefGoogle Scholar
  66. Kortright, J. B., Rice, M., and Frank, K. D., 1995, Tunable multilayer EUV/soft x-ray polarimeter, Rev. Sci. Instrum. 66: 1567–1569.CrossRefGoogle Scholar
  67. Lang, J. C., and Srager, G., 1995, Bragg transmission phase plates for the production of circularly polarized x-rays, Rev. Sci. Instrum. 66: 1540–1542.CrossRefGoogle Scholar
  68. Laws, W. R., Potter, D. W., and Sutherland, J. C., 1984, Gating circuit for single photon-counting fluorescence lifetime instruments using high repetition pulsed light sources, Rev. Sci. Instrum. 55: 1564–1568.CrossRefGoogle Scholar
  69. Lidia, S., and Carr, R., 1994, An elliptically polarizing undulator with phase adjustable polarization energy, Nucl. Instrum. Methods Phys. Res. A 347: 77–82.CrossRefGoogle Scholar
  70. Mcllrath, T. J., 1968, Circular polarizer for Lyman-alpha flux, J. Opt. Soc. Am. 58: 506–510.CrossRefGoogle Scholar
  71. Madey, J. M. J., 1971, Stimulated emission of bremsstrahlung in a periodic magnetic field, J. Appl. Phys. 42: 1906–1913.CrossRefGoogle Scholar
  72. Mandel, R., and Fasman, G. D., 1974, Thermal denaturation of DNA and DNA:polypeptide complexes: Simultaneous absorption and circular dichroism measurements, Biochim. Biophys. Acta 59: 672–679.Google Scholar
  73. Mason, W. R., 1982, Spectrometer for simultaneous measurement of absorption and circular dichroism spectra, Anal. Chem. 54: 646–648.CrossRefGoogle Scholar
  74. Matsui, A., and Walker, W. C., 1970, Polarization of three vacuum-ultraviolet monochromators measured with a biotite polarizer, J. Opt. Soc. Am. 60: 64–65.CrossRefGoogle Scholar
  75. Metcalf, H., and Baird, J. C., 1966, Circular polarization of vacuum ultraviolet light by piezobirefringence, Appl. Opt. 5: 1407–1410.PubMedCrossRefGoogle Scholar
  76. Moissev, M. B., Nikitin, M. M., and Fedorov, N. I., 1978, Changes in the kind of polarization of undulator radiation, Soy. Phys. J. 21: 332–335.CrossRefGoogle Scholar
  77. Mollenauer, L. F., Downie, D., Engstrom, H., and Grant, W. B., 1969, Stress plate optical modulator for circular dichroism measurements, Appl. Opt. 8: 661–665.PubMedCrossRefGoogle Scholar
  78. Munro, I. H., Boardman, C. A., and Fuggle, J. C., 1991, World Compendium of Synchrotron Radiation Facilities, The European Synchrotron Radiation Society, Orsay, France.Google Scholar
  79. Nafie, L. A., Keiderling, T. A., and Stephens, P. J., 1976, Vibrational circular dichroism, J. Am. Chem. Soc. 98: 2715–2722.CrossRefGoogle Scholar
  80. Namioka, T., 1959, Theory of the concave grating. III. Seya—Namioka monochromator, J. Opt. Soc. Am. 49: 951–961.CrossRefGoogle Scholar
  81. Onuki, H., 1986, Elliptically polarized synchrotron radiation source with crossed and retarded magnetic fields, Nucl. Instrum. Methods Phys. Res. A 246: 94–98.CrossRefGoogle Scholar
  82. Onuki, H., Saito, N., and Saito, T., 1988, Undulator generating any kind of elliptically polarized radiation, Appl. Phys. Lett. 52: 173–175.CrossRefGoogle Scholar
  83. Onuki, H., Saito, N., Terubumi, S., and Mitsuhiro, H., 1989, Polarizing undulator with crossed and retarded magnetic fields, Rev. Sci. Instrum. 60: 1838–1841.CrossRefGoogle Scholar
  84. Osborne, G. A., Cheng, J. C., and Stephens, P. J., 1973, A near-infrared circular dichroism and magnetic circular dichroism instrument, Rev. Sci. Instrum. 44: 10–15.CrossRefGoogle Scholar
  85. Palmer, R. E., 1971, An improved method for measuring photoemission electron energy distribution curves, Rev. Sci. Instrum. 42: 1450–1452.CrossRefGoogle Scholar
  86. Pfluger, J., and Heintze, G., 1990, The asymmetric wiggler at Hasylab, Nucl. Instrum. Methods Phys. Res. 289: 300–306.Google Scholar
  87. Pohl, F. M., and Jovin, T. M., 1972, Salt-induced co-operative conformational change of a synthetic DNA: Equilibrium and kinetic studies of poly(dG-dC), J. Mol. Biol. 67: 375–396.PubMedCrossRefGoogle Scholar
  88. Polewski, K., Kramer, S. L., Kolber, Z. S., Trunk, J. G., Monteleone, D. C., and Sutherland, J. C., 1994a, Time resolved fluorescence using synchrotron radiation excitation: A powered fourth-harmonic cavity improves pulse stability, Rev. Sci. Instrum. 65: 2562–2567.CrossRefGoogle Scholar
  89. Polewski, K., Zinger, D., Trunk, J., Monteleone, D., and Sutherland, J. C., 1994b, Fluorescence of matrix isolated guanine and 7-methylguanine, J. Photochem. Photobiol. B 24: 169–177.PubMedCrossRefGoogle Scholar
  90. Pysh, E. S., 1976, Optical activity in the vacuum ultraviolet, in: ( L. J. Mullins, W. A. Hagins, L. Stryer, and C. Newton, eds.), Annual Review of Biophysics and Bioengineering pp. 63–75, Annual Reviews, Palo Alto.Google Scholar
  91. Sampson, J. A. R., 1967, Techniques of Vacuum Ultraviolet Spectroscopy, Wiley, New York.Google Scholar
  92. Sasaki, S., Kakuno, K., Takada, T., Shimada, T., Yanagida, K., and Miyahara, Y., 1993, Design of a new type of planar undulator for generating variably polarized radiation, Nucl. Instrum. Methods Phys. Res. A 331: 763–767.CrossRefGoogle Scholar
  93. Schafers, F., and Peatman, W., 1986, High-flux normal incidence monochromator for circularly polarized synchrotron radiation, Rev. Sci. Instrum. 57: 1032–1041.CrossRefGoogle Scholar
  94. Schnepp, O., Pearson, E. F., and Sharman, E., 1970, The measurement of circular dichroism in the vacuum ultraviolet, Rev. Sci. Instrum. 41: 1136–1141.CrossRefGoogle Scholar
  95. Shastri, S. D., Finkelstein, K. D., Shen, Q., Batterman, B. W., and Walko, D. A., 1995, Undulator test of a Bragg reflection elliptical polarizer at —7.1 keV, Rev. Sci. Instrum. 66: 1581–1583.CrossRefGoogle Scholar
  96. Siddons, D. P., Hart, M., Amemiya, Y., and Hastings, J. B., 1990, X-ray optical activity and the Faraday effect in cobalt and its compounds, Phys. Rev. Lett. 64: 1967–1970.PubMedCrossRefGoogle Scholar
  97. Smith, N. V., and Howells, M. R., 1994, Whispering galleries for the production of circularly polarized synchrotron radiation in the XUV region, Nucl. Instrum. Methods Phys. Res. A 347: 115–118.CrossRefGoogle Scholar
  98. Snyder, P. A., and Rowe, E. M., 1980, The first use of synchrotron radiation for vacuum ultraviolet circular dichroism measurements, Nucl. Instrum. Methodol. 172: 345–349.CrossRefGoogle Scholar
  99. Stephens, P. J., 1974, Magnetic circular dichroism, Annu. Rev. Phys. Chem. 25: 201–232.CrossRefGoogle Scholar
  100. Stohr, J., Wu, Y., Hermsmeier, B. D., Samant, M. G., Harp, G. R., Koranda, S., Dunham, D., and Tonner, B. P., 1993, Element-specific magnetic microscopy with circularly polarized x-rays, Science 259: 658–661.Google Scholar
  101. Sutherland, J. C., 1995, Magnetic circular dichroism, in: ( K. Sauer, ed.), Methods in Enzymology, pp. 110–131, Academic Press, San Diego.Google Scholar
  102. Sutherland, J. C., and Low, H., 1976, Fluorescence-detected magnetic circular dichroism of fluorescent and nonfluorescent molecules, Proc. Natl. Acad. Sci. USA 73: 276–280.PubMedCrossRefGoogle Scholar
  103. Sutherland, J. C., Desmond, E. J., and Takacs, P. Z., 1980, Versatile spectrometer for experiments using synchrotron radiation at wavelengths greater than 100 nm, Nucl. Instrum. Methods 172: 195–199.CrossRefGoogle Scholar
  104. Sutherland, J. C., Griffin, K. P., Keck, P. C., and Takacs, P. Z., 1981, Z-DNA: Vacuum ultraviolet circular dichroism, Proc. Natl. Acad. Sci. USA 78: 4801–4804.PubMedCrossRefGoogle Scholar
  105. Sutherland, J. C., Keck, P. C., Griffin, K. P., and Takacs, P. Z., 1982, Simultaneous measurement of absorption and circular dichroism in a synchrotron spectrometer, Nucl. Instrum. Methods 195: 375–379.CrossRefGoogle Scholar
  106. Suzuki, M., Hanmura, K., Kotani, T., Yamaguchi, N., Kobayashi, M., and Misu, A., 1995, Direct measurement of magnetic circular dichroism and Kerr rotation spectra in vacuum ultraviolet using four-mirror polarizer, Rev. Sci. Instrum. 66: 1589–1591.CrossRefGoogle Scholar
  107. Terminello, L. J., Waddill, G. D., and Tobin, J. G., 1992, High resolution photoabsorption and circular polarization measurements on the University of California/National Laboratory spherical grating monochromator beamline, Nucl. Instrum. Methods Phys. Res. A 319: 271–276.CrossRefGoogle Scholar
  108. Tobin, J. G., Tamura, E., Sterne, P. A., Waddell, G. D., Pappas, D. P., Guo, X., and Tong, S. Y., 1995, Electron dichroism studies of magnetic structure using circularly polarized x-rays, Spectroscopy 10: 30–34.Google Scholar
  109. Turner, D. H., Tinoco, I., and Maestre, M., 1975, Fluorescence detected circular dichroism, J. Am. Chem. Soc. 96: 4340–4342.CrossRefGoogle Scholar
  110. Urry, D. W., Hinners, T. A., and Masotti, L., 1970, Calculation of distorted circular dichroism curves for poly-L-glutamic acid suspensions, Arch. Biochem. Biophys. 137: 214–221.PubMedCrossRefGoogle Scholar
  111. van Elp, J., George S. J., Chen, J., Peng, G., Chen, C. T., Tjeng, L. H., Meigs, G., Lin, H.-J., Zhou, Z. H., Adams, M. M. W., Searle, B. G., and Cramer, S. P., 1993, Soft x-ray magnetic circular dichroism: A probe for studying paramagnetic bioinorganic systems, Proc. Natl. Acad. Sci. USA 90: 9664–9667.PubMedCrossRefGoogle Scholar
  112. Wadsworth, F. L. 0., 1896, The modern spectroscope. XV. Astrophys. J. 3: 47–62.CrossRefGoogle Scholar
  113. Walker, R., and Diviacco, B., 1992, Studies of insertion devices for producing circularly polarized radiation with variable helicity in ELETTRA, Rev. Sci. Instrum. 61: 332–335.CrossRefGoogle Scholar
  114. Wang, C.-X., and Schlueter, R., 1994, Optimization of circularly-polarized radiation from an elliptical wiggler, asymmetric wiggler, or bending magnet, Nucl. Instrum. Methods Phys. Res. A 347: 92–97.CrossRefGoogle Scholar
  115. Wang, C.-X., Schlueter, R., Hoyer, E., and Heimann, P., 1994, Design of the Advanced Light Source elliptical wiggler, Nucl. Instrum. Methods Phys. Res. A 347: 67–72.CrossRefGoogle Scholar
  116. Wang, L., Yang, L., and Keiderling, T. A., 1994, Vibrational circular dichroism of A-, B-, and X-form nucleic acids in the POZ stretching region, Biophys. J. 67: 2460–2467.PubMedCrossRefGoogle Scholar
  117. Westerveld, W. B., Becker, K., Zetner, P. W., Corr, J. J., and McConkey, J. W., 1985, Production and measurement of circular polarization in the VUV, Appl. Opt. 24: 2256–2262.PubMedCrossRefGoogle Scholar
  118. Winick, H., 1994, Synchrotron Radiation Sources: A Primer,World Scientific Publishing.Google Scholar
  119. Winick, H., and Doniach, S., 1980, Synchrotron Radiation Research, Plenum Press, New York.CrossRefGoogle Scholar
  120. Yagi, K., Yuri, M., and Onuki, H., 1995, Polarization modulation spectroscopy for magnetic circular dichroism study using a polarizing undulator, Rev. Sci. Instrum. 66: 1592–1594.CrossRefGoogle Scholar
  121. Yahnke, C. J., Stajer, G., Haeffner, D. R., Mills, D. M., and Assoufid, L., 1994, Germanium x-ray phase plates for the production of circularly polarized x-rays, Nucl. Instrum. Methods Phys. Res. A 347: 128–133.CrossRefGoogle Scholar
  122. Yamada, T., Yuri, M., Onuki, H., and Ishizaka, S., 1995, Development of a circularly polarizing microscope with polarizing undulator, Rev. Sci. Instrum. 66: 1493–1495.CrossRefGoogle Scholar
  123. Yamamoto, S., and Kitamura, H., 1987, Generation of quasi-circularly polarized undulator radiation with higher harmonics, Jpn. J. Appl. Phys. 26: L1613.CrossRefGoogle Scholar
  124. Yamamoto, S., Kawata, H., Kitamura, H., and Ando, M., 1989a, First production of intense circularly polarized hard x-rays from a novel multipole wiggler in an accumulation ring, Phys. Rev. Lett. 62: 2672–2675.PubMedCrossRefGoogle Scholar
  125. Yamamoto, S., Shioya, T., Sasaki, T., and Kitamura, H., 1989b, Construction of insertion devices for elliptically polarized synchrotron radiation, Rev. Sci. Instrum. 60: 1834–1837.CrossRefGoogle Scholar
  126. Young, M. A., and Pysh, E., 1973, Vacuum ultraviolet circular dichroism of poly(L-alanine) films, Macromolecules 6: 790–791.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • John C. Sutherland
    • 1
  1. 1.Biology DepartmentBrookhaven National LaboratoryUptonUSA

Personalised recommendations