The basic protein folding problem required reevaluation when molecular chaperones and folding ligands were discovered to play an important role in folding in vivo in cells (Ellis and Van der Vies, 1991; Zeilstra-Ryalls et al.,1991; Nisslon and Anderson, 1991; Gething and Sambrook, 1992; Hartle and Martin, 1992; Jaenicke, 1993). Many chaperones were originally discovered as heat-shock proteins. Of the chaperones, the chaperonin family has the most distinctive structure: they contain large multisubunit assemblies essential in mediation of ATP-dependent polypeptide chain folding in a variety of cellular compartments. Two families of chaperones have been identified: the Hsp60 class, with membranes in the bacterial cytoplasm (GroEL) and in the endosymbiotically derived mitochondria (Hsp60, cph60) and chloroplasts (Rubisco binding protein), TF55/TCPI family in thermophilic archaeans and the evolutionarily connected eukaryotic cytosol. Members of both families consist of two stacked rings (Hendrix, 1979; McMullen and Hallberg, 1987; Pushkin et al., 1982; Trent et al., 1991; Goo et al., 1992), each ring containing radially arranged subunits of relative molecular weight ~60,000 (M r~60k), with seven identical subunits per ring in the GroEL/Hsp60 family (Hendrix, 1979; McMullen and Hallberg, 1987; Pushkin, et al., 1982). Functioning like other molecular chaperones, they appear to act by inhibiting incorrect folding pathways, and are known to bind to a wide variety of nonnative proteins (Saibil and Wood, 1993a,b). In vitro studies with polypeptides diluted from denaturant show that nonnative folding intermediates bind to GroEL with a stoichiometry of one or two polypeptides per GroEL 14-mer (Gouloubinoff et al., 1989a,ó; Martin et al., 1991; Mendoza et al., 1991; Bochkareva et al., 1992).


Circular Dichroism Molecular Chaperone Molten Globule Circular Dichroism Analysis Nonnative Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anfinsen, C. B., 1973, Principles that govern the folding of protein chains, Science 181: 223–230.PubMedCrossRefGoogle Scholar
  2. Azem, M., Kessel, M., and Goloubinoff, P., 1994, Characterization of a functional GroEL14(GroES7)2 chaperonin hetero-oligomer, Science 265: 653–656.PubMedCrossRefGoogle Scholar
  3. Becker, J., and Craig, E. A., 1994, Heat-shock protein as molecular chaperones, Eur. J. Biochem. 219: 11–23.PubMedCrossRefGoogle Scholar
  4. Bochkareva, E. S., Lissin, N. M., Flynn, G. C., Rothman, J. E., and Girshovich, A. S., 1992, Positive cooperativity in the functioning of molecular chaperone GroEL, J. Biol. Chem. 267: 6796–6800.PubMedGoogle Scholar
  5. Bolotina, I. A., Tchekhov, V. O., Lugauskas, V. J., and Ptitsyn, O. B., 1980, Determination of the secondary structure of proteins from circular dichroism spectra III. Protein derived spectra for antiparallel and parallel r3-structures, Mol. Biol. (Moscow) 14: 902–909.Google Scholar
  6. Braig, K., Simon, M., Fujiuya, F., Hainfeld, J. F., and Horowich, A. L., 1993, A polypeptide bound by the chaperonin groEL is localized within the central cavity, Proc. Natl. Acad. Sci. USA 90: 3978–3982.PubMedCrossRefGoogle Scholar
  7. Braig, K., Otwinowski, Z., Hegde, R., Boisvert, D. C., Joachimiak, A., Horowich, A. L., and Sigler, P. B., 1994, The crystal structure of the bacterial chaperonin GroEL at 2.8.11, Nature 371: 578–586.PubMedCrossRefGoogle Scholar
  8. Breukink, E., Kusters, R., and DeKruijff, B., 1992, In-vitro studies of the folding characteristics of the Escherichia coli precursor protein prePhoE, Eur. J. Biochem 208: 419–425.PubMedCrossRefGoogle Scholar
  9. Buchner, J., Schmidt, M., Fuchs, M., Jaenicke, R., Rudolf, R., Schmid, F. X., and Kiefhaber, T., 1991, GroE facilitates refolding of citrate synthase by aggregation, Biochemistry 30: 1586–1591.PubMedCrossRefGoogle Scholar
  10. Bychkova, V. E., Pain, R. H., and Ptitsyn, O. B., 1988, The ‘molecular globule’ state is involved in the translocation of proteins across membranes? FEBS Lett. 238: 231–234.PubMedCrossRefGoogle Scholar
  11. Chen, Y.-H., Yang, J. T., and Martinez, I. H., 1972, Determination of the secondary structures of proteins by circular dichroism and optical dispersion, Biochemistry 11: 4120–4131.PubMedCrossRefGoogle Scholar
  12. Chou, P. Y., and Fasman, G. D., 1974, Prediction of protein conformation, Biochemistry 13: 222–245.PubMedCrossRefGoogle Scholar
  13. DeLuca-Flaherty, C., Flaherty, K. M., McIntosh, L. S., Bahrami, B., and McKay, D. M., 1988, Crystals of an ATPase fragment of bovine clathrin uncoating ATPase, J. Mol. Biol. 200: 749–750.PubMedCrossRefGoogle Scholar
  14. Ellis, R. J., 1978, Proteins as molecular chaperones, Nature 328: 378–379.CrossRefGoogle Scholar
  15. Ellis, R. J., 1990, The molecular chaperone concept, Semin. Cell Biol. 1: 1–9.PubMedGoogle Scholar
  16. Ellis, R. J., and Van der Vies, S. M., 1988, The Rubisco subunit binding-protein, Photosynth. Res. 16: 101–115.CrossRefGoogle Scholar
  17. Ellis, R. J., and Van der Vies, S. M., 1991, Molecular chaperones, Annu. Rev. Biochem. 60: 321–347.PubMedCrossRefGoogle Scholar
  18. Fasman, G. D., Park, K., and Randal, L., 1995, J. Prot. Chem. 14: 595–600.CrossRefGoogle Scholar
  19. Flaherty, K. M., DeLuca-Flaherty, C., and McKay, D. B., 1990, The three-dimensional structure of the ATPase fragment of a 70k heat-shock cognate protein, Nature 346: 623–628.PubMedCrossRefGoogle Scholar
  20. Flaherty, K. M., Wilbanks, S. M., DeLuca-Flaherty, C., and McKay, D. B., 1994, Structural basis of the 70-kilodalton heat shock cognate protein ATP hydrolytic activity, J. Biol. Chem. 269: 12899–12907.PubMedGoogle Scholar
  21. Flynn, G. C., Chappell, T. G., and Rothman, J. E., 1989, Peptide binding and release by proteins implicated as catalysts of protein assembly, Science 245: 385–390.PubMedCrossRefGoogle Scholar
  22. Garnier, J., Osyuthorpe, D. J., and Robson, B., 1978, Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins, J. Mol. Biol. 120: 97–120.PubMedCrossRefGoogle Scholar
  23. Georgopoulos, C., and Ang, D., 1990, The Escherichia coli groE chaperonins, Semin. Cell Biol. 1: 19–25.PubMedGoogle Scholar
  24. Gething, M. J., and Sambrook, J., 1992, Protein folding in the cell, Nature 335: 33–45.CrossRefGoogle Scholar
  25. Goloubinoff, P., Christeller, J. T., Gatenby, A. A., and Lorimer, G. H., 1989a, GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli, Nature 337: 44–47.PubMedCrossRefGoogle Scholar
  26. Goloubinoff, P., Christeller, J. T., Gatenby, A. A., and Lorimer, G. H., 1989b, Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfolded state depends on two chaperonin proteins and Mg-ATP, Nature 342: 884–889.PubMedCrossRefGoogle Scholar
  27. Goo, Y., Thomas, J. O., Chow, R. L., Lee, G. H., and Cowan, N. J., 1992, A cytoplasmic chaperonin that catalyzes I3-actin folding, Cell 69: 1043–1050.CrossRefGoogle Scholar
  28. Gray, T. E., and Fersht, A. R., 1992, Cooperating in ATP hydrolysis by GroEL is increased by GRoES, FEBS Lett. 292: 254–258.CrossRefGoogle Scholar
  29. Greenfield, N., and Fasman, G. D., 1969, Computed circular dichroism spectra for the evaluation of protein conformation, Biochemistry 8: 4108–4116.PubMedCrossRefGoogle Scholar
  30. Hardy, S. J. S., and Randall, L. L., 1991, A kinetic partitioning model of selective binding of nonnative proteins by the bacterial chaperones SecB, Science 251: 439–443.PubMedCrossRefGoogle Scholar
  31. Hartl, F.-U., and Martin, J., 1992, Protein folding in the cell: The roles of molecular chaperones Hsp70 and Hsp60, Annu. Rev. Microbiol. Struct. 21: 293–322.CrossRefGoogle Scholar
  32. Hendrix, R. W., 1979, Purification and properties of groE, a host protein involved in bacteriophage assembly, J. Mol. Biol. 129: 375–392.PubMedCrossRefGoogle Scholar
  33. Holmgren, A., and Branden, C.-I., 1989, Crystal structure of chaperone protein PapD reveals an immunoglobulin fold, Nature 342: 248–251.PubMedCrossRefGoogle Scholar
  34. Horowich, A. L., Caplan, S., Wall, J. S., and Hartl, F.-U., 1992, Chaperonin mediated protein folding, in: Membrane Biogenesis and Protein Targeting (Neupert, W., and Lill, R., eds.), Elsevier, Amsterdam. Ishi, N., Taguchi, H., Sasabe, H., and Yoshida, M., 1994, Folding intermediate binds to the bottom of bullet-shaped holo-chaperonin and is readily accessible to antibody, J. Mol. Biol. 236: 691–696.Google Scholar
  35. Jaenicke, R., 1993, Role of accessory proteins in protein folding, Curr. Opin. Struct. Biol. 3: 104–112.CrossRefGoogle Scholar
  36. Kim, P. S., and Baldwin, R. L., 1982, Specific intermediates in the folding reactions of small proteins and the mechanism of protein folding, Annu. Rev. Biochem. 51: 459–489.CrossRefGoogle Scholar
  37. Kumamoto, C. A., and Francetic, 0., 1993, Highly selective binding of nascent polypeptides by an Escherichia coli chaperone protein in vivo, J. Bacteriol. 175: 2184–2188.Google Scholar
  38. Kumamoto, C. A., and Nault, A. K., 1989, Characterization of the Escherichia coli protein-export gene SecB, Gene 75: 167–175.PubMedCrossRefGoogle Scholar
  39. Laminet, A. A., Ziegelhoffer, J., Georgopoulos, C., and Plücckthun, A., 1990, The Escherichia coli heat shock proteins GroEL and GroES modulate the folding of the ß-lactamase precursor, EMBO J. 9: 2315–2319.PubMedGoogle Scholar
  40. Landry, S. J., and Gierasch, L. M., 1991a, The chaperonin GroEL binds a polypeptide in an a-helical confirmation, Biochemistry 30: 7359–7362.PubMedCrossRefGoogle Scholar
  41. Landry, S. J., and Gierasch, L. M., 1991b, Recognition of nascent polypeptides for targeting and folding, TIBS 16: 159–163.PubMedGoogle Scholar
  42. Landry, S. J., and Gierasch, L. M., 1994, Polypeptide interaction with molecular chaperones and their relationship to in vivo protein folding, Annu. Rev. Biophys. Biomol. Struct. 23: 645–669.PubMedCrossRefGoogle Scholar
  43. Landry, S. J., Jordon, R., McMacken, R., and Gierasch, L. M., 1992, Different conformations for the same polypeptide bound to chaperonins Dnak and GroEL, Nature 335: 455–457.CrossRefGoogle Scholar
  44. Langer, T., Pfeifer, G., Martin, J., Baumeister, W., and Hartl, F.-U., 1992, Chaperonin-mediated protein folding: GroEL cylinder, which accommodates the protein substrate within its central cavity, EMBO J. 11: 4757–4765.PubMedGoogle Scholar
  45. Laskey, R. A., Honda, B. M., Mills, A. D., and Finch, J. T., 1978, Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA, Nature 275: 416–420.PubMedCrossRefGoogle Scholar
  46. Levitt, M., and Chothia, C., 1976, Structural patterns in globular proteins, Nature 261: 552–557.PubMedCrossRefGoogle Scholar
  47. Lissen, N. M., Venyaminov, S. Y., and Girshovich, A. S., 1990, (Mg-ATP)-dependent self-assembly of molecular chaperone GroEL, Nature 348: 339–342.Google Scholar
  48. Maclntyre, S., Mutschler, B., and Henning, U., 1991, Requirement of the SecB chaperone for export of a non-secretory polypeptide in Escherichia coli, Mol. Gen. Genet. 227: 224–228.CrossRefGoogle Scholar
  49. McMullen, T. W., and Hallberg, L., 1987, A normal mitochondrial protein is selectively synthesized and accumulated during heat shock in Tetrahymena thermophila, Mol. Cell Biol. 7: 4414–4423.Google Scholar
  50. Manavalan, P., and Johnson, W. C., Jr., 1987, Variable selection method improves the prediction of protein secondary structure from circular dichroism Spectra, Anal. Biochem. 167: 76–85.PubMedCrossRefGoogle Scholar
  51. Martin, J., Langer, T., Boteva, R., Schramel, A., Horowich, A. L., and Hartl, F.-U., 1991, Chaperoninmediated protein folding at the surface of groEL through a ‘molten globule’-like intermediate, Nature 352: 36–42.PubMedCrossRefGoogle Scholar
  52. Martin, J., Mayhew, M., Langer, T., and Hartl, F.-U., 1993, The reaction cycle of GroEL and GroES in chaperonin-assisted protein folding, Nature 366: 228–233.PubMedCrossRefGoogle Scholar
  53. Mendoza, J. A., and Horowitz, P. M., 1994, The chaperonin assisted and unassisted refolding of rhodanase can be modulated by its N-terminal peptide, J. Protein Chem. 13: 15–22.PubMedCrossRefGoogle Scholar
  54. Mendoza, J. A., Lorimer, G. H., and Horowitz, P. M., 1991, Intermediates in the chaperonin-assisted refolding of rhodanase are trapped at low temperatures and show a small stoichiometry, J. Biol. Chem. 266: 16973–16976.PubMedGoogle Scholar
  55. Nisslon, B., and Anderson, S., 1991, Proper and improper folding of proteins in the cellular environment, Annu. Rev. Microbiol. 45: 607–635.CrossRefGoogle Scholar
  56. Palleros, D. R., Welch, W. J., and Fink, A. L., 1991, Interaction of hsp70 with unfolded proteins: Effects of temperature and nucleotides on the kinetics of binding, Proc. Natl. Acad. Sci. USA 88: 5719–5723.PubMedCrossRefGoogle Scholar
  57. Palleros, D. R., Reid, K. L., McCarthy, J. S., Walker, G. C., and Fink, A. L., 1992, Dnak, hsp73, and their molten globules: Two different ways heat shock proteins respond to heat, J. Biol. Chem. 267: 5279–5285.PubMedGoogle Scholar
  58. Park, K., Flynn, G. C., Rothman, J. E., and Fasman, G. D., 1993, Conformational change of chaperone Hsc70 upon binding to a decapeptide: A circular dichroism study, Protein Sci. 2:325–330. Perczel, A., Hollosi, M., Tusnady, G., and Fasman, G. D., 1989, Convex constraints decomposition of circular dichroism curves of proteins, Croat. Chim. Acta 62: 189–200.Google Scholar
  59. Perczel, A., Hollosi, M., Tusnady, G., and Fasman, G. D., 1991, Convex constraint analysis: A natural deconvolution of circular dichroism curves of proteins, Protein Eng. 4: 669–679.PubMedCrossRefGoogle Scholar
  60. Perczel, A., Park, K., and Fasman, G. D., 1992, Analysis of the circular dichroism spectrum of proteins using the convex constraint algorithm: A practical guide, Anal. Biochem. 203: 83–93.PubMedCrossRefGoogle Scholar
  61. Provencher, S. W., and Glockner, J., 1981, Estimation of globular protein secondary structure from circular dichroism, Biochemistry 20: 33–37.PubMedCrossRefGoogle Scholar
  62. Ptitsyn, O. B., 1973, Stadiinyi mekhanizm samoorganizatsii belkovykh molekul, Dokl. Akad. Nauk SSSR 210: 1213–1215.PubMedGoogle Scholar
  63. Ptitsyn, O. B., 1991, How does protein-synthesis give rise to the 3-D structure? FEBS Lett. 285: 176–181.PubMedCrossRefGoogle Scholar
  64. Pushkin, A. V., Tsuprun, V. L., Solovjeva, N. A., Shubin, V. V., Evstigneeva, Z. G., and Kretovich, W. L., 1982, High molecular weight pea leaf protein similar to the groE protein of Escherichia coli, Biochim. Biophys. Acta 704: 379–384.CrossRefGoogle Scholar
  65. Randall, L. L., 1992, Peptide binding by chaperone SecB. Implications for recognition of nonnative structure, Science 257: 241–245.PubMedCrossRefGoogle Scholar
  66. Sadis, S., Raghavendra, K., and Hightower, L. E., 1990, Secondary structure of the mammalian 70kilodalton heat shock cognate protein analyzed by circular dichroism spectroscopy and secondary structure prediction, Biochemistry 29: 8199–8206.PubMedCrossRefGoogle Scholar
  67. Saibil, H. R., and Wood, S., 1993a, Chaperonins, Curr. Biol. 3: 265–273.PubMedCrossRefGoogle Scholar
  68. Saibil, H., and Wood, S., 1993b, Chaperonins, Curr. Opin. Struct. Biol. 3: 207–213.CrossRefGoogle Scholar
  69. Schlossman, D. M., Schmid, S. L., Brae11, W. A., and Rothman, J. E., 1984, An enzyme that removes clathrin coats: Purification of an uncoating ATPase, J. Cell Biol. 99: 723–733.PubMedCrossRefGoogle Scholar
  70. Schmidt, M., 1994, Symmetric complexes of GroE chaperonins as part of the functional cycle, Science 265: 656–659.PubMedCrossRefGoogle Scholar
  71. Schmidt, M., and Buchner, J., 1992, Interaction of GroE with an all (3-protein, J. Biol. Chem. 267: 16829–16833.PubMedGoogle Scholar
  72. Schmidt, M., Buchner, J., Todd, M. J., Lorimer, G. H., and Vitanen, P. V., 1994, On the role of GroES in the chaperonin-assisted folding reaction-3 case studies, J. Biol. Chem. 269: 10304–10311.PubMedGoogle Scholar
  73. Schneider, G., Lindqvist, Y., and Lunqvist, T., 1990, Crystallographic refinement and structure of ribulose1,5-bisphosphate carboxylase from Rhodospirillum rubrum at 1.7À resolution, J. Mol. Biol. 211: 989–1008.PubMedCrossRefGoogle Scholar
  74. Shinde, U., Li, Y., Chatterjee, S., and Inouye, M., 1993, Folding pathways mediated by an intramolecular chaperone, Proc. Natl. Acad. Sci. USA 90: 6924–6928.PubMedCrossRefGoogle Scholar
  75. Spangfort, M. D., Surin, B. P., Oppentocht, J. E., Weibull, C., Carlemalm, E., Dixon, N. E., and Svensson, A., 1993, Crystallization and preliminary X-ray investigations of the Escherichia coli molecular chaperone cph60 (GroEL), FEBS Lett. 320: 160–164.PubMedCrossRefGoogle Scholar
  76. Svensson, L. A., Surin, B. P., Dixon, N. E., and Spangfort, M. D., 1994, The symmetry of Escherichia coli cpn60 (GroEL) determined by X-ray crystallography, J. Mol. Biol. 235: 47–52.PubMedCrossRefGoogle Scholar
  77. Todd, M., Vitanen, P. V., and Lorimer, G. H., 1993, Hydrolysis of adenosine 5’-triphosphate by Escherichia coli GroEL: Effects of GroES and potassium ion, Biochemistry 32: 8560–8567.PubMedCrossRefGoogle Scholar
  78. Todd, M., Vitanen, P. V., and Lorimer, G. H., 1994, Dynamics of the chaperonin ATPase cycle: Implications for facilitated protein folding, Science 265: 659–666.PubMedCrossRefGoogle Scholar
  79. Trent, J. D., Nimmesgern, E., Wall, J. C., Hartl, F.-U., and Horowich, A. L., 1991, A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein t-complex polypeptide-1, Nature 354: 490–493.PubMedCrossRefGoogle Scholar
  80. Van der Vies, S. M., Viitanen, P. V., Gatenby, A. A., Lorimer, G. H., and Jaenicke, R., 1992, Conformational states of ribulosebisphosphate carboxylase and their interaction with chaperonin 60, Biochemistry 31: 3635–3644.PubMedCrossRefGoogle Scholar
  81. Yang, J. T., Wu, C.-S. C., and Martinez, H. M., 1986, Calculations of protein conformation from circular dichroism, Methods Enzymol. 130: 208–269.PubMedCrossRefGoogle Scholar
  82. Zahn, R., Harris, J. R., Pfeifer, G., Plucktun, A., and Baumeister, W., 1993, 2-Dimensional crystals of the molecular chaperone GroEL reveal structural plasticity, J. Mol. Biol. 229: 579–584.Google Scholar
  83. Zardemta, G., and Horowitz, P. M., 1992, Micelle-assisted folding, J. Biol. Chem. 219: 11–23.Google Scholar
  84. Zeilstra-Ryalls, J., Fayet, O., and Georgopoulos, C., 1991, The universally conserved GroE(Hsp60)chaperonins, Annu. Rev. Microbiol. 45: 301–325.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Gerald D. Fasman
    • 1
  1. 1.Department of BiochemistryBrandeis UniversityWalthamUSA

Personalised recommendations