Determination of the Conformation of Nucleic Acids by Electronic CD

  • W. Curtis JohnsonJr.


The natural and synthetic nucleic acids are polymers of nucleotides that in turn are made up of an aromatic base, a sugar, and a phosphate group. The bases are the chromophores that absorb ultraviolet light to undergo electronic transitions, which begin at 300 nm and continue into the vacuum UV region. In the case of DNA these bases are adenine (A), guanine (G), cytosine (C), and thymine (T); in the case of RNA the bases are A, G, C, and uracil (U), which is closely related to T both structurally and chromophorically. The structure of these five bases is given in Fig. 1. The sugar is ribose in the case of RNA and 2′-deoxyribose in the case of DNA. The electronic transitions of the ether and hydroxyl groups of these saturated sugars begin at 200 nm, but their weak intensity is buried under the strong intensity of the electronic transitions of the aromatic bases. Electronic transitions of the phosphate group begin even further into the vacuum UV. Therefore, the CD of the nucleic acids that corresponds to the electronic transitions results from the bases.
Figure 1

The electronic structure of the nucleic acid bases: adenine (A), guanine (G), cytosine (C) thymine (T), and uracil (U). ○, π electrons; ●, nonbonding electrons.


Circular Dichroism Negative Band Sodium Perchlorate Anti Conformation Normal Absorption Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, F. S., Gray, D. M., Roberts, G. P., and Tinoco, I., Jr., 1972, The ultraviolet circular dichroism of some natural DNAs and an analysis of the spectra for sequence information, Biopolymers 11: 853–879.PubMedCrossRefGoogle Scholar
  2. André, A., Guschlbauer, W., and Holy, A., 1974, Oligonucleotide conformations, Nucleic Acids Res. 1: 1031–1042.PubMedCrossRefGoogle Scholar
  3. Antao, V. P., Gray, D. M., and Ratliff, R. L., 1988, CD of six different conformational rearrangements of poly[d(A-G)•d(C-T)] induced by low pH, Nucleic Acids Res. 16: 719–738.PubMedCrossRefGoogle Scholar
  4. Antao, V. P., Ratliff, R. L., and Gray, D. M., 1990, CD evidence that the alternating purine—pyrimidine sequence poly[d(A-C) d(G-T)], but not poly[d(A-T) d(A-T)1, undergoes an acid-induced transition to a modified secondary conformation, Nucleic Acids Res. 18: 4111–4121.PubMedCrossRefGoogle Scholar
  5. Baase, W. A., and Johnson, W. C., Jr., 1979, Circular dichroism and DNA secondary structure, Nucleic Acids Res. 6: 797–814.PubMedCrossRefGoogle Scholar
  6. Behe, M., and Felsenfeld, G., 1981, Effects of methylation on a synthetic polynucleotide: The B—Z transition in poly(dG-msdC)poly(dG-msdC), Proc. Natl. Acad. Sci. USA 78: 1619–1623.PubMedCrossRefGoogle Scholar
  7. Bokma, J. T., Johnson, W. C., Jr., and Blok, J., 1987, CD of the Li-salt of DNA in ethanol/water mixtures: Evidence for the B- to C-form transition in solution, Biopolymers 26: 893–909.PubMedCrossRefGoogle Scholar
  8. Bourtayre, P., Liquier, J., Pizzorni, L., and Taillandier, E., 1987, Z form of poly d(A-T)•poly d(A-T) in solution studied by CD and UV spectroscopies, J. Biomol. Structure Dynamics 5: 97–104.CrossRefGoogle Scholar
  9. Brahms, J., and Mommaerts, W. F. H. M., 1964, A study of conformation of nucleic acids in solution by means of circular dichroism, J. Mol. Biol. 10: 73–88.PubMedCrossRefGoogle Scholar
  10. Brahms, J., Michelson, A. M., and van Holde, K. E., 1966, Adenylate oligomers in single-and double-stranded conformation, J. Mol. Biol. 15: 467–488.PubMedCrossRefGoogle Scholar
  11. Brahms, J., Maurizot, J. C., and Michelson, A. M., 1967a, Conformation and thermodynamic properties of oligocytidylic acids, J. Mol. Biol. 25: 465–480.PubMedCrossRefGoogle Scholar
  12. Brahms, J., Maurizot, J. C., and Michelson, A. M., 1967b, Conformational stability of dinucleotides in solution, J. Mol. Biol. 25: 481–495.PubMedCrossRefGoogle Scholar
  13. Brahms, S., Vergne, J., Brahms, J. G., DiCapua, E., Bucher, P., and Koller, T., 1982, Natural DNA sequences can form left-handed helices in low salt solution under conditions of topological constraint, J. Mol. Biol. 162: 473–493.PubMedCrossRefGoogle Scholar
  14. Bush, C. A., and Scheraga, H. A., 1969, Optical activity of single-stranded polydeoxyadenylic and polyriboadenylic acids; dependence of adenine chromophore Cotton effects on polymer conformation, Biopolymers 7: 395–409.CrossRefGoogle Scholar
  15. Butzow, J. J., Shin, Y. A., and Eichhorn, G. L., 1984, Effect of template conversion from the B to the Z conformation on RNA polymerase activity, Biochemistry 23: 4837–4843.PubMedCrossRefGoogle Scholar
  16. Cantor, C. R., Fairclough, R. H., and Newmark, R. A., 1969, Oligonucleotide interactions. II. Differences in base stacking in linear and cyclic deoxythymidine oligonucleotides, Biochemistry 8: 3610–3617.PubMedCrossRefGoogle Scholar
  17. Cantor, C. R., Warshaw, M. M., and Shapiro, H., 1970, Oligonucleotide interactions. III. Circular dichroism studies of the conformation of deoxyoligonucleotides, Biopolymers 9: 1059–1077.PubMedCrossRefGoogle Scholar
  18. Causley, G. C., Staskus, P. W., and Johnson, W. C., Jr., 1983, Improved methods of analysis for CD data applied to single-strand stacking, Biopolymers 22: 945–967.PubMedCrossRefGoogle Scholar
  19. Chen, C., Kilkuskie, R., and Hanlon, S., 1981, Circular dichroism spectral properties of covalent complexes of deoxyribonucleic acid and n-butylamine, Biochemistry 20: 4987–4995.PubMedCrossRefGoogle Scholar
  20. Chen, H. H., Behe, M. J., and Rau, D. C., 1984, Critical amount of oligovalent ion binding required for the B—Z transition of poly(dG-m5dC), Nucleic Acids Res. 12: 2381–2389.PubMedCrossRefGoogle Scholar
  21. Cowman, M. K., and Fasman, G. D., 1978, Circular dichroism analysis of mononucleosome DNA conformation, Proc. Natl. Acad. Sci. USA 75: 4759–4763.PubMedCrossRefGoogle Scholar
  22. El Antri, S., Mauffret, O., Monnot, M., Lescot, E., Convert, O., and Fermandjian, S., 1993, Structural deviations of CpG provides a plausible explanation for the high frequency of mutation of this site, J. Mol. Biol. 230: 373–378.PubMedCrossRefGoogle Scholar
  23. Galat, A., and Jankowski, A., 1982, Circular dichroism study of modified nucleosides, Biopolymers 21: 849–858.CrossRefGoogle Scholar
  24. Girod, J. C., Johnson, W. C., Jr., Huntington, S. K., and Maestre, M. F., 1973, Conformation of deoxyribonucleic acid in alcohol solutions, Biochemistry 12: 5092–5096.PubMedCrossRefGoogle Scholar
  25. Gray, D. M., and Tinoco, I., Jr., 1970, A new approach to the study of sequence-dependent properties of polynucleotides, Biopolymers 9: 223–244.CrossRefGoogle Scholar
  26. Gray, D. M., Ratliff, R. L., and Allen, F. S., 1981, Sequence dependence of the circular dichroism of synthetic double stranded RNAs, Biopolymers 20: 1337–1382.CrossRefGoogle Scholar
  27. Gray, D. M., Liu, J. J., Ratliff, R. L., Antao, V. P., and Gray, C. W., 1987, CD spectroscopy of acid-induced structures of polydeoxyribonucleotides: Importance of CC’ base pairs, Struct. Express. 2: 147–166.Google Scholar
  28. Greve, J., Maestre, M. F., and Levin, A., 1977, Circular dichroism of adenine and thymine containing synthetic polynucleotides, Biopolymers 16: 1489–1504.PubMedCrossRefGoogle Scholar
  29. Gudibande, S. R., Jayasena, S. D., and Behe, M. J., 1988, CD studies of double-stranded polydeoxynucleotides composed of repeating units of contiguous homopurine residues, Biopolymers 27: 1905–1915.PubMedCrossRefGoogle Scholar
  30. Guschlbauer, W., and Courtois, Y., 1968, pH induced changes in optical activity of guanine nucleosides, FEBS Lett. 1: 183–186.Google Scholar
  31. Hall, K. B., and Maestre, M. F., 1984, Temperature-dependent reversible transition of poly(dCdG)• poly(dCdG) in ethanolic and methanolic solutions, Biopolymers 23: 2127–2139.PubMedCrossRefGoogle Scholar
  32. Hanlon, S., Johnson, R. S., Wolf, B., and Chan, A., 1972, Mixed conformations of deoxyribonucleic acid in chromatin: A preliminary report, Proc. Natl. Acad. Sci. USA 69: 3263–3267.PubMedCrossRefGoogle Scholar
  33. Harder, M. E., and Johnson, W. C., Jr., 1990, Stabilization of the Z’ form of poly(dGdC): poly(dGdC) in solution by multivalent ions relates to the Z„ form in crystals, Nucleic Acids Res. 18: 2141–2148.PubMedCrossRefGoogle Scholar
  34. Hung, S.-H., Yu, Q., Gray, D. M., and Ratliff, R. L., 1994, Evidence from CD spectra that d(purine)r(pyrimidine) and r(purine)d(pyrimidine) hybrids are in different structural classes, Nucleic Acids Res. 22: 4326–4334.PubMedCrossRefGoogle Scholar
  35. Johnson, K. H., and Gray, D. M., 1991, A method for estimating the nearest neighbor base-pair content of RNAs using CD and absorption spectroscopy, Biopolymers 31373–384.Google Scholar
  36. Johnson, K. H., and Gray, D. M., 1992, Analysis of an RNA pseudoknot structure by CD spectroscopy, J. Biomol. Struct. Dyn. 9: 733–745.PubMedCrossRefGoogle Scholar
  37. Johnson, K. H., Gray, D. M., Morris, P. A., and Sutherland, J. C., 1990, A•U and G•C base pairs in synthetic RNAs have characteristic vacuum UV CD bands, Biopolymers 29: 325–333.PubMedCrossRefGoogle Scholar
  38. Johnson, W. C., Jr., 1985, Circular dichroism and its empirical application, in: Methods of Biochemical Analysis ( D. Glick, ed.), Vol. 31, pp. 62–125, Wiley, New York.CrossRefGoogle Scholar
  39. Johnson, W. C., Jr., 1990, Electronic circular dichroism spectroscopy of nucleic acids, in: LandoltBörnstein Numerical Data and Functional Relationships in Science and Technology ( W. Saenger, ed.), Vol. 1, pp. 1–24, Springer-Verlag, Berlin.Google Scholar
  40. Kang, H., Chou, P.-J., Johnson, W. C., Jr., Weller, D., Huang, S.-B., and Summerton, J. E., 1992, Stacking interactions of ApA analogues with modified backbones, Biopolymers 32: 1351–1363.PubMedCrossRefGoogle Scholar
  41. MacDermott, A. J., and Drake, A. F., 1986, Circular dichroism of positively and negatively supercoiled DNA, Stud. Biophys. 115: 59–67.Google Scholar
  42. Markham, A. F., Uesugi, S., Ohtsuka, E., and Ikehara, M., 1979, Influence of terminal 3’ phosphates or 2’,3’-cyclic phosphates on the conformations of oligoriboadenylates, oligoribocytidylates, and the corresponding monomers, Biochemistry 18: 4936–4942.PubMedCrossRefGoogle Scholar
  43. Mathelier, H. D., Howard, F. B., and Miles, H. T., 1979, Circular dichroism of helices formed by purine monomers with pyrimidine polynucleotides, Biopolymers 18: 709–722.CrossRefGoogle Scholar
  44. Pettegrew, J. W., Miles, D. W., and Eyring, H., 1977, Circular dichroism of adenosine dinucleotides, Proc. Natl. Acad. Sci. USA 74: 1785–1788.PubMedCrossRefGoogle Scholar
  45. Pohl, F. M., and Jovin, T. M., 1972, Salt-induced co-operative conformation change of a synthetic DNA: Equilibrium and kinetic studies with poly(dG-dC), J. Mol. Biol. 67: 375–396.PubMedCrossRefGoogle Scholar
  46. Puglisi, J. D., Wyatt, J. R., and Tinoco, I., Jr., 1990, Conformation of an RNA pseudoknot, J. Mol. Biol. 214: 437–453.PubMedCrossRefGoogle Scholar
  47. Riazance, J. H., Baase, W. A., Johnson, W. C., Jr., Hall, K., Cruz, P., and Tinoco, I., Jr., 1985, Evidence for Z-form RNA by vacuum UV circular dichroism, Nucleic Acids Res. 13: 4983–4989.PubMedCrossRefGoogle Scholar
  48. Riazance, J. H., Johnson, W. C., Jr., McIntosh, L. P., and Jovin, T. M., 1987, Vacuum UV circular dichroism is diagnostic for the left-handed Z form of poly[d(A-C)d(G-T)] and other polydeoxynucleotides, Nucleic Acids Res. 15: 7627–7636.Google Scholar
  49. Riazance-Lawrence, J. H., and Johnson, W. C., Jr., 1992, Multivalent ions are necessary for poly[d(AC)•d(GT)] to assume the Z form: A CD study, Biopolymers 32: 271–276.PubMedCrossRefGoogle Scholar
  50. Rill, R., and van Holde, K. E., 1973, Properties of nuclease-resistant fragments of calf thymus chromatin, J. Biol. Chem. 248: 1080–1083.PubMedGoogle Scholar
  51. Sprecher, C. A., and Johnson, W. C., Jr., 1977, Circular dichroism of the nucleic acid monomers, Biopolymers 16: 2243–2264.Google Scholar
  52. Sprecher, C. A., and Johnson, W. C., Jr., 1982, Change in conformation of various DNAs on melting as followed by circular dichroism, Biopolymers 21: 321–329.PubMedCrossRefGoogle Scholar
  53. Sprecher, C. A., Baase, W. A., and Johnson, W. C., Jr., 1979, Conformation and circular dichroism of DNA, Biopolymers 18: 1009–1019.PubMedCrossRefGoogle Scholar
  54. Steely, H. T., Jr., Gray, D. M., and Ratliff, R. L., 1986, CD of homopolymer DNA-RNA hybrid duplexes and triplexes containing A-T or A U base pairs, Nucleic Acids Res. 14: 10071–10090.PubMedCrossRefGoogle Scholar
  55. Sutherland, J. C., and Griffin, K. P., 1983, Vacuum ultraviolet circular dichroism of poly(dI-dC)poly(dIdC): No evidence for a left-handed double helix, Biopolymers 22: 1445–1448.CrossRefGoogle Scholar
  56. Sutherland, J. C., Griffin, K. P., Keck, P. C., and Takacs, P. Z., 1981, Z-DNA: Vacuum ultraviolet circular dichroism, Proc. Natl. Acad. Sci. USA 78: 4801–4804.PubMedCrossRefGoogle Scholar
  57. Sutherland, J. C., Lin, B., Mugavero, J., Trunk, J., Tomasz, M., Santella, R., Marky, L., and Breslauer, K. J., 1986, Vacuum ultraviolet circular dichroism of double stranded nucleic acids, Photochem. Photobiol. 44: 295–301.PubMedCrossRefGoogle Scholar
  58. Tunis-Schneider, M. J. B., and Maestre, M. F., 1970, Circular dichroism spectra of oriented and unoriented deoxyribonucleic acid films—A preliminary study, J. Mol. Biol. 52: 521–541.PubMedCrossRefGoogle Scholar
  59. Vorlíckovâ, M., Kypr, J., Kleinwächter, K., and Palecek, E., 1980, Self-induced conformational changes in poly(dA-dT), Nucleic Acids Res. 8: 3965–3973.PubMedCrossRefGoogle Scholar
  60. Vorlíckovâ, M., Sklenâr, V., and Kypr, J., 1983, Salt-induced conformational transition of poly[d(A-T)]poly[d(A-T)], J. Mol. Biol. 166: 85–92.PubMedCrossRefGoogle Scholar
  61. Vorlíckovâ, M., Johnson, W. C., Jr., and Kypr, J., 1994, Vacuum-UV CD spectrum of the X-form of double-stranded poly(dA-dT), Biopolymers 34: 299–301.CrossRefGoogle Scholar
  62. Wang, J. C., 1978, DNA: Bihelical structure, supercoiling, and relaxation, Cold Spring Harbor Symp. Quant. Biol. 43: 29–33.CrossRefGoogle Scholar
  63. Wang, J. C., 1979, Helical repeat of DNA in solution, Proc. Natl. Acad. Sci. USA 76: 200–203.PubMedCrossRefGoogle Scholar
  64. Warshaw, M. M., and Cantor, C. R., 1970, Oligonucleotide interactions. IV. Conformational differences between deoxy-and ribodinucleoside phosphates, Biopolymers 9: 1079–1103.PubMedCrossRefGoogle Scholar
  65. Wells, B. D., and Yang, J. T., 1974a, A computer probe of the circular dichroic bands of nucleic acids in the ultraviolet region. I. Transfer ribonucleic acid, Biochemistry 13: 1311–1316.PubMedCrossRefGoogle Scholar
  66. Wells, B. D., and Yang, J. T., 1974b, A computer probe of the circular dichroic bands of nucleic acids in the ultraviolet region. II. Double-stranded ribonucleic acid and deoxyribonucleic acid, Biochemistry 13: 1317–1321.PubMedCrossRefGoogle Scholar
  67. Wyatt, J. R., Puglisi, J. D., and Tinoco, I., Jr., 1990, RNA pseudoknots stability and loop size requirements, J. Mol. Biol. 214: 455–470.PubMedCrossRefGoogle Scholar
  68. Xodo, L. E., Manzini, G., Quadrifoglio, F., Yathindra, N., van der Marel, G. A., and van Boom, J. H., 1989, The left-handed Z-DNA conformation in oligodeoxynucleotides containing different amounts of AT base pairs: A far UV circular dichroism study, J. Biomol. Struct. Dynam. 6: 1217–1231.CrossRefGoogle Scholar
  69. Zacharias, W., Larson, J. E., Klysik, J., Stirdivant, S. M., and Wells, R. D., 1982, Conditions which cause the right-handed to left-handed DNA conformational transitions, J. Biol. Chem. 257: 2775–2782.PubMedGoogle Scholar
  70. Zimmerman, S. B., and Pheiffer, B. H., 1979, Helical parameters of DNA do not change when DNA fibers are wetted: X-ray diffraction study, Proc. Natl. Acad. Sci. USA 76: 2703–2707.PubMedCrossRefGoogle Scholar
  71. Zimmerman, S. B., and Pheiffer, B. H., 1980, Does DNA adopt the C form in concentrated salt solutions or in organic solvent/water mixtures? An X-ray diffraction study of DNA fibers immersed in various media, J. Mol. Biol. 142: 315–330.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • W. Curtis JohnsonJr.
    • 1
  1. 1.Department of Biochemistry and BiophysicsOregon State UniversityCorvallisUSA

Personalised recommendations