Differentiation between Transmembrane Helices and Peripheral Helices by the Deconvolution of Circular Dichroism Spectra of Membrane Proteins

  • Gerald D. Fasman


Conformational studies of membrane proteins lag far behind those of soluble proteins mainly because of the difficulties associated with crystallization of membrane proteins for x-ray diffraction studies, and because of the restricted movement of the proteins embedded in the membrane for NMR studies (Kühlbrandt, 1988; Smith and Griffin, 1988). X-ray crystallography is still the only routine method for determining the three-dimensional structures of biological macromolecules at high resolution (Kühlbrandt, 1988) which can be utilized for the comparison of the structures determined by circular dichroism (CD) deconvolution. However, cryoelectron microscopy (Hendersson et al., 1990; Kühlbrandt et al., 1994) has also been used successfully. Three-dimensional structures of seven membrane protein complexes have been determined. These are: the bacterial photosynthetic reaction centers of Rhodobacter (Rb.) viridis (Deisenhofer et al., 1984, 1985; Deisenhofer and Michel, 1989) and of Rb. sphaeroides (Chang et al., 1986; Allen et al., 1986, 1987; Feher et al., 1989), porin from Rb. capsulatus (Weiss et al., 1991; Kreusch et al., 1991), photoactive yellow protein (PYP) from the purple photoautotropic bacterium, Ectothiorhodospila halophilia (McRee et al., 1989), bacteriorhodopsin from Halobacterium halobium (Henderson et al., 1990), light-harvesting chlorophyll a/b protein complex (Kühlbrandt et al., 1994), and protein prostaglandin H2 synthase-1 (Picot et al., 1994). The structure of membrane proteins have not been determined by alternate methods, such as NMR, since a membrane-embedded protein, because of restriction of motion which renders an isotropy in dipolar, quadrupolar, and/or chemical shifts in resonances, shows powder patterns in NMR spectroscopy making it harder to interpret the data (Bovey, 1988; Smith and Griffin, 1988). Even solid-state NMR, such as cross-polarization magic angle spin NMR, to compensate the anisotropy, has limited success in obtaining structural information about prosthetic groups in membrane proteins, such as retinal in bacteriorhodopsin (Harbison et al., 1985; Smith et al., 1989) and in rhodopsin (Smith et al., 1987; Mollevanger et al., 1987). While electron microscopy (EM) has provided the overall shape of a protein including the number of helix strands, detailed information regarding secondary structure is not likely to be easily obtained from EM. Therefore, the conformational database is not adequate to evaluate the deconvolution results, as was the case for the soluble proteins (Perczel et al., 1992).


Circular Dichroism Component Spectrum Purple Membrane Circular Dichroism Band Helix Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations Used in This Chapter


adenosine triphosphate


cyclohexane diaminotetraacetic acid


pentaethylene glycol monooctyl ether (octylpentaoxyethylene)


octyl(polydisperse)-oligooxyethylene (octylpolyoxyethylene OPOE)


tetraethylene glycol monooctyl ether (octyltetraoxyethylene)


decylheptaoxyethylene (heptaethylene glycol decyl ether)


dodecyloctaoxyethylene (octaethylene glycol dodecyl ether)




ethylene glycol tetraacetic acid


dimethyl dodecylamine-N-oxide


n-dodecyl-β-d-maltoside (lauryl malto-side)


2-[N-morpholino] ethane sulfonic acid


3-[N-morpholino] propane sulfonic acid




octyl(polydisperse)-oligooxyethylene (octylpolyoxyethylene)


polyacrylamide gel electrophoresis




sodium dodecyl sulfate


(N-tris [Hydroxymethyl] methyl-2-amino sulfonic acid)

Tween 20

polyoxyethylene sorbitan monolaurate


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, J. P., Feher, G., Yeates, T. O., Rees, D. C., Deisenhofer, J., Michel, H., and Huber, R., 1986, Structural homology of reaction centers from Rhodopseudomonas sphaeroides and Rhodopseudomonas viridis as determined by X-ray diffraction, Proc. Natl. Acad. Sci. USA 83: 8589–8593.PubMedCrossRefGoogle Scholar
  2. Allen, J. P., Feher, G., Yeates, T. O., Komiya, H., and Rees, D. C., 1987, Structure of the reaction center from Rhodobacter sphaeroides R-26: The protein subunits, Proc. Natl. Acad. Sci. USA 84: 6162–6166.PubMedCrossRefGoogle Scholar
  3. Appell, K. C., and Low, P. S., 1981, Partial structural characterization of cytoplasmic domain of the erythrocyte membrane protein, Band 3, J. Biol. Chem. 256: 11104–11111.PubMedGoogle Scholar
  4. Bolotina, I. A., Chekhov, V. O., Lugauskas, V. Y., and Ptitsyn, O. B., 1981, Determination of the secondary structure of proteins from circular dichroism spectra. III. Protein derived reference spectra for antiparallel and parallel ß structures, Mol. Biol. 15:130–137. Translated from Mol. Biol. (USSR) (1980) 15: 167–175.Google Scholar
  5. Bovey, F. A., 1988, NMR of solids, in: Nuclear Magnetic Resonance Spectroscopy, 2nd ed. ( F. A. Bovey, ed.), pp. 399–436, Academic Press, New York.Google Scholar
  6. Brahms, S., and Brahms, J., 1980, Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism, J. Mol. Biol. 138: 149–178.PubMedCrossRefGoogle Scholar
  7. Brandl, C. J., Green, N. M., Korczak, B., and MacLennan, D. H., 1986, Two Ca2+ ATPase genes: Homologies and mechanistic implications of deduced amino acid sequences, Cell 44: 597–607.PubMedCrossRefGoogle Scholar
  8. Brandi, C. J., deLeon, S., Martin, D. R., and MacLennan, D. H., 1987, Adult forms of the Ca2+ ATPase of sarcoplasmic reticulum, J. Biol. Chem. 262: 3768–3774.Google Scholar
  9. Brith-Lindner, M., and Rosenheck, K., 1977, The circular dichroism of bacteriorhodopsin: Asymmetry and light scattering distortions, FEBS Leu. 76: 41–44.CrossRefGoogle Scholar
  10. Brunden, K. R., Uratani, Y., and Cramer, W. A., 1984, Dependence of the conformation of a colicin El channel-forming peptide on acidic pH and solvent polarity, J. Biol. Chem. 259: 7682–7687.PubMedGoogle Scholar
  11. Büldt, G., Mischel, M., Hentshel, M. P., Regenass, M., and Rosenbusch, J. P., 1986, Two dimensional lattices of porin diffract to 6A resolution, FEBS Lett. 205: 29–31.CrossRefGoogle Scholar
  12. Capaldi, R. A., 1990, Structure and function of cytochrome C oxidase, Annu. Rev. Biochem. 59: 569–596.PubMedCrossRefGoogle Scholar
  13. Casey, J. R., and Reithmeier, R. A. F., 1991, Analysis of the oligomeric state of Band 3, the anion transport protein of the human erythrocyte membrane, by size exclusion high performance liquid chromatography, J. Biol. Chem. 266: 15726–15737.PubMedGoogle Scholar
  14. Casey, J. R., Leiberman, D. M., and Reithmeier, R. A. F., 1989, Purification and characterization of Band 3 protein, Methods Enzymol. 173: 494–512.PubMedCrossRefGoogle Scholar
  15. Chang, C.-H., Tiede, D., Tang, J., Smith, U., Norris, J., and Schiffer, M., 1986, Structure of Rhodopseudomonas sphaeroides R-26 reaction center, FEBS Lett. 205: 82–86.PubMedCrossRefGoogle Scholar
  16. Chang, C. T., Wu, C.-S. C., and Yang, J. T., 1978, Circular dichroism analysis of protein conformation: Inclusion of the β-turns, Anal. Biochem. 91: 13–31.PubMedCrossRefGoogle Scholar
  17. Chen, Y.-H., Yang, J. T., and Chau, K. H., 1974, Determination of the helix and β-form of proteins in aqueous solution by circular dichroism, Biochemistry 13: 3350–3359.PubMedCrossRefGoogle Scholar
  18. Chin, J. J., Jung, E. K. Y., Chen, V., and Jung, C. Y., 1987, Structural basis of human erythrocyte glucose transporter function in proteoliposome vesicles: Circular dichroism measurements, Proc. Natl. Acad. Sci. USA 84: 4113–4116.PubMedCrossRefGoogle Scholar
  19. Chou, P. Y., and Fasman, G. D., 1974, Prediction of protein conformation, Biochemistry 13: 222–245.PubMedCrossRefGoogle Scholar
  20. Chou, P. Y., and Fasman, G. D., 1977, β-turns in proteins, J. Mol. Biol. 115: 135–175.Google Scholar
  21. Cleveland, M. B., Slatin, S., Finkelstein, A., and Levinthal, C., 1983, Structure—function relationships for a voltage-dependent ion channel: Properties of COOH terminal fragments of colicin El, Proc. Natl. Acad. Sci. USA 80: 3706–3710.PubMedCrossRefGoogle Scholar
  22. Cogdell, R. J., and Scheer, H., 1985, Circular dichroism of light harvesting complexes from purple photosynthetic bacteria, Photochem. Photobiol. 42: 669–678.CrossRefGoogle Scholar
  23. Cogdell, R. J., Woolley, K., McKenzie, R. C., Lindsay, J. G., Michel, H., Dobler, J., and Zinth, W., 1985, Crystallization of the B800–850-complex from Rhodopseudomonas acidophila strain 7750, in: Antennas and Reaction Centers of Photosynthetic Bacteria ( M. E. Michel-Beyerle, ed.), pp. 85–87, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  24. Cogdell, R. J., Woolley, K. J., Ferguson, L. A., and Dawkins, D. J., 1990, Crystallization of purple bacterial antenna complexes, in: Crystallization of Membrane Proteins ( H. Michel, ed.), pp. 125–136, CRC Press, Boca Raton, FL.Google Scholar
  25. Cross, R. L., 1988, The number of functional catalytic sites on F,-ATPases and the effects of quaternary structural asymmetry on their properties, J. Bioenerg. Biomembr. 20: 395–405.PubMedCrossRefGoogle Scholar
  26. Dankert, J. R., Uratani, Y., Grabau, C., Cramer, W. A., and Hermodson, M., 1982, On a domain structure of colicin El, J. Biol. Chem. 257: 3857–3863.PubMedGoogle Scholar
  27. Davidson, V. L., Brunden, K. R., Cramer, W. A., and Cohen, F. S., 1984, Studies on the mechanism of action of channel-forming colicins using artificial membranes, J. Membr. Biol. 79: 105–118.PubMedCrossRefGoogle Scholar
  28. Deisenhofer, J., and Michel, H., 1989, The photosynthetic reaction center from the purple bacterium Rhodopseudomonas viridis, Science 245: 1463–1473.PubMedCrossRefGoogle Scholar
  29. Deisenhofer, J., Epp, O., Miki, K., Huber, R., and Michel, H., 1984, X-ray structure analysis of a membrane protein complex. Electron density map at 3 A resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis, J. Mol. Biol. 180. 385–398.PubMedCrossRefGoogle Scholar
  30. Deisenhofer, J., Epp, O., Miki, K., Huber, R., and Michel H., 1985, Structure of the protein subunits in the photosynthetic reaction center of Rhodopseudomonas viridis at 3A solution, Nature 318: 618–624.PubMedCrossRefGoogle Scholar
  31. Dencher, N. A., and Heyn, M. P., 1978, Formation and properties of bacteriorhodopsin monomers in the non-ionic detergents octyl-β-n-glucoside and Triton X-100, FEBS Lett. 96: 322–326.PubMedCrossRefGoogle Scholar
  32. Duysens, L. N. M., 1956, The flattening of the absorption spectrum of suspensions, as compared to that of solutions, Biochim. Biophys. Acta 19: 1–12.PubMedCrossRefGoogle Scholar
  33. Falson, P. D., Pietro, A., Jault, J.-M., and Gautheron, D. C., 1986, Chemical modification of thiol group of mitochondrial F,-ATPase from the yeast Schizosaccharomyies pombe, J. Biol. Chem. 261: 7151–7159.PubMedGoogle Scholar
  34. Falson, P., Di Pietro, A., Jault, J.-M., Gautheron, D. C., and Boutry, M., 1989, Purification from a yeast mutant of mitochondrial F1 with modified β-subunit. High affinity for nucleotides and high negative cooperativity of ATPase activity, Biochim. Biophys. Acta 975: 119–126.PubMedCrossRefGoogle Scholar
  35. Feher, G., Allen, J. P., Okamura, M. Y., and Rees, D. C., 1989, Structure and function of bacterial photosynthetic reaction centers, Nature 339: 111–116.CrossRefGoogle Scholar
  36. Foster, D. L., and Fillingame, R. H., 1979, Energy-transducing H+-ATPase of Escherichia coli, J. Biol. Chem. 254: 8230–8236.PubMedGoogle Scholar
  37. Fulmer, A. W., 1979, Studies on chromatin reconstitution, Ph.D. thesis, Brandeis University.Google Scholar
  38. Garavito, R. M., and Rosenbusch, J. P., 1980, Three-dimensional crystals of an integral membrane protein: An initial X-ray analysis, J. Cell. Biol. 86: 327–329.PubMedCrossRefGoogle Scholar
  39. Garavito, R. M., and Rosenbusch, J. P., 1986, Isolation and crystallization of bacterial porin, Methods Enzymol. 125: 309–328.PubMedCrossRefGoogle Scholar
  40. Glaeser, R. M., and Jap, B. K., 1985, Absorption flattening in the circular dichroism spectra of small membrane fragments, Biochemistry 24: 6398–6401.PubMedCrossRefGoogle Scholar
  41. Gordon, D. J., and Holzwarth, G., 1971, Artifacts in the measured optical activity of membrane suspensions, Arch. Biochem. Biophys. 142: 481–488.PubMedCrossRefGoogle Scholar
  42. Greenfield, N., and Fasman, G. D., 1969, Computed circular dichroism spectra for the evaluation of protein conformation, Biochemistry 8: 4108–4116.PubMedCrossRefGoogle Scholar
  43. Harbison, G. S., Smith, S. O., Pardoen, J. A., Courtin, J. M. L., Lugtneburg, J., Herzfeld, J., Mathies, R. A., and Griffin, R. G., 1985, Solid-state 13C NMR detection of a perturbed 6-s-trans chromophore in bacteriorhodopsin, Biochemistry 24: 6955–6962.PubMedCrossRefGoogle Scholar
  44. Helenius, A., McCaslin, D. R., Fries, E., and Tanford, C., 1979, Properties of detergents, Methods Enzymol. 56: 734–749.PubMedCrossRefGoogle Scholar
  45. Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E., and Downing, K. H., 1990, Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy, J. Mol. Biol. 213: 899–929.PubMedCrossRefGoogle Scholar
  46. Hennessey, J. P., Jr., and Johnson, W. C., Jr., 1981, Information content in the circular dichroism of proteins, Biochemistry 20: 1085–1094.PubMedCrossRefGoogle Scholar
  47. Hollósi, M., Kövér, K. E., Holly, S., and Fasman, G. D., 1987a, β-turns in serine-containing linear and cyclic peptide models, Biopolymers 26: 1527–1533.Google Scholar
  48. Hollósi, M., Kövér, K. E., Holly, S., Radics, L., and Fasman, G. D., 1987b, β-turns in bridged prolinecontaining cyclic peptide models, Biopolymers 26: 1555–1572.Google Scholar
  49. Holzwarth, G., and Doty, P., 1965, The ultraviolet circular dichroism of polypeptides, J. Am. Chem. Soc. 87: 218–228.PubMedCrossRefGoogle Scholar
  50. Johnson, W. C., Jr., 1990, Protein secondary structure and circular dichroism: A practical guide, Proteins 7: 205–214.PubMedCrossRefGoogle Scholar
  51. Kieffel, B., Garavito, R. M., Baumeister, W., and Rosenbusch, J. P., 1985, Secondary structure of a channel-forming protein: Porin from E. coli outer membranes, EMBO J. 4: 1589–1592.Google Scholar
  52. Kreusch, A., Weiss, M. S., Welte, W., Weckesser, J., and Schulz, G. E., 1991, Crystals on an integral membrane protein diffracting to 1.8A resolution, J. Mol. Biol. 217: 9–10.PubMedCrossRefGoogle Scholar
  53. Kühlbrandt, W., 1988, Three-dimensional crystallization of membrane proteins, Q. Rev. Biophys. 21: 429–477.PubMedCrossRefGoogle Scholar
  54. Kühlbrandt, W., Wang, D. A., and Fujiyoshi, Y., 1994, Atomic model of plant light-harvesting complex by electron crystallography, Nature 367: 614.PubMedCrossRefGoogle Scholar
  55. Lakey, J. H., Massotte, D., Heitz, F., Dasseux, J.-L., Faucon, J.-F., Parker, M. W., and Pattus, F., 1991, Membrane insertion of the pore-forming domain of colicin A: A spectroscopic study, Eur. J. Biochem. 196: 599–607.PubMedCrossRefGoogle Scholar
  56. Lee, N., Cheng, E., and Inouye, M., 1977, Optical properties of an outer membrane lipoprotein from Escherichia coli, Biochim. Biophys. Acta 465: 650–656.PubMedCrossRefGoogle Scholar
  57. Long, M. M., Urry, D. W., and Stoeckenius, W., 1977, Circular dichroism of biological membranes: Purple membrane of Halobacterium halobium, Biochem. Biophys. Res. Commun. 75: 725–731.PubMedCrossRefGoogle Scholar
  58. MacLennan, D. H., Brandi, C. J., Korczak, B., and Green, N. M., 1985, Aminb-acid sequence of a Ca2+Mg2+-dependent ATPase from rabbit muscle sarcoplasmic reticulum deduced from its complementary DNA sequence, Nature 316: 696–700.PubMedCrossRefGoogle Scholar
  59. McRee, D. E., Tainer, J. A., Meyer, T. E., van Beeumen, J., Cusanovich, M., and Getzoff, E. D., 1989, Crystallographic structure of a photoreceptor protein at 2.4A resolution, Proc. Natl. Acad. Sci. USA 86: 6533–6537.PubMedCrossRefGoogle Scholar
  60. Madden, T. D., Chapman, D., and Quinn, P. J., 1979, Cholesterol modulates activity of calcium dependentATPase of the sarcoplasmic reticulum, Nature 279: 538–541.PubMedCrossRefGoogle Scholar
  61. Manavalan, P., and Johnson, W. C., Jr., 1987, Variable selection method improves the prediction of protein secondary structure from circular dichroism spectra, Anal. Biochem. 167: 76–85.PubMedCrossRefGoogle Scholar
  62. Manning, M. C., Illangasekare, M., and Woody, R. W., 1988, Circular dichroism studies of distorted a-helices, twisted β-sheets, and β-turns, Biophys. Chem. 31: 77–86.PubMedCrossRefGoogle Scholar
  63. Mao, D., and Wallace, B. A., 1984, Differential light scattering and absorption flattening optical effects are minimal in the circular dichroism spectra of small unilamellar vesicles, Biochemistry 23: 2667–2673.PubMedCrossRefGoogle Scholar
  64. Mendel-Hartvig, J., and Capaldi, R. A., 1991, Catalytic site nucleotide and inorganic phosphate dependence of the conformation of the a subunit in Escherichia coli adenosinetriphosphatase, Biochemistry 30: 1278–1284.PubMedCrossRefGoogle Scholar
  65. Michel, H., and Oesterhelt, D., 1980, Three domensional crystals of membrane proteins: Bacteriorhodopsin, Proc. Natl. Acad. Sci. USA 77: 1283–1285.PubMedCrossRefGoogle Scholar
  66. Mollevanger, L. C. P. J., Kentgens, A. P. M., Pardoen, J. A., Courtin, J. M. L., Veeman, W. S., Lugtenburg, J., and de Grip, W. J., 1987, High-resolution solid-state 13C-NMR study of carbons C-5 and C-12 of the chromophore of bovine rhodopsip, Eur. J. Biochem. 163: 9–14.PubMedCrossRefGoogle Scholar
  67. Nabedryk, E., Tiede, D. M., Dutton, P. L., And Breton, J., 1982, Conformation and orientation of the protein in the bacterial photosynthetic reaction center, Biochim. Biophys. Acta 682: 273–280.Google Scholar
  68. Nabedryk, E., Berger, G., Andrianambinintsoa, S., and Breton, J., 1985, Comparison of a helix orientation in chromatophore, quantasome and reaction center of Rhodopseudomonas viridis by circular dichroism and polarized infrared spectroscopy, Biochim. Biophys. Acta 809: 271–276.CrossRefGoogle Scholar
  69. Némethy, G., Philips, D. C., Leach, S. J., and Scheraga, H. A., 1967, A second right-handed helical structure with the parameters of the Pauling—Corey a helix, Nature 214: 363–365.PubMedCrossRefGoogle Scholar
  70. Ohno-Iwashita, Y., and Imahori, K., 1982, Assignment of the functional loci in the colicin El molecule by characterization of its proteolytic fragments, J. Biol. Chem. 257: 6446–6451.PubMedGoogle Scholar
  71. Oikawa, K., Lieberman, D. M., and Reithmeier, R. A. F., 1985, Conformation and stability of the anion transport protein of human erythrocyte membranes, Biochemistry 24: 2843–2848.PubMedCrossRefGoogle Scholar
  72. Pancoska, P., and Keiderling, T. A., 1991, Systematic comparisons of statistical analyese and vibrational circular-dichroism for secondary structural prediction of selected proteins, Biochemistry 30: 6885–6895.PubMedCrossRefGoogle Scholar
  73. Papiz, M. Z., Hawthornthwaite, A. M., Cogdell, R. J., Woolley, K. J., Wightrian, P. A., Ferguson, L. A., and Lindsay, J. G., 1989, Crystallization and characterization of two crystal forms of the B800–850 light harvesting complex from Rhodopseudomonas acidophila strain 10050, J. Mol. Biol. 209: 833–835.PubMedCrossRefGoogle Scholar
  74. Parker, M. W., Pattus, F., Tucker, A. D., and Tsernoglou, D., 1989, Structure of the membrane-poreforming fragment of colicin A, Nature 337: 93–96.PubMedCrossRefGoogle Scholar
  75. Pattus, F., Heitz, F., Martinez, C., Provencher, S. W., and Lazdunski, C., 1985, Secondary structure of the pore-forming colicin A and its C-terminal fragment. Experimental fact and structure prediction, Eur. J. Biochem. 152: 681–689.PubMedCrossRefGoogle Scholar
  76. Paul, C., and Rosenbusch, J. P., 1985, Folding patterns of porin and bacteriorhodopsin, EMBO J. 4: 1593–1597.PubMedGoogle Scholar
  77. Penin, F., Codinot, C., and Gautheron, D. C., 1979, Optimization of the purification of mitochondria] F1 adenosine triphosphatase, Biochim. Biophys. Acta 548: 63–71.PubMedCrossRefGoogle Scholar
  78. Perczel, A., and Fasman, G. D., 1992, Quantitative conformational analysis of cyclic β-turn models. The effect of ring stress on 0-turn geometries, Protein Sci. 1: 378.PubMedCrossRefGoogle Scholar
  79. Perczel, A., Hollósi, M., Tusnady, G., and Fasman, G. D., 1989, Convex constraint decomposition of circular dichroism curves of proteins, Croat. Chim. Acta 62: 189–200.Google Scholar
  80. Perczel, A., Hollósi, M., Foxman, B. M., and Fasman, G. D., 1991a, Conformational analysis of pseudo cyclic hexapeptides based on quantitative circular dichroism (CD), NOE, and X-ray data, J. Am. Chem. Soc. 113: 9772–9784.CrossRefGoogle Scholar
  81. Perczel, A., Hollósi, M., Tusnady, G., and Fasman, G. D., 1991b, Convex constraint analysis: A natural deconvolution of circular dichroism curves of proteins, Protein Eng. 4: 669–679.PubMedCrossRefGoogle Scholar
  82. Perczel, A., Park, K., and Fasman, G. D., 1992, Deconvolution of the circular dichroism spectra of proteins: The circular dichroism spectra of the antiparallel 0-sheet in proteins, Proteins Struct. Funct. Genet. 13: 757.CrossRefGoogle Scholar
  83. Perczel, A., Hollósi, M., Sandor, P., and Fasman, G. D., 1993, The evaluation of type I and type II β-turn mixtures. Circular dichroism, NMR and molecular dynamics studies, Int. J. Peptide Protein Res. 41: 222.Google Scholar
  84. Picot, D., Loll, P. J., and Garavito, R. M., 1994, The X-ray crystal structure of the membrane protein prostaglandin H2 synthase, Nature 367: 243.PubMedCrossRefGoogle Scholar
  85. Pimplikar, S. W., and Reithmeier, R. A. F., 1986, Affinity chromatography of Band 3, the anion transport protein of erythrocyte membranes, J. Biol. Chem. 261: 9770–9778.PubMedGoogle Scholar
  86. Provencher, S. W., and Glöckner, J., 1981, Estimation of globular protein secondary structure from circular dichroism, Biochemistry 20: 33–37.PubMedCrossRefGoogle Scholar
  87. Rafferty, C. N., Cassim, J. Y., and McConnell, D. G., 1977, Circular dichroism, optical rotatory dispersion, and absorption studies on the conformation of bovine rhodopsin in situ and solubilized with detergents, Biophys. Struct. Mech. 2: 277–320.CrossRefGoogle Scholar
  88. Rath, P., Bousché, O., Merrill, A. R., Cramer, W. A., and Rothchild, K. J., 1991, Fourier transform infrared evidence for a predominantly alpha-helical structure of the membrane bound channel forming COOH terminal peptide of colicin E1, Biophys. J. 59: 516–522.Google Scholar
  89. Reynolds, J. A., and Stoeckenius, W., 1977, Molecular weight of bacteriorhodopsin solubilized in Triton X-100, Proc. Natl. Acad. Sci. USA 74: 2803–2804.CrossRefGoogle Scholar
  90. Sarkar, P. K., and Doty, P., 1966, The optical rotatory properties of the ß configuration in polypeptides and proteins, Proc. Natl. Acad. Sci. USA 55: 981–989.PubMedCrossRefGoogle Scholar
  91. Saxena, V. P., and Wetlaufer, D. B., 1971, A new basis for interpreting the circular dichroic spectra of proteins, Proc. Natl. Acad. Sci. USA 68: 969–972.PubMedCrossRefGoogle Scholar
  92. Schneider, A. S., and Rosenheck, K., 1982, Circular dichroism of membrane proteins, in: Techniques in Lipid and Membrane Biochemistry, Part II, B424, pp. 1–26, Elsevier, Amsterdam.Google Scholar
  93. Senior, A. E., 1988, ATP synthesis by oxidative phosphorylation, Physiol. Rev. 68: 177–231.PubMedGoogle Scholar
  94. Smith, S. O., and Griffin, R. G., 1988, High-resolution solid-state NMR of proteins, Annu. Rev. Phys. Chem. 39: 511–535.PubMedCrossRefGoogle Scholar
  95. Smith, S. O., Palings, I., Copie, V., Raleigh, D. P., Courtin, J., Pardoen, J. A., Lugtenburg, J., Mathies, R. A., and Griffin, R. G., 1987, Low-temperature solid-state 13C NMR studies of the retinal chromophore in rhodopsin, Biochemistry 26: 1606–1611.PubMedCrossRefGoogle Scholar
  96. Smith, S. O., Courtin, J., van den Berg, E., Winkel, C., Lugtenburg, J., Herzfeld, J., and Griffin, R. G., 1989, Solid-state 13C-NMR of the retinal chromophore in photointermediates of bacteriorhodopsin: Characterization of two forms of “M.,” Biochemistry 28: 237–243.PubMedCrossRefGoogle Scholar
  97. Tinoco, I., Jr., Woody, R. W., and Bradley, D. F., 1963, Absorption and rotation of light by helical polymers: The effect of chain lengths, J. Chem. Phys. 38: 1317–1325.CrossRefGoogle Scholar
  98. Urry, D. W., and Long, M. M., 1980, Ultraviolet absorption, circular dichroism, and optical rotatory dispersion in biomembrane studies, in: Membrane Physiology ( T. E. Andreoli, J. F. Hoffman, and D. D. Fanestil, eds.), pp. 107–124, Plenum Medical, New York.Google Scholar
  99. Vogel, H., and Jähnig, F., 1986, Models for the structure of outer membrane proteins of Escherichia coli derived from Raman spectroscopy and prediction methods, J. Mol. Biol. 190: 191–199.PubMedCrossRefGoogle Scholar
  100. Weiss, M. S., Kreusch, A., Schiltz, E., Nestel, U., Welter, W., Weckesser, J., and Schulz, G. E., 1991, The structure of porin from Rhodobacter capsulatus at 1.8A resolution, FEBS Lett. 280: 379–382.PubMedCrossRefGoogle Scholar
  101. Witt, H. T., Rögner, M., Mühlenhoff, U., Witt, I., Hinrichs, W., Saenger, W., Betzel, C., Dauter, Z., and Boekema, E. J., 1990, On isolated complexes of reaction center I and X-ray characterization of single crystals, in: Current Research in Photosynthesis II ( W. Baltscheffsky, ed.), Kluwer, Dordrecht, The Netherlands, pp. 547–554.Google Scholar
  102. Woody, R., 1974, Studies of theoretical circular dichroism of polypeptides: Contributions of 13 turns, in: Peptides, Polypeptides and Proteins ( E. R. Blout, F. A. Bovey, M. Goodman, and N. Lotan, eds.), pp. 338–350, Wiley, New York.Google Scholar
  103. Woody, R. W., and Tinoco, I., Jr., 1967, Optical rotation of oriented helices. III. Calculation of rotatory dispersion and circular dichroism of the alpha and 310 helix, J. Chem. Phys. 46: 4927–4945.CrossRefGoogle Scholar
  104. Yamada, M., Ebina, Y., Miyata, T., Nakazawa, T., and Nakazawa, A., 1982, Nucleotide sequence of the structural gene for colicin El and predicted structure of the protein, Proc. Natl. Acad. Sci. USA 79: 2827–2831.PubMedCrossRefGoogle Scholar
  105. Yang, J. T., Wu, C.-S. C., and Martinez, H. M., 1986, Calculation of protein conformation from circular dichroism, Methods Enzymol. 130: 208–269.PubMedCrossRefGoogle Scholar
  106. Yoshikawa, S., Choc, M. G., O’Toole, M. C., and Caughey, W. S., 1977, An infrared study of CO binding to heart cytochrome C oxidase and hemoglobin A, J. Biol. Chem. 252: 5498–5508.PubMedGoogle Scholar
  107. Zhang, Y.-Z, Ewart, G., and Capaldi, R. A., 1991, Topology of subunits of the mammalian cytochrome C-oxidase: Relationship to the assembly of the enzyme complex, Biochemistry 30: 3674–3681.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Gerald D. Fasman
    • 1
  1. 1.Department of BiochemistryBrandeis UniversityWalthamUSA

Personalised recommendations