Advertisement

Remembrance of Things Past

A Career in Chiroptical Research
  • Jen Tsi Yang
Chapter

Abstract

The 1950s were an exciting period for biochemistry and molecular biology. In particular, the physicochemical studies of proteins and nucleic acids began intensively at that time. In 1951 L. Pauling and R. B. Corey discovered the α helix and β sheets as components of protein structure (Pauling et al., 1951). According to Pauling, he had been model-building with strips of paper just to keep himself busy while in bed in Oxford with a cold. Out of this came the models of the helices and pleated sheets. Also in 1951, F. Sanger solved the amino acid sequence of the 51-residue insulin, the beginning of our studies of the primary structures of proteins (Sanger and Tuppy, 1951a,ó). At that time almost every conference on proteins would present one sequence after another of globular proteins. Then, in 1953 J. Watson and F. H. C. Crick won the race against Pauling* to discover the structure of DNA (Watson and Crick, 1953; see also Watson’s popular book, The Double Helix). J. C. Kendrew and M. F. Perutz were studying the x-ray diffraction of sperm whale myoglobin and hemoglobin, which would not be completed until the early 1960s (Kendrew et al., 1960, 1961; Perutz et al., 1960; Cullis et al., 1962).

Keywords

Circular Dichroism Rotatory Dispersion Circular Dichroism Band Flow Birefringence Optical Rotatory Dispersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations Used in This Chapter

ORD

optical rotator dispersion

CD

circular dichroism

BSA

bovine serum albumin

PBG

poly (γ-benzyl-α,L-glutamate)

PGA

poly (α,L-glutamic acid)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balcerski, J. S., Pysh, E. S., Chen, G. C., and Yang, J. T., 1975, Optical rotatory dispersion and vacuum ultraviolet circular dichroism of a polysaccharide. i-Carrageenan, J. Am. Chem. Soc.97: 6274–6275.PubMedCrossRefGoogle Scholar
  2. Bjornholm, S., Barbu, E., and Macheboeuf, M., 1952, Changes in the viscosity of solutions of serum albumin in an acid medium, Bull. Soc. Chim. Biol. 34: 1083–1098.PubMedGoogle Scholar
  3. Cassim, J. Y., and Yang, J. T., 1969, A computerized calibration of the circular dichrometer, Biochemistry 8: 1947–1951.PubMedCrossRefGoogle Scholar
  4. Chen, G. C., and Yang, J. T., 1977, Two-point calibration of circular dichrometer with d-10-camphorsulfonic acid, Anal. Lett. 10: 1195–1207.CrossRefGoogle Scholar
  5. Cohen, C., 1955, Optical rotation and polypeptide chain configuration in proteins, Nature 175: 129–130.PubMedCrossRefGoogle Scholar
  6. Crick, F. H. C., and Kendrew, J. C., 1957, X-ray analysis and protein structure, Adv. Protein Chem. 12: 133–214.CrossRefGoogle Scholar
  7. Cullis, A. F., Muirhead, H., Perutz, M. F., Rossman, M. G., and North, A. C. T., 1962, The structure of haemoglobin. IX. A three-dimensional Fourier synthesis at 5.5 A resolution: Description of the structure, Proc. R. Soc. London Ser.A265: 161–187.CrossRefGoogle Scholar
  8. Djerassi, C., 1960, Optical Rotatory Dispersion, McGraw—Hill, New York.Google Scholar
  9. Doty, P., Holtzer, A. M., Bradbury, J. H., and Blout, E. R., 1954, Polypeptides. II. The configuration of polymers of y-benzyl-L-glutamate in solution, J. Am. Chem. Soc., 76: 44–93.CrossRefGoogle Scholar
  10. Doty, P., Bradbury, J. H., and Holtzer, A. M., 1956, Polypeptides. IV. The molecular weight, configurations and associations of poly-y-benzyl-L-glutamate in various solvents, J. Am. Chem. Soc. 78: 947–954.CrossRefGoogle Scholar
  11. Doty, P., Wada, A., Yang, J. T., and Blout, E. R., 1957, Polypeptides. VIII. Molecular configurations of poly-L-glutamic acid in water—dioxane solution, J. Polym. Sci. 23: 851–861.CrossRefGoogle Scholar
  12. Eisenberg, D., and Crothers, D., 1979, Physical Chemistry with Applications to the Life Sciences, Benjmain/ Cummings, Menlo Park, CA, 590–593.Google Scholar
  13. Fitts, D. D., and Kirkwood, J. G., 1956, The optical rotatory power of helical molecules, Proc. Natl. Acad. Sci. USA 42: 33–36.PubMedCrossRefGoogle Scholar
  14. Gavrilesco, E., Barbu, E., and Macheboeuf, M., 1950, Gelification of proteins. VI. Changes with pH in the viscosity of solutions of serum albumin too low in protein concentration to form gels, Bull. Soc. Chim. Biol. 32: 924–933.PubMedGoogle Scholar
  15. Gutfreund, H., and Sturtevant, J. M., 1954, A reversible reaction of bovine serum albumin, J. Am. Chem. Soc. 75: 5447–5448.CrossRefGoogle Scholar
  16. Holzwarth, G., 1964, The ultraviolet optical properties of polypeptides, Ph.D. dissertation, Harvard University.Google Scholar
  17. Holzwarth, G., 1965, Circular dichroism measurements to 185 mm in a commercial recording spectrophotometer, Rev. Sci. Instrum. 36: 59–63.CrossRefGoogle Scholar
  18. Holzwarth, G., 1969, Optical rotatory dispersion and circular dichroism. 3. Instrumentation, in: A Laboratory Manual of Analytical Methods in Protein Chemistry ( P. Alexander and H. P. Lundgren, eds.), pp. 34–47, Pergamon Press, Elmsford, NY.Google Scholar
  19. Holzwarth, G., Gratzer, W. B., and Doty, P., 1962, The optical activity of polypeptides in the far ultraviolet, J. Am. Chem. Soc. 84: 3194–3195.CrossRefGoogle Scholar
  20. Huggins, M. L., 1952, Coordinates of the 11-atom ring polypeptide helix, J. Am. Chem. Soc. 74: 3963–3964.Google Scholar
  21. Jirgensons, B., 1952, Optical rotation and viscosity of native and denatured proteins. II. Influence of temperature and concentration, Arch. Biochem. Biophys. 41: 333–344.PubMedCrossRefGoogle Scholar
  22. Kauffman, G. B., and Kauffman, L. M., 1994, Linus Pauling: Reflections, Am. Sci. 82:522-524. Kendrew, J. C., Dickerson, R. E., Strandberg, B. E., Hart, R. G., Davis, D. R., Phillips, D. C., andGoogle Scholar
  23. Shore, V. C., 1960, Structure of myoglobin. A three-dimensional Fourier synthesis at 2 A resolution, Nature 185: 422–427.PubMedCrossRefGoogle Scholar
  24. Kendrew, J. C., Watson, H. C., Strandberg, B. E., Dickerson, R. E., Phillips, D. C., and Shore, V. C., 1961, A partial determination by X-ray methods, and its correlation with chemical data, Nature 190: 666–670.PubMedCrossRefGoogle Scholar
  25. Levedahl, B. H., and James, T. W., (eds. ), 1960, Proceedings of a Conference on Rotatory Dispersion,Google Scholar
  26. Lowry, T. M., 1935, Optical Rotatory Power, Longmans, Green, London; 1964, Dover, New York.Google Scholar
  27. Moffitt, W., 1956a, Optical rotatory dispersion of helical polymers, J. Chem. Phys. 25: 467–478.CrossRefGoogle Scholar
  28. Moffitt, W., 1956b, The optical rotatory dispersion of simple polypeptides. II, Proc. Natl. Acad. Sci. USA 42: 736–746.PubMedCrossRefGoogle Scholar
  29. Moffitt, W., and Yang, J. T., 1956, The optical rotatory dispersion of polypeptide. I, Proc. Natl. Acad. Sci. USA 42: 596–603.PubMedCrossRefGoogle Scholar
  30. Moffitt, W., Fitts, D. D., and Kirkwood, J. G., 1957, Critique of the theory of optical activity of helical polymers, Proc. Natl. Acad. Sci. USA 43: 723–730.PubMedCrossRefGoogle Scholar
  31. Moscowitz, A., 1960, Theory and analysis of rotatory dispersion curves, in: Optical Rotatory Dispersion. Applications to Organic Chemistry (C. Djerassi, ed.), McGraw—Hill, New York.Google Scholar
  32. Pasteur, L., 1860, in: Two lectures on Researches on the Molecular Dissymmetry of Natural Organic Products presented to the Chemical Society of Paris on 20 January and 3 February. Translated from Leçons de Chimie professées en 1860. By Ruschenberger, W. S. W., Am. J. Pharm. 34(3rd series, Vol. X):1-16, 97-112 (1862).Google Scholar
  33. Pauling, L., and Corey, R. B., 1953, A proposed structure for the nucleic acids, Proc. Natl. Acad. Sci. USA 39: 84-93.Google Scholar
  34. Pauling, L., Corey, R. B., and Branson, H. R., 1951, The structure of proteins: Two hydrogen bonded helical conformations of the polypeptide chain, Proc. Natl. Acad. Sci. USA 37: 205–211.PubMedCrossRefGoogle Scholar
  35. Perutz, M. F., Rossman, M. G., Cullis, A. F., Muirhead, H., Will, G., and North, A. C. T., 1960, Structure of haemoglobin. A three-dimensional Fourier synthesis at 5.5 A resolution, obtained by X-ray analysis, Nature 185: 416–422.PubMedCrossRefGoogle Scholar
  36. Sanger, F., and Tuppy, H., 1951a, The amino-acid sequence in the phenylalanine chain of insulin. 1. The identification of lower peptides from partial hydrolysates, Biochem. J. 49: 463–481.PubMedGoogle Scholar
  37. Sanger, F., and Tuppy, H., 1951b, The amino-acid sequence in the phenylalanine chain of insulin. 2. The investigation of peptides from enzyme hydrolysates, Biochem. J. 49: 481–490.PubMedGoogle Scholar
  38. Scatchard, G., 1952, Molecular interactions in protein solutions, Am. Sci. 40: 61–83.Google Scholar
  39. Tanford, C., 1950, Preparation and properties of serum and plasma proteins. XXIII. Hydrogen ionGoogle Scholar
  40. equilibria in native and modified human serum albumin, J. Am. Chem. Soc. 72:441-451. Tanford, C., Swanson, S. A., and Shore, W. S., 1955a, Hydrogen ion equilibria of bovine serum albumin, J. Am. Chem. Soc. 77:6414-6421.Google Scholar
  41. Tanford, C., Buzzell, J. G., Rands, D. G., and Swanson, S. A., 1955b, The reversible expansion of bovine serum albumin in acid solution, J. Am. Chem. Soc. 77: 6421–6428.CrossRefGoogle Scholar
  42. Urnes, P., and Doty, P., 1961, Optical rotation and the conformation of polypeptides and proteins, Adv. Protein Chem. 16: 401–544.PubMedCrossRefGoogle Scholar
  43. Velluz, L., LeGrand, M., and Grosjean, M., 1965, Optical Circular Dichroism. Principles, Measurements, and Applications. Translated from the French manuscript by MacCordick, J., Academic Press, New York.Google Scholar
  44. Watson, J. D., and Crick, F. H. C., 1953, Molecular structure of nucleic acids. A structure for deoxyribose nucleic acid, Nature 171: 737–738.PubMedCrossRefGoogle Scholar
  45. Weber, G., 1952, Polarization of the fluorescence of macromolecules. 2. Fluorescent conjugates of ovalbumin and bovine serum albumin, Biochem. J. 51: 155–167.PubMedGoogle Scholar
  46. Yang, J. T., 1958, Concentration dependence of flow birefringence of polymer solutions, J. Am. Chem. Soc. 80: 5139–5146.CrossRefGoogle Scholar
  47. Yang, J. T., 1961a, Optical rotatory dispersion of polypeptides and proteins, Tetrahedron 13: 143–165.CrossRefGoogle Scholar
  48. Yang, J. T., 1961b, The viscosity of macromolecules in relation to molecular conformation, Adv. Protein Chem. 16: 323–400.PubMedCrossRefGoogle Scholar
  49. Yang, J. T., 1965, On the phenomenological treatments of optical rotatory dispersion of polypeptides and protein, Proc. Natl. Acad. Sci. US 53: 438–445.CrossRefGoogle Scholar
  50. Yang, J. T., 1985, A commentary on Moffitt, W. & Yang, J. T. The optical rotatory dispersion of simple polypeptides. I. Proc. Natl. Acad. Sci. USA 42:596-603, 1956. Citation Classic. Current Contents/ Physical, Chemical and Earth Sciences 25(8):18, and Current Contents/ Engineering, Technology and Applied Sciences 16(8):18, 25 February.Google Scholar
  51. Yang, J. T., 1994, Remembrance of things past: A career in a chiroptical work, Protein, Nucleic Acid and Enzyme [in Japanese] 39: 2275–2283, 2814–2819.Google Scholar
  52. Yang, J. T., and Doty, P., 1957, The optical rotatory dispersion of polypeptides and proteins in relation to configuration, J. Am. Chem. Soc. 79: 761–775.CrossRefGoogle Scholar
  53. Yang, J. T., and Foster, J. F., 1954, Changes in the intrinsic viscosity and optical rotation of bovine plasma albumin associated with acid binding, J. Am. Chem. Soc. 76: 1588–1595.CrossRefGoogle Scholar
  54. Yang, J. T., and Samejima, T., 1969, Optical rotatory dispersion and circular dichroism of nucleic acids, Prog. Nucleic Acid Res. Mol. Biol. 9: 223–300.CrossRefGoogle Scholar
  55. Yang, J. T., Chen, G. C., and Jirgensons, B., 1976, Optical rotatory dispersion and circular dichroism of proteins, in: Handbook of Biochemistry and Molecular Biology, 3rd ed. (G. D. Fasman, ed.), Proteins, Vol. 3, CRC Press, Cleveland, OH, pp. 3-140.Google Scholar
  56. Yang, J. T., Wu, C.-S. C., and Marinez, H. M., 1986, Calculation of protein conformation from circular dichroism, Methods Enzymol. 130: 208–269.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Jen Tsi Yang
    • 1
  1. 1.Cardiovascular Research InstituteUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations