Partition Algorithms on Intervals

  • János D. Pintér
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 6)

Abstract

In the simplest and most frequently studied special case of the general GOP, D is a one-dimensional finite interval. Let D = [a, b], −∞ < a < b < ∞, and f a (possibly) multiextremal continuous or Lipschitz function defined on [a, b]. Applying the notation introduced in Chapter 2.1, the corresponding problem statements are
$$\underset{a\le x\le b}{\mathop{\min }}\,f(x),wheref\in C([a,b])$$
(2.3.1)
And
$$\mathop {\min }\limits_{a \leqslant x \leqslant b} f(x),wheref \in F([a,b])$$
(2.3.2)

Keywords

Hull 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media Dordrecht 1996

Authors and Affiliations

  • János D. Pintér
    • 1
  1. 1.Pintér Consulting ServicesDalhousie UniversityCanada

Personalised recommendations