Advertisement

Making the Mols Table

  • Charles J. Colbourn
  • Jeffrey H. Dinitz

Abstract

This paper is not to be read by the faint of heart. No proofs are given, but it contains statements of a truly alarming number of constructions for transversal designs and incomplete transversal designs.

The paper is a record of an attempt to construct tables of the best results implied by known constructions for the existence of certain classes of mutually orthogonal latin squares and incomplete latin squares.

Sections §1–6 establish the mathematical background for the paper. We begin with basic definitions in §1. Then the following five sections state a fairly complete collection of construction techniques. It may well be impossible to write a complete list of variants of known constructions, and it is certainly beyond reason to do so. We content ourselves with a large battery of the constructions that have been exploited in the literature.

In §7–9, we describe a package developed in Maple which instantiates most (but not all) of the constructions in code. Issues in the design of this package are addressed, and a discussion of the architecture of the package is given.

Keywords

Projective Plane Discrete Math Prime Power Parallel Class Affine Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.J.R. Abel, Four mutually orthogonal latin squares of orders 28 and 52, J. Combinatorial Theory A58 (1991), 306–309.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    R.J.R. Abel, private communications, 1993–94.Google Scholar
  3. [3]
    R.J.R. Abel and Y.W. Cheng, Some new MOLS of order 2’p for p a prime power, Austral. J. Combin. 10 (1994), 175–186.MathSciNetMATHGoogle Scholar
  4. [4]
    R.J.R. Abel, C.J. Colbourn, J.X. Yin and H. Zhang, Existence of transversal designs with block size five and any index a, preprint.Google Scholar
  5. [5]
    R.J.R. Abel and D.T. Todorov, Four MOLS of order 20, 30, 38 and 44, J. Combinatorial Theory A64 (1993), 144–148..Google Scholar
  6. [6]
    R.J.R. Abel, X. Zhang and H. Zhang, Three mutually orthogonal idempotent latin squares of orders 22 and 26, J. Stat. Plan. Infer.,to appear.Google Scholar
  7. [7]
    R.D. Baker, Whist tournaments, Congressus Num. 14 (1975), 89–100.Google Scholar
  8. [8]
    R.D. Baker, An elliptic semiplane, J. Combinatorial Theory A25 (1978), 193–195.CrossRefMATHGoogle Scholar
  9. [9]
    F.E. Bennett, Pairwise balanced designs with prime power block sizes exceeding 7, Ann. Discrete Math. 34 (1987), 43–64.Google Scholar
  10. [10]
    F.E. Bennett, C.J. Colbourn and L. Zhu, Existence of certain types of three HMOLS, Discrete Math,to appear.Google Scholar
  11. [11]
    F.E. Bennett, K.T. Phelps, C.A. Rodger and L. Zhu, Constructions of perfect Mendelsohn designs, Discrete Math. 103 (1992), 139–151.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    F.E. Bennett and L. Zhu, Existence of HSOLSSOM(hT) where h is even, preprint.Google Scholar
  13. [13]
    T. Beth, D. Jungnickel and H. Lenz, Design Theory, Cambridge University Press, Cambridge, 1986.MATHGoogle Scholar
  14. [14]
    R.C. Bose, On the applications of properties of Galois fields to the problem of construction of hypergraecolatin squares, Sankhya 3 (1938), 328–338.Google Scholar
  15. [15]
    R.C. Bose, I.M. Chakravarti and D.E. Knuth, On methods of constructing sets of mutually orthogonal latin squares using a computer, Technometrics 2 (1960), 507–516.MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    R.C. Bose, I.M. Chakravarti and D.E. Knuth, On methods of constructing sets of mutually orthogonal latin squares using a computer II, Technometrics 3 (1961), 111–118.MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    R.C. Bose and S.S. Shrikhande, On the construction of sets of mutually orthogonal latin squares and the falsity of a conjecture of Euler, Trans. Amer. Math. Soc. 95 (1960), 191–209.MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    R.C. Bose, S.S. Shrikhande and E.T. Parker, Further results on the construction of mutually orthogonal latin squares and the falsity of Euler’s conjecture, Canad. J. Math. 12 (1960), 189–203.MathSciNetMATHGoogle Scholar
  19. [19]
    R.K. Brayton, D. Coppersmith and A.J. Hoffman, Self-orthogonal latin squares of all orders n # 2, 3, 6, Bull. Amer. Math. Soc. 80 (1974), 116118.Google Scholar
  20. [20]
    A.E. Brouwer, The number of mutually orthogonal latin squares — a table to order 10000, Research Report ZW 123/79, Math. Centrum, Amsterdam, 1979.Google Scholar
  21. [21]
    A.E. Brouwer, On the existence of 30 mutually orthogonal latin squares, Math. Centrum Report ZW77, Amsterdam, 1980.Google Scholar
  22. [22]
    A.E. Brouwer, A series of separable designs with application to pairwise orthogonal latin squares, Europ. J. Combin. 1 (1980), 39–41.MathSciNetMATHGoogle Scholar
  23. [23]
    A.E. Brouwer, Four MOLS of order 10 with a hole of order 2, J. Stat. Plan. Infer. 10 (1984), 203–205.MathSciNetCrossRefGoogle Scholar
  24. [24]
    A.E. Brouwer, Recursive constructions of mutually orthogonal latin squares, Ann. Discrete Math. 46 (1991), 149–168.MathSciNetGoogle Scholar
  25. [25]
    A.E. Brouwer and G.H.J. van Rees, More mutually orthogonal latin squares, Discrete Math. 39 (1982), 263–281.MathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    C.J. Colbourn, Four MOLS of order 26, J. Comb. Math. Comb. Comput. 17 (1995), 147–148.MathSciNetMATHGoogle Scholar
  27. [27]
    C.J. Colbourn, Some direct constructions for incomplete transversal designs, J. Stat. Plan. Infer., to appear.Google Scholar
  28. [28]
    C.J. Colbourn, Construction techniques for mutually orthogonal latin squares, in: Combinatorics Advances Kluwer, to appear.Google Scholar
  29. [29]
    C.J. Colbourn, J.H. Dinitz and D.R. Stinson, More thwarts in transversal designs, Finite Fields Applic to appear.Google Scholar
  30. [30]
    C.J. Colbourn, J.H. Dinitz and M. Wojtas, Thwarts in transversal designs, Des. Codes Crypt. 5 (1995), 189–197.MathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    C.J. Colbourn, J. Yin and L. Zhu, Six MOLS of order 76, J. Comb. Math. Comb. Comput., to appear.Google Scholar
  32. [32]
    D.J. Crampin and A.J.W. Hilton, On the spectra of certain types of latin squares, J. Combinatorial Theory A19 (1975), 84–94.MathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    R.H.F. Denniston, Subplanes of the Hughes plane of order 9, Proc. Cambridge Phil. Soc. 64 (1968), 589–598.MathSciNetMATHGoogle Scholar
  34. [34]
    R.H.F. Denniston, Some maximal arcs in finite projective planes, J. Combinatorial Theory A6 (1969), 317–319.MathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    M.J. de Resmini, On the Dempwolff plane, in: Finite Geometries and Combinatorial Designs, Amer. Math. Soc., 1987, pp. 47–64.Google Scholar
  36. [36]
    J.H. Dinitz and D.R. Stinson, MOLS with holes, Discrete Math. 44 (1983), 145–154.MathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    D.A. Drake and H. Lenz, Orthogonal latin squares with orthogonal sub-squares, Archiv der Math. 34 (1980), 565–576.MathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    B. Du, On incomplete transversal designs with block size five, Util. Math. 40 (1991), 272–282.MATHGoogle Scholar
  39. [39]
    B. Du, On the existence of incomplete transversal designs with block size 5, Discrete Math. 135 (1994), 81–92.MATHGoogle Scholar
  40. [40]
    L. Euler, Recherches sur une nouvelle espèce de quarrés magiques,Verh. Zeeuw. Gen. Weten. Vlissengen 9 (1782), 85–239 Google Scholar
  41. [41]
    B. Ganter, R. Mathon and A. Rosa, A complete census of (10,3,2) designs and of Mendelsohn triple systems of order ten. II. Mendelsohn triple systems with repeated blocks, Congressus Num. 22 (1978), 181–204.Google Scholar
  42. [42]
    M. Greig, Designs from configurations in projective planes, unpublished, 1992.Google Scholar
  43. [43]
    R. Guérin, Aspects algebraiques de problème de Yamamoto, C.R. Acad. Sci. 256 (1963), 583–586.MATHGoogle Scholar
  44. [44]
    R. Guérin, Sur une généralisation de la méthode de Yamamoto pour la construction de carrés latins orthogonaux, C.R. Acad. Sci. 256 (1963), 2097–2100.MATHGoogle Scholar
  45. [45]
    R. Guérin, Existence et propriétés des carrés latin orthogonaux II, Publ. Inst. Stat. Univ. Paris 15 (1966), 215–293.Google Scholar
  46. [46]
    H. Hanani, On the number of orthogonal latin squares, J. Combinatorial Theory 8 (1970), 247–271.MathSciNetCrossRefMATHGoogle Scholar
  47. [47]
    A.S. Hedayat and E. Seiden, On the theory and application of sum composition of latin squares and orthogonal latin squares, Pacific J. Math. 54 (1974), 85–113.MathSciNetMATHGoogle Scholar
  48. [48]
    K.E. Heinrich, Near—orthogonal latin squares, Util Math. 12 (1977), 145155.Google Scholar
  49. [49]
    K.E. Heinrich and L. Zhu, Existence of orthogonal latin squares with aligned subsquares, Discrete Math. 59 (1984), 241–248.MathSciNetGoogle Scholar
  50. [50]
    K.E. Heinrich and L. Zhu, Incomplete self—orthogonal latin squares, J. Austral. Math. Soc. A42 (1987), 365–384.MathSciNetMATHGoogle Scholar
  51. [51]
    J.W.P. Hirschfeld, Projective Geometries over Finite Fields, Oxford University Press, 1979.Google Scholar
  52. [52]
    J.D. Horton, Sub—latin squares and incomplete orthogonal arrays, J. Combinatorial Theory A16 (1974), 23–33.MathSciNetCrossRefMATHGoogle Scholar
  53. [53]
    D.M. Johnson, A.L. Dulmage and N.S. Mendelsohn, Orthomorphisms of groups of orthogonal latin squares, Canad. J. Math. 13 (1961), 356–372.MathSciNetMATHGoogle Scholar
  54. [54]
    T.P. Kirkman, On the perfect r—partitions of r2 — r + 1, Transactions of the Historic Society of Lancashire and Cheshire (1850), 127–142.Google Scholar
  55. [55]
    E.R. Lamken, The existence of orthogonal partitioned incomplete latin squares of type t’’i, Discrete Math. 89 (1991), 231–251.MathSciNetCrossRefMATHGoogle Scholar
  56. [56]
    J.H. van Lint, Combinatorial Theory Seminar, Lect. Notes Math. 832, Springer, 1974.Google Scholar
  57. [57]
    H.F. MacNeish, Euler squares, Ann. Math. (NY) 23 (1922), 221–227.MathSciNetGoogle Scholar
  58. [58]
    H.B. Mann, The construction of orthogonal latin squares,Ann. Math. Statist. 13 (1942), 418–423 Google Scholar
  59. [59]
    R.A. Mathon, unpublished.Google Scholar
  60. [60]
    W.H. Mills, Some mutually orthogonal latin squares, Congressus Num. 19 (1977), 473–487.Google Scholar
  61. [61]
    R.C. Mullin, Finite bases for some PBD-closed sets, Discrete Math. 77 (1989), 217–236.MathSciNetCrossRefMATHGoogle Scholar
  62. [62]
    R.C. Mullin, P.J. Schellenberg, D.R. Stinson and S.A. Vanstone, Some results on the existence of squares, Ann. Discrete Math. 6 (1980), 257274.Google Scholar
  63. [63]
    R.C. Mullin and D.R. Stinson, Holey SOLSSOMs, Util. Math. 25 (1984), 159–169.MathSciNetMATHGoogle Scholar
  64. [64]
    R.C. Mullin and L. Zhu, The spectrum of HSOLSSOM(hn) where h is odd, Util. Math. 27 (1985), 157–168.MathSciNetMATHGoogle Scholar
  65. [65]
    A.V. Nazarok, Five pairwise orthogonal latin squares of order 21, Issled. Oper. i ASU, 1991, pp. 54–56.Google Scholar
  66. [66]
    T.G. Ostrom and F.A. Sherk, Finite projective planes with affine subplanes, Can. Math. Bull. 7 (1964), 549–560.MathSciNetCrossRefMATHGoogle Scholar
  67. [67]
    E.T. Parker, Construction of some sets of mutually orthogonal latin squares, Proc. Amer. Math. Soc. 10 (1959), 946–949.MathSciNetCrossRefMATHGoogle Scholar
  68. [68]
    E.T. Parker, Nonextendability conditions on mutually orthogonal latin squares, Proc. Amer. Math. Soc. 13 (1962), 219–221.MathSciNetCrossRefMATHGoogle Scholar
  69. [69]
    C. Pellegrino and P. Lancelotti, A construction of pairs and triples of k—incomplete orthogonal arrays, Ann. Discrete Math. 37 (1988), 251–256.CrossRefGoogle Scholar
  70. [70]
    L. Puccio and M.J. de Resmini, Subplanes of the Hughes plane of order 25, Arch. Math. 49 (1987), 151–165.CrossRefMATHGoogle Scholar
  71. [71]
    J.F. Rigby, Affine subplanes of finite projective planes, Can. J. Math. 17 (1965), 977–1009.MathSciNetMATHGoogle Scholar
  72. [72]
    C.E. Roberts Jr., Sets of mutually orthogonal latin squares with `like sub-squares’, J. Combinatorial Theory A61 (1992) 50–63.CrossRefMATHGoogle Scholar
  73. [73]
    C.E. Roberts Jr., Sets of mutually orthogonal latin squares with `like sub-squares’ II, preprint.Google Scholar
  74. [74]
    R. Roth and M. Peters, Four pairwise orthogonal latin squares of order 24, J. Combinatorial Theory A44 (1987), 152–155.MathSciNetCrossRefMATHGoogle Scholar
  75. [75]
    F. Ruiz and E. Seiden, Some results on the construction of orthogonal latin squares by the method of sum composition, J. Combinatorial Theory A16 (1974), 230–240.MathSciNetCrossRefMATHGoogle Scholar
  76. [76]
    P.J. Schellenberg, G.H.J. van Rees and S.A. Vanstone, Four pairwise orthogonal latin squares of order 15, Ars Combinatoria 6 (1978), 141–150.MathSciNetMATHGoogle Scholar
  77. [77]
    E. Seiden, A method of construction of resolvable BIBD, Sankhya A25 (1963), 393–394.MathSciNetMATHGoogle Scholar
  78. [78]
    E. Seiden and C.J. Wu, Construction of three mutually orthogonal latin squares by the method of sum composition, in: Essays in Probability and Statistics, Shinko Publishing, Tokyo, 1976.Google Scholar
  79. [79]
    J. Singer, A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc. 43 (1938), 377–385.CrossRefGoogle Scholar
  80. [80]
    D.A. Sprott, A series of symmetrical group divisible incomplete block designs, Ann. Math. Statist. 30 (1959), 249–251.MathSciNetCrossRefMATHGoogle Scholar
  81. [81]
    D.R. Stinson, On the existence of 7 and 8 mutually orthogonal latin squares, Ars Combinatoria 6 (1978), 113–115.MathSciNetGoogle Scholar
  82. [82]
    D.R. Stinson, On the existence of 30 mutually orthogonal latin squares, Ars Combinatoria 7 (1979), 153–170.MathSciNetMATHGoogle Scholar
  83. [83]
    D.R. Stinson, A generalization of Wilson’s construction for mutually orthogonal latin squares, Ars Combinatoria 8 (1979), 95–105.MathSciNetMATHGoogle Scholar
  84. [84]
    D.R. Stinson, The equivalence of certain incomplete transversal designs and frames, Ars Combinatoria 22 (1986), 81–87.MathSciNetMATHGoogle Scholar
  85. [85]
    D.R. Stinson and L. Zhu, On sets of three MOLS with holes, Discrete Math. 54 (1985), 321–328.MathSciNetCrossRefMATHGoogle Scholar
  86. [86]
    D.R. Stinson and L. Zhu, On the existence of MOLS with equal—sized holes, Aequat. Math. 33 (1987), 96–105.MathSciNetMATHGoogle Scholar
  87. [87]
    D.R. Stinson and L. Zhu, On the existence of three MOLS with equal—sized holes, Austral. J. Combin. 4 (1991), 33–47.MathSciNetMATHGoogle Scholar
  88. [88]
    K. Szajowski, The number of orthogonal latin squares, Applicationes Math. 15 (1976), 85–102.MathSciNetMATHGoogle Scholar
  89. [89]
    G. Tarry, Le problème de 36 officiers, Ass. Franc. Av. Sci. 29 (1900), 170203.Google Scholar
  90. [90]
    D.T. Todorov, Three mutually orthogonal latin squares of order 14, Ars Combinatoria 20 (1985), 45–48.MathSciNetMATHGoogle Scholar
  91. [91]
    D.T. Todorov, Four mutually orthogonal latin squares of order 20, Ars Combinatoria 27 (1989), 63–65.MathSciNetMATHGoogle Scholar
  92. [92]
    W.D. Wallis, Three orthogonal latin squares, Congressus Num. 42 (1984), 69–86.MathSciNetGoogle Scholar
  93. [93]
    W.D. Wallis and L. Zhu, Orthogonal latin squares with small subsquares, Lect. Notes Math. 1036 (1983), 398–409.MathSciNetGoogle Scholar
  94. [94]
    S.P. Wang, On self-orthogonal latin squares and partial transversals of latin squares, Ph.D. thesis, Ohio State University, 1978.Google Scholar
  95. [95]
    R.M. Wilson, A few more squares, Congressus Num. 10 (1974), 675–680.Google Scholar
  96. [96]
    R.M. Wilson, Concerning the number of mutually orthogonal latin squares, Discrete Math. 9 (1974), 181–198.MathSciNetCrossRefMATHGoogle Scholar
  97. [97]
    R.M. Wilson, Constructions and uses of pairwise balanced designs, in: Combinatorics, Math. Centrum Amsterdam Tracts 55 (1974), 18–41.Google Scholar
  98. [98]
    M. Wojtas, On seven mutually orthogonal latin squares, Discrete Math. 20 (1977), 193–201.MathSciNetCrossRefGoogle Scholar
  99. [99]
    M. Wojtas, The construction of mutually orthogonal latin squares, Kommunikat 172, Inst. Math. Politechniki Wroclaw, 1978.Google Scholar
  100. [100]
    M. Wojtas, A note on mutually orthogonal latin squares, Kommunikat 236, Inst. Math. Politechniki Wroclaw, 1978.Google Scholar
  101. [101]
    M. Wojtas, New Wilson-type constructions of mutually orthogonal latin squares II, Inst. Math. Politechniki Wroclaw, 1979.Google Scholar
  102. [102]
    M. Wojtas, New Wilson-type constructions of mutually orthogonal latin squares, Discrete Math. 32 (1980), 191–199.MathSciNetMATHGoogle Scholar
  103. [103]
    M. Wojtas, Some new matrices-minus-diagonal and MOLS,Discrete Math. 76 (1989), 291–292 Google Scholar
  104. [104]
    M. Wojtas, Five mutually orthogonal latin squares of orders 24 and 40, preprint.Google Scholar
  105. [105]
    K. Yamamoto, Generation principles of latin squares, Bull. Inst. Internat. Stat. 38 (1961), 73–76.MATHGoogle Scholar
  106. [106]
    X. Zhang and H. Zhang, Three mutually orthogonal idempotent latin squares of order 18, preprint.Google Scholar
  107. [107]
    L. Zhu, A short disproof of Euler’s conjecture concerning orthogonal latin squares, Ars Combinatoria 14 (1982), 47–55.MathSciNetMATHGoogle Scholar
  108. [108]
    L. Zhu, Pairwise orthogonal latin squares with orthogonal small sub-squares, Research Report CORR 83–19, University of Waterloo, 1983.Google Scholar
  109. [109]
    L. Zhu, Some results on orthogonal latin squares with orthogonal sub-squares, Util. Math. 25 (1984), 241–248.MATHGoogle Scholar
  110. [110]
    L. Zhu, Orthogonal latin squares with subsquares, Discrete Math. 48 (1984), 315–321.MathSciNetCrossRefMATHGoogle Scholar
  111. [111]
    L. Zhu, Six pairwise orthogonal latin squares of order 69, J. Austral. Math. Soc. A37 (1984), 1–3.CrossRefMATHGoogle Scholar
  112. [112]
    L. Zhu, Incomplete transversal designs with block size five, Congressus Num. 69 (1989), 13–20.Google Scholar
  113. [113]
    R.J.R. Abel, Difference families.Google Scholar
  114. [114]
    R.J.R. Abel, A.E. Brouwer, C.J. Colbourn and J.H. Dinitz, Mutually orthogonal latin squares.Google Scholar
  115. [115]
    R.J.R. Abel, C.J. Colbourn and J.H. Dinitz, Incomplete MOLS.Google Scholar
  116. [116]
    R.J.R. Abel and S.C. Furino, Resolvable and near—resolvable designs.Google Scholar
  117. [117]
    R.A. Mathon and A. Rosa, Balanced incomplete block designs.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1996

Authors and Affiliations

  • Charles J. Colbourn
    • 2
  • Jeffrey H. Dinitz
    • 1
  1. 1.Department of Combinatorics and OptimizationUniversity of WaterlooWaterlooCanada
  2. 2.Department of Mathematics and StatisticsUniversity of VermontBurlingtonUSA

Personalised recommendations